Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum

Brinkrolf K, Brune I, Tauch A (2006)
GENETICS AND MOLECULAR RESEARCH 5(4): 773-789.

Download
No fulltext has been uploaded. References only!
Journal Article | Review | Published | English

No fulltext has been uploaded

Abstract
Corynebacterium glutamicum is a gram-positive soil microorganism able to utilize a large variety of aromatic compounds as the sole carbon source. The corresponding catabolic routes are associated with multiple ring-fission dioxygenases and among other channeling reactions, include the gentisate pathway, the protocatechuate and catechol branches of the beta-ketoadipate pathway and two potential hydroxyquinol pathways. Genes encoding the enzymatic machinery for the bioconversion of aromatic compounds are organized in several clusters in the C. glutamicum genome. Expression of the gene clusters is under specific transcriptional control, apparently including eight DNA-binding proteins belonging to the AraC, IclR, LuxR, PadR, and TetR families of transcriptional regulators. Expression of the gentisate pathway involved in the utilization of 3-hydroxybenzoate and gentisate is positively regulated by an IclR-type activator. The metabolic channeling of ferulate, vanillin and vanillate into the protocatechuate branch of the beta-ketoadipate pathway is controlled by a PadR-like repressor. Regulatory proteins of the IclR and LuxR families participate in transcriptional regulation of the branches of the beta-ketoadipate pathway that are involved in the utilization of benzoate, 4-hydroxybenzoate and protocatechuate. The channeling of phenol into this pathway may be under positive transcriptional control by an AraC-type activator. One of the potential hydroxyquinol pathways of C. glutamicum is apparently repressed by a TetR-type regulator. This global analysis revealed that transcriptional regulation of aromatic compound utilization is mainly controlled by single regulatory proteins sensing the presence of aromatic compounds, thus representing single input motifs within the transcriptional regulatory network of C. glutamicum.
Publishing Year
ISSN
PUB-ID

Cite this

Brinkrolf K, Brune I, Tauch A. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH. 2006;5(4):773-789.
Brinkrolf, K., Brune, I., & Tauch, A. (2006). Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH, 5(4), 773-789.
Brinkrolf, K., Brune, I., and Tauch, A. (2006). Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH 5, 773-789.
Brinkrolf, K., Brune, I., & Tauch, A., 2006. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH, 5(4), p 773-789.
K. Brinkrolf, I. Brune, and A. Tauch, “Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum”, GENETICS AND MOLECULAR RESEARCH, vol. 5, 2006, pp. 773-789.
Brinkrolf, K., Brune, I., Tauch, A.: Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. GENETICS AND MOLECULAR RESEARCH. 5, 773-789 (2006).
Brinkrolf, Karina, Brune, Iris, and Tauch, Andreas. “Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum”. GENETICS AND MOLECULAR RESEARCH 5.4 (2006): 773-789.
This data publication is cited in the following publications:
This publication cites the following data publications:

41 Citations in Europe PMC

Data provided by Europe PubMed Central.

PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ., J Bacteriol 192(6), 2010
PMID: 20081038
Utilization of phenol and naphthalene affects synthesis of various amino acids in Corynebacterium glutamicum.
Lee SY, Le TH, Chang ST, Park JS, Kim YH, Min J., Curr Microbiol 61(6), 2010
PMID: 20443004
Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum.
Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U., Eukaryot Cell 9(8), 2010
PMID: 20543063
Treatment of phenol-contaminated soil by Corynebacterium glutamicum and toxicity removal evaluation.
Lee SY, Kim BN, Han JH, Chang ST, Choi YW, Kim YH, Min J., J Hazard Mater 182(1-3), 2010
PMID: 20638173
Physiological adaptation of Corynebacterium glutamicum to benzoate as alternative carbon source - a membrane proteome-centric view.
Haussmann U, Qi SW, Wolters D, Rögner M, Liu SJ, Poetsch A., Proteomics 9(14), 2009
PMID: 19639586
The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences.
Brinkrolf K, Plöger S, Solle S, Brune I, Nentwich SS, Hüser AT, Kalinowski J, Pühler A, Tauch A., Microbiology 154(pt 4), 2008
PMID: 18375800
Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
Veselý M, Knoppová M, Nesvera J, Pátek M., Appl Microbiol Biotechnol 76(1), 2007
PMID: 17483937
Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks.
Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavrommatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ., PLoS One 2(9), 2007
PMID: 17895995

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17183485
PubMed | Europe PMC

Search this title in

Google Scholar