A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis

Chen M, Hofestädt R (2006)
JOURNAL OF BIOMEDICAL INFORMATICS 39(2): 147-159.

Journal Article | Published | English

No fulltext has been uploaded

Author
Abstract
During the past century, studies of metabolic disorders have focused research efforts to improve clinical diagnosis and management, to illuminate metabolic mechanisms, and to find effective treatments. The availability of human genome sequences and trallscriptomic, proteomic, and metabolomic data provides us with a challenging opportunity to develop computational approaches for systematic analysis of metabolic disorders. In this paper, we present a strategy of bioinformatics analysis to exploit the current data available both on genomic and metabolic levels and integrate these at novel levels of understanding of metabolic disorders. PathAligner is applied to predict biomedical data based on a given disorder. A case study on urea cycle disorders is demonstrated. A Petri net model is constructed to estimate the regulation both on genomic and metabolic levels. We also analyze the transcription factors, signaling pathways and associated disorders to interpret the occurrence and regulation of the urea cycle. Availability. PathAligner's metabolic disorder analyzer is available at http://bibiserv.techfak.uni-bielefeld.de/pathaligner/pathaligner_MDA.htm l. Supplementary materials are available at http://www.techflk.ulli-bielefeld.de/-mchen/metabolic-disorders. (c) 2005 Elsevier Inc. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Chen M, Hofestädt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS. 2006;39(2):147-159.
Chen, M., & Hofestädt, R. (2006). A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS, 39(2), 147-159.
Chen, M., and Hofestädt, R. (2006). A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS 39, 147-159.
Chen, M., & Hofestädt, R., 2006. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS, 39(2), p 147-159.
M. Chen and R. Hofestädt, “A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis”, JOURNAL OF BIOMEDICAL INFORMATICS, vol. 39, 2006, pp. 147-159.
Chen, M., Hofestädt, R.: A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. JOURNAL OF BIOMEDICAL INFORMATICS. 39, 147-159 (2006).
Chen, M, and Hofestädt, Ralf. “A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis”. JOURNAL OF BIOMEDICAL INFORMATICS 39.2 (2006): 147-159.
This data publication is cited in the following publications:
This publication cites the following data publications:

5 Citations in Europe PMC

Data provided by Europe PubMed Central.

Mathematical analysis predicts imbalanced IDH1/2 expression associates with 2-HG-inactivating β-oxygenation pathway in colorectal cancer.
Koseki J, Colvin H, Fukusumi T, Nishida N, Konno M, Kawamoto K, Tsunekuni K, Matsui H, Doki Y, Mori M, Ishii H., Int. J. Oncol. 46(3), 2015
PMID: 25586680
Platelet linoleic acid is a potential biomarker of advanced non-small cell lung cancer.
de Castro J, Rodriguez MC, Martinez-Zorzano VS, Llanillo M, Sanchez-Yague J., Exp. Mol. Pathol. 87(3), 2009
PMID: 19733167

44 References

Data provided by Europe PubMed Central.

Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors.
Ye X, Robinson MB, Batshaw ML, Furth EE, Smith I, Wilson JM., J. Biol. Chem. 271(7), 1996
PMID: 8631974
BioLayout--an automatic graph layout algorithm for similarity visualization.
Enright AJ, Ouzounis CA., Bioinformatics 17(9), 2001
PMID: 11590107
From topology to dynamics in biochemical networks.
Fox JJ, Hill CC., Chaos 11(4), 2001
PMID: 12779520

AUTHOR UNKNOWN, 0
A duplication growth model of gene expression networks.
Bhan A, Galas DJ, Dewey TG., Bioinformatics 18(11), 2002
PMID: 12424120
Birth and death of protein domains: a simple model of evolution explains power law behavior.
Karev GP, Wolf YI, Rzhetsky AY, Berezovskaya FS, Koonin EV., BMC Evol. Biol. 2(), 2002
PMID: 12379152
Hierarchical organization of modularity in metabolic networks.
Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL., Science 297(5586), 2002
PMID: 12202830
Altered immunoglobulin metabolism in systemic lupus erythematosus and heumatoid arthritis.
Levy J, Barnett EV, MacDonald NS, Klinenberg JR., J. Clin. Invest. 49(4), 1970
PMID: 5309797
Rheumatoid factors in systemic lupus erythematosus: association with clinical and laboratory parameters. SLE study group.
Witte T, Hartung K, Sachse C, Matthias T, Fricke M, Kalden JR, Lakomek HJ, Peter HH, Schmidt RE., Rheumatol. Int. 19(3), 2000
PMID: 10776689
Etanercept-induced lupus-like syndrome in a patient with rheumatoid arthritis.
Carlson E, Rothfield N., Arthritis Rheum. 48(4), 2003
PMID: 12687569
Calorie restricted diet and urinary pentosidine in patients with rheumatoid arthritis.
Iwashige K, Kouda K, Kouda M, Horiuchi K, Takahashi M, Nagano A, Tanaka T, Takeuchi H., J Physiol Anthropol Appl Human Sci 23(1), 2004
PMID: 14757997
Treatment of inborn errors of urea synthesis: activation of alternative pathways of waste nitrogen synthesis and excretion.
Batshaw ML, Brusilow S, Waber L, Blom W, Brubakk AM, Burton BK, Cann HM, Kerr D, Mamunes P, Matalon R, Myerberg D, Schafer IA., N. Engl. J. Med. 306(23), 1982
PMID: 7078580
Alternative pathway therapy for urea cycle disorders: twenty years later
Batshaw, J. Pediatr. 138(1 Suppl.), 2001

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16023895
PubMed | Europe PMC

Search this title in

Google Scholar