Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars

Kader MA, Seidel T, Golldack D, Lindberg S (2006)
Journal of Experimental Botany 57(15): 4257-4268.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
Under NaCl-dominated salt stress, the key to plant survival is maintaining a low cytosolic Na+ level or Na+/K+ ratio. The OsHKT1, OsHKT2, and OsVHA transporter genes might play important roles in maintaining cytosolic Na+ homeostasis in rice (Oryza sativa L. indica cvs Pokkali and BRRI Dhan29). Upon NaCl stress, the OsHKT1 transcript was significantly down-regulated in salt-tolerant cv. Pokkali, but not in salt-sensitive cv. BRRI Dhan29. NaCl stress induced the expression of OsHKT2 and OsVHA in both Pokkali and BRRI Dhan29. In cv. Pokkali, OsHKT2 and OsVHA transcripts were induced immediately after NaCl stress. However, in cv. BRRI Dhan29, the induction of OsHKT2 was quite low and of OsVHA was low and delayed, compared with that in cv. Pokkali. OsHKT2 and OsVHA induction mostly occurred in the phloem, in the transition from phloem to mesophyll cells, and in the mesophyll cells of the leaves. The vacuolar area in cv. Pokkali did not change under either short- (5-10 min) or long-term (24 h) salt stress, although it significantly increased 24 h after the stress in cv. BRRI Dhan29. When expressional constructs of VHA-c and VHA-a with YFP and CFP were introduced into isolated protoplasts of cvs Pokkali and BRRI Dhan29, the fluorescence resonance energy transfer (FRET) efficiency between VHA-c and VHA-a upon salt stress decreased slightly in cv. Pokkali, but increased significantly in cv. BRRI Dhan29. The results suggest that the salt-tolerant cv. Pokkali regulates the expression of OsHKT1, OsHKT2, and OsVHA differently from how the salt-sensitive cv. BRRI Dhan29 does. Together, these proteins might confer salt tolerance in Pokkali by maintaining a low cytosolic Na+ level and a correct ratio of cytosolic Na+/K+.
Erscheinungsjahr
Zeitschriftentitel
Journal of Experimental Botany
Band
57
Zeitschriftennummer
15
Seite
4257-4268
ISSN
eISSN
PUB-ID

Zitieren

Kader MA, Seidel T, Golldack D, Lindberg S. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany. 2006;57(15):4257-4268.
Kader, M. A., Seidel, T., Golldack, D., & Lindberg, S. (2006). Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany, 57(15), 4257-4268. doi:10.1093/jxb/erl199
Kader, M. A., Seidel, T., Golldack, D., and Lindberg, S. (2006). Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany 57, 4257-4268.
Kader, M.A., et al., 2006. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany, 57(15), p 4257-4268.
M.A. Kader, et al., “Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars”, Journal of Experimental Botany, vol. 57, 2006, pp. 4257-4268.
Kader, M.A., Seidel, T., Golldack, D., Lindberg, S.: Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany. 57, 4257-4268 (2006).
Kader, Mohammed Abdul, Seidel, Thorsten, Golldack, Dortje, and Lindberg, Sylvia. “Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars”. Journal of Experimental Botany 57.15 (2006): 4257-4268.

46 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Rice cultivars with differing salt tolerance contain similar cation channels in their root cells.
Kavitha PG, Miller AJ, Mathew MK, Maathuis FJ., J Exp Bot 63(8), 2012
PMID: 22345644
Ion Transporters and Abiotic Stress Tolerance in Plants.
Brini F, Masmoudi K., ISRN Mol Biol 2012(), 2012
PMID: 27398240
Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali
Alam R, Sazzadur Rahman M, Seraj ZI, Thomson MJ, Ismail AM, Tumimbang-Raiz E, Gregorio GB., Plant Breed. 130(4), 2011
PMID: IND44611831
Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.).
Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi MJ, Flowers TJ., Plant Cell Environ 33(5), 2010
PMID: 19930131
Na(+) transport in glycophytic plants: what we know and would like to know.
Craig Plett D, Møller IS., Plant Cell Environ 33(4), 2010
PMID: 19968828
Cytosolic calcium and pH signaling in plants under salinity stress.
Kader MA, Lindberg S., Plant Signal Behav 5(3), 2010
PMID: 20037468
A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel.
Lan WZ, Wang W, Wang SM, Li LG, Buchanan BB, Lin HX, Gao JP, Luan S., Proc Natl Acad Sci U S A 107(15), 2010
PMID: 20351263
Cloning and functional analysis of wheat V-H+-ATPase subunit genes.
Zhao Q, Zhao YJ, Zhao BC, Ge RC, Li M, Shen YZ, Huang ZJ., Plant Mol Biol 69(1-2), 2009
PMID: 18836689
K+ transport in plants: physiology and molecular biology.
Szczerba MW, Britto DT, Kronzucker HJ., J Plant Physiol 166(5), 2009
PMID: 19217185
Overexpression of TaSTRG gene improves salt and drought tolerance in rice.
Zhou W, Li Y, Zhao BC, Ge RC, Shen YZ, Wang G, Huang ZJ., J Plant Physiol 166(15), 2009
PMID: 19481835
Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis.
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ., BMC Cell Biol 9(), 2008
PMID: 18507826
Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.).
Kronzucker HJ, Szczerba MW, Schulze LM, Britto DT., J Exp Bot 59(10), 2008
PMID: 18562445
Na+ transport in plants.
Apse MP, Blumwald E., FEBS Lett 581(12), 2007
PMID: 17459382

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17088362
PubMed | Europe PMC

Suchen in

Google Scholar