Identification and expression regulation of symbiotically activated legume genes

Küster H, Vieweg MF, Manthey K, Baier M, Hohnjec N, Perlick AM (2007)
Phytochemistry 68(1): 8-18.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Legume plants are able to enter two different endosymbioses with soil prokaryotes and soil fungi, leading to nitrogen-fixing root nodules and to arbuscular mycorrhiza (AM), respectively. We applied in silico and microarray-based transcriptome profiling approaches to uncover the transcriptome of developing root nodules and AM roots of the model legume Medicago truncatula. Several hundred genes were found to be activated in different stages of either symbiosis, with almost 100 genes being co-induced during nodulation and in arbuscular mycorrhiza. These co-induced genes can be associated with different cellular functions required for symbiotic efficiency, such as the facilitation of transport processes across the perisymbiotic membranes that surround the endosymbiotic bacteroids in root nodules and the arbuscules in AM roots. To specify promoter elements required for gene expression in arbuscule-containing cells, reporter gene fusions of the promoter of the Vicia faba leghemoglobin gene VfLb29 were studied by loss-of-function and gain-of-function approaches in transgenic hairy roots. These analyses specified a 85-bp fragment that was necessary for gene expression in arbuscule-containing cells but was dispensible for gene activation in root nodules. In contrast to promoters mediating gene expression in the infected cells of root nodules, the activation of genes in AM appears to be governed by more complex regulatory systems requiring different promoter modules. (c) 2006 Elsevier Ltd. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Küster H, Vieweg MF, Manthey K, Baier M, Hohnjec N, Perlick AM. Identification and expression regulation of symbiotically activated legume genes. Phytochemistry. 2007;68(1):8-18.
Küster, H., Vieweg, M. F., Manthey, K., Baier, M., Hohnjec, N., & Perlick, A. M. (2007). Identification and expression regulation of symbiotically activated legume genes. Phytochemistry, 68(1), 8-18.
Küster, H., Vieweg, M. F., Manthey, K., Baier, M., Hohnjec, N., and Perlick, A. M. (2007). Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68, 8-18.
Küster, H., et al., 2007. Identification and expression regulation of symbiotically activated legume genes. Phytochemistry, 68(1), p 8-18.
H. Küster, et al., “Identification and expression regulation of symbiotically activated legume genes”, Phytochemistry, vol. 68, 2007, pp. 8-18.
Küster, H., Vieweg, M.F., Manthey, K., Baier, M., Hohnjec, N., Perlick, A.M.: Identification and expression regulation of symbiotically activated legume genes. Phytochemistry. 68, 8-18 (2007).
Küster, Helge, Vieweg, Martin F., Manthey, Katja, Baier, Markus, Hohnjec, Natalija, and Perlick, Andreas M. “Identification and expression regulation of symbiotically activated legume genes”. Phytochemistry 68.1 (2007): 8-18.
This data publication is cited in the following publications:
This publication cites the following data publications:

13 Citations in Europe PMC

Data provided by Europe PubMed Central.

Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
Camps C, Jardinaud MF, Rengel D, Carrere S, Herve C, Debelle F, Gamas P, Bensmihen S, Gough C., New Phytol. 208(1), 2015
PMID: 25919491
Mutualism-parasitism paradigm synthesized from results of root-endophyte models.
Mandyam KG, Jumpponen A., Front Microbiol 5(), 2014
PMID: 25628615
Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis.
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L., Front Plant Sci 5(), 2014
PMID: 25520732
RNA-seq transcriptome profiling reveals that Medicago truncatula nodules acclimate N₂ fixation before emerging P deficiency reaches the nodules.
Cabeza RA, Liese R, Lingner A, von Stieglitz I, Neumann J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J., J. Exp. Bot. 65(20), 2014
PMID: 25151618
Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum.
Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G., Plant Physiol. 153(4), 2010
PMID: 20534735
Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum).
Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-Gati E, Zilberstein A, Koltai H, Kapulnik Y., Mol. Plant Pathol. 11(1), 2010
PMID: 20078781
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis.
Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ., BMC Plant Biol. 9(), 2009
PMID: 19161626
An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen.
Tollot M, Wong Sak Hoi J, van Tuinen D, Arnould C, Chatagnier O, Dumas B, Gianinazzi-Pearson V, Seddas PM., New Phytol. 181(3), 2009
PMID: 19140944
Sequencing and analysis of the gene-rich space of cowpea.
Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen X., BMC Genomics 9(), 2008
PMID: 18304330

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17081575
PubMed | Europe PMC

Search this title in

Google Scholar