A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy

Neuhäusler U, Lin J, Oelsner A, Schicketanz M, Valdaitsev D, Slieh J, Weber N, Brzeska M, Wonisch A, Westerwalbesloh T, Brechling A, et al. (2006)
In: MICROELECTRONIC ENGINEERING. 83. ELSEVIER SCIENCE BV: 680-683.

Conference Paper | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Extreme ultraviolet lithography (EUVL) at 13.5 nm is the next generation lithography technique capable of printing sub-50 nm structures. With decreasing feature sizes to be printed, the requirements for the lithography mask also become more stringent in terms of defect sizes and densities that are still acceptable and the development of lithography optics has to go along with the development of new mask defect inspection techniques that are fast and offer high resolution (preferable in the range of the minimum feature size) at the same time. We report on the development and experimental results of a new 'at wavelength' full-field imaging technique for defect inspection of multilayer mask blanks for EUV lithography. Our approach uses a photoemission electron microscope (PEEM) in a normal incidence illumination mode at 13 nm to image the photoelectron emission induced by the EUV wave field on the multilayer mask blank surface. We show that by these means, buried defects in the multilayer stack can be probed down to a lateral size of 50 nm, which was the smallest pre-defined structure size under study so far. The PEEMs spatial resolution has been proven to be as small as 29 nm edge slope width in measurements with 250 nm radiation. Therefore, the capability of this technique for actinic measurements at 13 nm radiation is anticipated to be well below 50 nm. (c) 2006 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Neuhäusler U, Lin J, Oelsner A, et al. A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy. In: MICROELECTRONIC ENGINEERING. Vol 83. ELSEVIER SCIENCE BV; 2006: 680-683.
Neuhäusler, U., Lin, J., Oelsner, A., Schicketanz, M., Valdaitsev, D., Slieh, J., Weber, N., et al. (2006). A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy. MICROELECTRONIC ENGINEERING, 83(4-9), 680-683.
Neuhäusler, U., Lin, J., Oelsner, A., Schicketanz, M., Valdaitsev, D., Slieh, J., Weber, N., Brzeska, M., Wonisch, A., Westerwalbesloh, T., et al. (2006). “A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy” in MICROELECTRONIC ENGINEERING, vol. 83, (ELSEVIER SCIENCE BV), 680-683.
Neuhäusler, U., et al., 2006. A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy. In MICROELECTRONIC ENGINEERING. no.83 ELSEVIER SCIENCE BV, pp. 680-683.
U. Neuhäusler, et al., “A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy”, MICROELECTRONIC ENGINEERING, vol. 83, ELSEVIER SCIENCE BV, 2006, pp.680-683.
Neuhäusler, U., Lin, J., Oelsner, A., Schicketanz, M., Valdaitsev, D., Slieh, J., Weber, N., Brzeska, M., Wonisch, A., Westerwalbesloh, T., Brechling, A., Bruckl, H., Escher, M., Merkel, M., Schonhense, G., Kleineberg, U., Heinzmann, U.: A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy. MICROELECTRONIC ENGINEERING. 83, p. 680-683. ELSEVIER SCIENCE BV (2006).
Neuhäusler, U, Lin, J, Oelsner, A, Schicketanz, M, Valdaitsev, D, Slieh, J, Weber, N, Brzeska, M, Wonisch, A, Westerwalbesloh, T, Brechling, Armin, Bruckl, H, Escher, M, Merkel, M, Schonhense, G, Kleineberg, U, and Heinzmann, Ulrich. “A new approach for actinic defect inspection of EUVL multilayer mask blanks: Standing wave photoemission electron microscopy”. MICROELECTRONIC ENGINEERING. ELSEVIER SCIENCE BV, 2006.Vol. 83. 680-683.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar