Structure of symmetric and asymmetric "ripple" phases in lipid bilayers

Lenz O, Schmid F (2007)
Physical Review Letters 98(5): 058104.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
We reproduce the symmetric and asymmetric "rippled" Pp, states of lipid membranes by Monte Carlo simulations of a coarse-grained molecular model for lipid-solvent mixtures. The structure and properties compare favorably with experiments. The asymmetric ripple state is characterized by a periodic array of fully interdigitated "defect" lines. The symmetric ripple state maintains a bilayer structure, but is otherwise structurally similar. The main force driving the formation of both ripple states is the propensity of lipid molecules with large head groups to exhibit splay.
Physical Review Letters


Lenz O, Schmid F. Structure of symmetric and asymmetric "ripple" phases in lipid bilayers. Physical Review Letters. 2007;98(5): 058104.
Lenz, O., & Schmid, F. (2007). Structure of symmetric and asymmetric "ripple" phases in lipid bilayers. Physical Review Letters, 98(5), 058104. doi:10.1103/PhysRevLett.98.058104
Lenz, O., and Schmid, F. (2007). Structure of symmetric and asymmetric "ripple" phases in lipid bilayers. Physical Review Letters 98:058104.
Lenz, O., & Schmid, F., 2007. Structure of symmetric and asymmetric "ripple" phases in lipid bilayers. Physical Review Letters, 98(5): 058104.
O. Lenz and F. Schmid, “Structure of symmetric and asymmetric "ripple" phases in lipid bilayers”, Physical Review Letters, vol. 98, 2007, : 058104.
Lenz, O., Schmid, F.: Structure of symmetric and asymmetric "ripple" phases in lipid bilayers. Physical Review Letters. 98, : 058104 (2007).
Lenz, Olaf, and Schmid, Friederike. “Structure of symmetric and asymmetric "ripple" phases in lipid bilayers”. Physical Review Letters 98.5 (2007): 058104.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Systems biology of cellular membranes: a convergence with biophysics.
Chabanon M, Stachowiak JC, Rangamani P., Wiley Interdiscip Rev Syst Biol Med 9(5), 2017
PMID: 28475297
Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility.
Isabettini S, Massabni S, Hodzic A, Durovic D, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S., Phys Chem Chem Phys 19(31), 2017
PMID: 28745755
The plasma membrane as a capacitor for energy and metabolism.
Ray S, Kassan A, Busija AR, Rangamani P, Patel HH., Am J Physiol Cell Physiol 310(3), 2016
PMID: 26771520
Structure of the DMPC lipid bilayer ripple phase.
Akabori K, Nagle JF., Soft Matter 11(5), 2015
PMID: 25503248
Solvent-free Liquid Crystals and Liquids from DNA.
Liu K, Shuai M, Chen D, Tuchband M, Gerasimov JY, Su J, Liu Q, Zajaczkowski W, Pisula W, Müllen K, Clark NA, Herrmann A., Chemistry 21(13), 2015
PMID: 25712569
Laterally structured ripple and square phases with one and two dimensional thickness modulations in a model bilayer system.
Debnath A, Thakkar FM, Maiti PK, Kumaran V, Ayappa KG., Soft Matter 10(38), 2014
PMID: 25130991
Variable tilt on lipid membranes.
Rangamani P, Steigmann DJ., Proc Math Phys Eng Sci 470(2172), 2014
PMID: 25484606
Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers.
Meinhardt S, Vink RL, Schmid F., Proc Natl Acad Sci U S A 110(12), 2013
PMID: 23487780
Ripple formation in unilamellar-supported lipid bilayer revealed by FRAPP.
Harb F, Simon A, Tinland B., Eur Phys J E Soft Matter 36(12), 2013
PMID: 24343762
High pressure effect on phase transition behavior of lipid bilayers.
Lai K, Wang B, Zhang Y, Zhang Y., Phys Chem Chem Phys 14(16), 2012
PMID: 22418786
Pore-spanning lipid membrane under indentation by a probe tip: a molecular dynamics simulation study.
Huang CH, Hsiao PY, Tseng FG, Fan SK, Fu CC, Pan RL., Langmuir 27(19), 2011
PMID: 21859109
Coarse-grained simulations of membranes under tension.
Neder J, West B, Nielaba P, Schmid F., J Chem Phys 132(11), 2010
PMID: 20331316
Lipids on the move: simulations of membrane pores, domains, stalks and curves.
Marrink SJ, de Vries AH, Tieleman DP., Biochim Biophys Acta 1788(1), 2009
PMID: 19013128
Toy amphiphiles on the computer: What can we learn from generic models?
Schmid F., Macromol Rapid Commun 30(9-10), 2009
PMID: 21706660
Coarse-grained modeling of lipids.
Bennun SV, Hoopes MI, Xing C, Faller R., Chem Phys Lipids 159(2), 2009
PMID: 19477311
Direct laser patterning of soft matter: photothermal processing of supported phospholipid multilayers with nanoscale precision.
Mathieu M, Schunk D, Franzka S, Mayer C, Hasselbrink E, Hartmann N., Small 5(18), 2009
PMID: 19507151
Melting behavior of an idealized membrane model.
Del Pópolo MG, Ballone P., J Chem Phys 128(2), 2008
PMID: 18205464
Implicit-solvent mesoscale model based on soft-core potentials for self-assembled lipid membranes.
Revalee JD, Laradji M, Sunil Kumar PB., J Chem Phys 128(3), 2008
PMID: 18205524


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 17358906
PubMed | Europe PMC

Suchen in

Google Scholar