Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2

Maskos K, Lang R, Tschesche H, Bode W (2007)
JOURNAL OF MOLECULAR BIOLOGY 366(4): 1222-1231.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type 11) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and NIW-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 angstrom crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of similar to 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP. (c) 2006 Elsevier Ltd. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Maskos K, Lang R, Tschesche H, Bode W. Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY. 2007;366(4):1222-1231.
Maskos, K., Lang, R., Tschesche, H., & Bode, W. (2007). Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY, 366(4), 1222-1231.
Maskos, K., Lang, R., Tschesche, H., and Bode, W. (2007). Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY 366, 1222-1231.
Maskos, K., et al., 2007. Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY, 366(4), p 1222-1231.
K. Maskos, et al., “Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2”, JOURNAL OF MOLECULAR BIOLOGY, vol. 366, 2007, pp. 1222-1231.
Maskos, K., Lang, R., Tschesche, H., Bode, W.: Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. JOURNAL OF MOLECULAR BIOLOGY. 366, 1222-1231 (2007).
Maskos, K., Lang, R., Tschesche, Harald, and Bode, W. “Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2”. JOURNAL OF MOLECULAR BIOLOGY 366.4 (2007): 1222-1231.
This data publication is cited in the following publications:
This publication cites the following data publications:

22 Citations in Europe PMC

Data provided by Europe PubMed Central.

Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes.
Sudha G, Singh P, Swapna LS, Srinivasan N., Protein Sci. 24(11), 2015
PMID: 26311309
Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase-12.
Koppisetti RK, Fulcher YG, Jurkevich A, Prior SH, Xu J, Lenoir M, Overduin M, Van Doren SR., Nat Commun 5(), 2014
PMID: 25412686
Histological, histochemical, and protein changes after induced malocclusion by occlusion alteration of Wistar rats.
Guerra Cde S, Carla Lara Pereira Y, Issa JP, Luiz KG, Guimaraes EA, Gerlach RF, Iyomasa MM., Biomed Res Int 2014(), 2014
PMID: 25028660
Affinity- and specificity-enhancing mutations are frequent in multispecific interactions between TIMP2 and MMPs.
Sharabi O, Shirian J, Grossman M, Lebendiker M, Sagi I, Shifman J., PLoS ONE 9(4), 2014
PMID: 24710006
A peptide derived from TIMP-3 inhibits multiple angiogenic growth factor receptors and tumour growth and inflammatory arthritis in mice.
Chen YY, Brown NJ, Jones R, Lewis CE, Mujamammi AH, Muthana M, Seed MP, Barker MD., Angiogenesis 17(1), 2014
PMID: 24129822
Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders.
Tlatli R, Nozach H, Collet G, Beau F, Vera L, Stura E, Dive V, Cuniasse P., FEBS J. 280(1), 2013
PMID: 23121732
Matrix metalloproteinase-10 (MMP-10) interaction with tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2: binding studies and crystal structure.
Batra J, Robinson J, Soares AS, Fields AP, Radisky DC, Radisky ES., J. Biol. Chem. 287(19), 2012
PMID: 22427646
Endogenous angiogenesis inhibitor blocks tumor growth via direct and indirect effects on tumor microenvironment.
Bourboulia D, Jensen-Taubman S, Rittler MR, Han HY, Chatterjee T, Wei B, Stetler-Stevenson WG., Am. J. Pathol. 179(5), 2011
PMID: 21933655
Dynamic interdomain interactions contribute to the inhibition of matrix metalloproteinases by tissue inhibitors of metalloproteinases.
Remacle AG, Shiryaev SA, Radichev IA, Rozanov DV, Stec B, Strongin AY., J. Biol. Chem. 286(23), 2011
PMID: 21518756
Mechanisms of macromolecular protease inhibitors.
Farady CJ, Craik CS., Chembiochem 11(17), 2010
PMID: 21053238
Tissue inhibitor of metalloproteinases-4. The road less traveled.
Melendez-Zajgla J, Del Pozo L, Ceballos G, Maldonado V., Mol. Cancer 7(), 2008
PMID: 19025595
Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex.
Wisniewska M, Goettig P, Maskos K, Belouski E, Winters D, Hecht R, Black R, Bode W., J. Mol. Biol. 381(5), 2008
PMID: 18638486
Inactivation of N-TIMP-1 by N-terminal acetylation when expressed in bacteria.
Van Doren SR, Wei S, Gao G, DaGue BB, Palmier MO, Bahudhanapati H, Brew K., Biopolymers 89(11), 2008
PMID: 18615493
Structure of an Fab-protease complex reveals a highly specific non-canonical mechanism of inhibition.
Farady CJ, Egea PF, Schneider EL, Darragh MR, Craik CS., J. Mol. Biol. 380(2), 2008
PMID: 18514224
Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors.
Hamze AB, Wei S, Bahudhanapati H, Kota S, Acharya KR, Brew K., Protein Sci. 16(9), 2007
PMID: 17660250
Simultaneous presence of unsaturation and long alkyl chain at P'1 of Ilomastat confers selectivity for gelatinase A (MMP-2) over gelatinase B (MMP-9) inhibition as shown by molecular modelling studies.
Moroy G, Denhez C, El Mourabit H, Toribio A, Dassonville A, Decarme M, Renault JH, Mirand C, Bellon G, Sapi J, Alix AJ, Hornebeck W, Bourguet E., Bioorg. Med. Chem. 15(14), 2007
PMID: 17512742

55 References

Data provided by Europe PubMed Central.

Crystallography and NMR systems (CNS): a new software system for macromolecular structure determination
Brünger, Acta Crystallog. sect. D 54(), 1998
Improved methods for building protein models in electron density maps and the location of errors in these models
Jones, Acta Crystallog. sect. A 47(), 1991

AUTHOR UNKNOWN, 0
The CCP4 suite: programs for cystallography
Collaborative, Acta Crystallog. sect. D 50(), 1994
PROCHECK: a program to check the stereochemical quality of protein structures.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM., J Appl Crystallogr 26(2), 1993
PMID: c6802

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17196980
PubMed | Europe PMC

Search this title in

Google Scholar