Adaptive subwavelength control of nano-optical fields

Aeschlimann M, Bauer M, Bayer D, Brixner T, Garcia de Abajo FJ, Pfeiffer W, Rohmer M, Spindler C, Steeb F (2007)
NATURE 446(7133): 301-304.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

; ; ; ; ; ; ; ;
Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems(1-10). Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated(11,12) that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion(13). Shaping of the polarization of the laser pulse 14,15 provides a particularly efficient and versatile nano-optical manipulation method(16,17). Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses 14,15 and then probing the lateral field distribution by two-photon photoemission electron microscopy(18). In this combination of adaptive control(1-10) and nano-optics(19), we achieve subwave-length dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions(11-13,16,17,20) opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.
Publishing Year

Cite this

Aeschlimann M, Bauer M, Bayer D, et al. Adaptive subwavelength control of nano-optical fields. NATURE. 2007;446(7133):301-304.
Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., Garcia de Abajo, F. J., Pfeiffer, W., Rohmer, M., et al. (2007). Adaptive subwavelength control of nano-optical fields. NATURE, 446(7133), 301-304. doi:10.1038/nature05595
Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., Garcia de Abajo, F. J., Pfeiffer, W., Rohmer, M., Spindler, C., and Steeb, F. (2007). Adaptive subwavelength control of nano-optical fields. NATURE 446, 301-304.
Aeschlimann, M., et al., 2007. Adaptive subwavelength control of nano-optical fields. NATURE, 446(7133), p 301-304.
M. Aeschlimann, et al., “Adaptive subwavelength control of nano-optical fields”, NATURE, vol. 446, 2007, pp. 301-304.
Aeschlimann, M., Bauer, M., Bayer, D., Brixner, T., Garcia de Abajo, F.J., Pfeiffer, W., Rohmer, M., Spindler, C., Steeb, F.: Adaptive subwavelength control of nano-optical fields. NATURE. 446, 301-304 (2007).
Aeschlimann, Martin, Bauer, Michael, Bayer, Daniela, Brixner, Tobias, Garcia de Abajo, F. Javier, Pfeiffer, Walter, Rohmer, Martin, Spindler, Christian, and Steeb, Felix. “Adaptive subwavelength control of nano-optical fields”. NATURE 446.7133 (2007): 301-304.
This data publication is cited in the following publications:
This publication cites the following data publications:

93 Citations in Europe PMC

Data provided by Europe PubMed Central.

Extreme localization of electrons in space and time.
Hommelhoff P, Kealhofer C, Aghajani-Talesh A, Sortais YR, Foreman SM, Kasevich MA., Ultramicroscopy 109(5), 2009
PMID: 19117677
Quantum coherent control for nonlinear spectroscopy and microscopy.
Silberberg Y., Annu Rev Phys Chem 60(), 2009
PMID: 18999997
Controlling two-photon photoemission using polarization pulse shaping.
Golan B, Fradkin Z, Kopnov G, Oron D, Naaman R., J Chem Phys 130(6), 2009
PMID: 19222288
Coherent nonlinear emission from a single KTP nanoparticle with broadband femtosecond pulses.
Wnuk P, Xuan LL, Slablab A, Tard C, Perruchas S, Gacoin T, Roch JF, Chauvat D, Radzewicz C., Opt Express 17(6), 2009
PMID: 19293894
Polarization selective near-field focusing on mesoscopic surface patterns with threefold symmetry measured with PEEM.
Berndt M, Rohmer M, Ashall B, Schneider C, Aeschlimann M, Zerulla D., Opt Lett 34(7), 2009
PMID: 19340184
Full control over the electric field using four liquid crystal arrays.
Weise F, Lindinger A., Opt Lett 34(8), 2009
PMID: 19370136
Tip-enhanced near-field optical microscopy.
Hartschuh A., Angew Chem Int Ed Engl 47(43), 2008
PMID: 18814153
Interferometric control of spin-polarized electron populations at a metal surface observed by multiphoton photoemission.
Winkelmann A, Lin WC, Bisio F, Petek H, Kirschner J., Phys Rev Lett 100(20), 2008
PMID: 18518563
Laser-induced currents along molecular wire junctions.
Franco I, Shapiro M, Brumer P., J Chem Phys 128(24), 2008
PMID: 18601382
Subwavelength direct-write nanopatterning using optically trapped microspheres.
McLeod E, Arnold CB., Nat Nanotechnol 3(7), 2008
PMID: 18654565
Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array.
Choi S, Park D, Lienau C, Jeong MS, Byeon CC, Ko DK, Kim DS., Opt Express 16(16), 2008
PMID: 18679481
Monotonic convergent optimal control theory with strict limitations on the spectrum of optimized laser fields.
Gollub C, Kowalewski M, de Vivie-Riedle R., Phys Rev Lett 101(7), 2008
PMID: 18764528
A surface science approach to ultrafast electron transfer and solvation dynamics at interfaces.
Stähler J, Bovensiepen U, Meyer M, Wolf M., Chem Soc Rev 37(10), 2008
PMID: 18818821
Femtosecond quantum control of molecular dynamics in the condensed phase.
Nuernberger P, Vogt G, Brixner T, Gerber G., Phys Chem Chem Phys 9(20), 2007
PMID: 17508081
Photonics: light in chains.
van Hulst NF., Nature 448(7150), 2007
PMID: 17625550


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 17361179
PubMed | Europe PMC

Search this title in

Google Scholar