Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation

Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG (2007)
MOLECULAR PLANT-MICROBE INTERACTIONS 20(3): 283-292.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Isolates of Rhizobium leguminosarum bv. trifolii (the clover root-nodule endosymbiont) from the Nile River delta have been found to infect rice roots and colonize the intercellular spaces of the rice roots. Some of these isolates inhibit rice seedling growth but one in particular, R4, has been found in rice roots which develop and grow normally. We present evidence that the induced growth inhibition is due to a toxic accumulation of nitric oxide (NO), from the reduction of nitrate, and suggest that the reason that R4 does not inhibit rice root growth is because it is capable of completing the reduction of NO through to nitrogen gas. Thus, strain R4 is a candidate for engineering into a future biological nitrogen fixation system within these roots.
Erscheinungsjahr
Zeitschriftentitel
MOLECULAR PLANT-MICROBE INTERACTIONS
Band
20
Zeitschriftennummer
3
Seite
283-292
ISSN
PUB-ID

Zitieren

Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG. Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS. 2007;20(3):283-292.
Perrine-Walker, F. M., Gartner, E., Hocart, C. H., Becker, A., & Rolfe, B. G. (2007). Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS, 20(3), 283-292. doi:10.1094/MPMI-20-3-0283
Perrine-Walker, F. M., Gartner, E., Hocart, C. H., Becker, A., and Rolfe, B. G. (2007). Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS 20, 283-292.
Perrine-Walker, F.M., et al., 2007. Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS, 20(3), p 283-292.
F.M. Perrine-Walker, et al., “Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation”, MOLECULAR PLANT-MICROBE INTERACTIONS, vol. 20, 2007, pp. 283-292.
Perrine-Walker, F.M., Gartner, E., Hocart, C.H., Becker, A., Rolfe, B.G.: Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS. 20, 283-292 (2007).
Perrine-Walker, Francine M., Gartner, Elena, Hocart, Charles H., Becker, Anke, and Rolfe, Barry G. “Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation”. MOLECULAR PLANT-MICROBE INTERACTIONS 20.3 (2007): 283-292.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis.
Cao Z, Duan X, Yao P, Cui W, Cheng D, Zhang J, Jin Q, Chen J, Dai T, Shen W., Int J Mol Sci 18(10), 2017
PMID: 28972563
Plant–soil feedbacks: connecting ecosystem ecology and evolution
Van Nuland ME, Rachel C. Wooliver, Alix A. Pfennigwerth, Quentin D. Read, Ian M. Ware, Liam Mueller, James A. Fordyce, Jennifer A. Schweitzer, Joseph K. Bailey., Functional ecology. 30(7), 2016
PMID: IND605373441
Strain competition and agar affect the interaction of rhizobia with rice.
Perrine-Walker FM, Hynes MF, Rolfe BG, Hocart CH., Can J Microbiol 55(10), 2009
PMID: 19935894
Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots.
Groppa MD, Rosales EP, Iannone MF, Benavides MP., Phytochemistry 69(14), 2008
PMID: 18789805

50 References

Daten bereitgestellt von Europe PubMed Central.

Nitric oxide: a non-traditional regulator of plant growth.
Beligni MV, Lamattina L., Trends Plant Sci. 6(11), 2001
PMID: 11701377
Nitric oxide as a signal in plants.
Durner J, Klessig DF., Curr. Opin. Plant Biol. 2(5), 1999
PMID: 10508751
Nitrate: nutrient and signal for plant growth.
Crawford NM., Plant Cell 7(7), 1995
PMID: 7640524
Natural endophytic association between Rhizobium etli and maize (Zea mays L.).
Gutierrez-Zamora ML, Martinez-Romero E., J. Biotechnol. 91(2-3), 2001
PMID: 11566384
Nitric oxide and salicylic acid signaling in plant defense.
Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H., Proc. Natl. Acad. Sci. U.S.A. 97(16), 2000
PMID: 10922045
Dual pathways for regulation of root branching by nitrate.
Zhang H, Jennings A, Barlow PW, Forde BG., Proc. Natl. Acad. Sci. U.S.A. 96(11), 1999
PMID: 10339622
Inhibition of nitrate uptake by ammonium in barley. Analysis Of component fluxes
Kronzucker HJ, Glass AD, Yaeesh Siddiqi M ., Plant Physiol. 120(1), 1999
PMID: 10318705
Regulators and regulation of legume root nodule development.
Stougaard J., Plant Physiol. 124(2), 2000
PMID: 11027704
Single-Leaf Plantlet Bioassays for the Study of Root Morphogenesis and Rhizobium-Legume Nodulation
Rolfe, Australian Journal of Plant Physiology 23(3), 1996
Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules.
Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A., Mol. Plant Microbe Interact. 19(9), 2006
PMID: 16941901
Nitric oxide: a new player in plant signalling and defence responses.
Wendehenne D, Durner J, Klessig DF., Curr. Opin. Plant Biol. 7(4), 2004
PMID: 15231269
Anaerobic Electron Transfer and Active Transport in Bacteria
KONINGS, 1977
Nitrate Reductase Activities in Rice Genotypes in Irrigated Lowlands
Barlaan, Crop Science 38(3), 1998

Rolfe, Plant and Soil 194(1/2), 1997

Yanni, Plant and Soil 194(1/2), 1997

Ladha, Plant and Soil 194(1/2), 1997

Stoltzfus, Plant and Soil 194(1/2), 1997
A comparison of NH4+ and NO3- net fluxes along roots of rice and maize
Colmer, Plant Cell & Environment 21(2), 1998
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
Initiation and elongation of lateral roots in Lactuca sativa.
Zhang N, Hasenstein KH, Hasenstein KH., Int. J. Plant Sci. 160(3), 1999
PMID: 11542270
Regulation of Arabidopsis root development by nitrate availability.
Zhang H, Forde BG., J. Exp. Bot. 51(342), 2000
PMID: 10938795
Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability.
Oresnik IJ, Liu SL, Yost CK, Hynes MF., J. Bacteriol. 182(12), 2000
PMID: 10852892
Nitric oxide is required for root organogenesis.
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L., Plant Physiol. 129(3), 2002
PMID: 12114551
Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis.
Patriarca EJ, Tate R, Iaccarino M., Microbiol. Mol. Biol. Rev. 66(2), 2002
PMID: 12040124
Plant genetic control of nodulation.
Caetano-Anolles G, Gresshoff PM., Annu. Rev. Microbiol. 45(), 1991
PMID: 1741618
Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process.
Pagnussat GC, Lanteri ML, Lamattina L., Plant Physiol. 132(3), 2003
PMID: 12857806
Apoplastic synthesis of nitric oxide by plant tissues.
Bethke PC, Badger MR, Jones RL., Plant Cell 16(2), 2004
PMID: 14742874
Nitric oxide plays a central role in determining lateral root development in tomato.
Correa-Aragunde N, Graziano M, Lamattina L., Planta 218(6), 2004
PMID: 14716561
A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria
Simon, Bio/Technology 1(9), 1983
Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions.
Zeier J, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C., Plant Physiol. 136(1), 2004
PMID: 15347797
Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes.
Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J., Proc. Natl. Acad. Sci. U.S.A. 101(44), 2004
PMID: 15498873
Nitrite inhibition of nitrogenase from soybean bacteroids
Trinchant, Archives of Microbiology 124(1), 1980
Nitrate effects on the nodulation of legumes inoculated with nitrate-reductase-deficient mutants of Rhizobium
Gibson, Planta 134(1), 1977
Nitrite reduction in Rhizobium “hedysari” strain HCNT 1
Casella, Archives of Microbiology 146(3), 1986
Nitrite reduction in Bacteroids of Rhizobium “hedysari” strain HCNT 1
Casella, Archives of Microbiology 149(5), 1988
Nodulation failure in Trifolium subterraneum L. CV. Woogenellup (Sum. Marrar)
Gibson, Australian Journal of Agricultural Research 19(6), 1968
New insights into nitric oxide metabolism and regulatory functions.
Crawford NM, Guo FQ., Trends Plant Sci. 10(4), 2005
PMID: 15817421
Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato.
Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L., Planta 221(2), 2005
PMID: 15824907
Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation.
Luo L, Yao SY, Becker A, Ruberg S, Yu GQ, Zhu JB, Cheng HP., J. Bacteriol. 187(13), 2005
PMID: 15968067
Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology.
Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB., Appl. Environ. Microbiol. 71(11), 2005
PMID: 16269768
Interactions of rice seedlings with bacteria isolated from rice roots
Prayitno, Australian Journal of Plant Physiology 26(6), 1999
Eukaryotic nitrate and nitrite transporters.
Galvan A, Fernandez E., Cell. Mol. Life Sci. 58(2), 2001
PMID: 11289304
Structure and function of eukaryotic NAD(P)H:nitrate reductase.
Campbell WH., Cell. Mol. Life Sci. 58(2), 2001
PMID: 11289301
Characterizing the NO3 and NH4 Uptake Process of Rice Roots by Use of 15N Labelled NH4NO3
Fried, Physiologia Plantarum 18(2), 1965
THE EFFECT OF NITRITE ON ROOT GROWTH OF BARLEY AND MAIZE
Lee, New Phytologist 83(3), 1979
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl. Environ. Microbiol. 72(6), 2006
PMID: 16751548

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17378431
PubMed | Europe PMC

Suchen in

Google Scholar