Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations

Kühn S, Cruse H (2007)
Biological Cybernetics 96(5): 471-486.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Erscheinungsjahr
Zeitschriftentitel
Biological Cybernetics
Band
96
Zeitschriftennummer
5
Seite
471-486
ISSN
eISSN
PUB-ID

Zitieren

Kühn S, Cruse H. Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biological Cybernetics. 2007;96(5):471-486.
Kühn, S., & Cruse, H. (2007). Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biological Cybernetics, 96(5), 471-486. doi:10.1007/s00422-006-0138-9
Kühn, S., and Cruse, H. (2007). Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biological Cybernetics 96, 471-486.
Kühn, S., & Cruse, H., 2007. Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biological Cybernetics, 96(5), p 471-486.
S. Kühn and H. Cruse, “Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations”, Biological Cybernetics, vol. 96, 2007, pp. 471-486.
Kühn, S., Cruse, H.: Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biological Cybernetics. 96, 471-486 (2007).
Kühn, Simone, and Cruse, Holk. “Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations”. Biological Cybernetics 96.5 (2007): 471-486.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Compact internal representation of dynamic situations: neural network implementing the causality principle.
Villacorta-Atienza JA, Velarde MG, Makarov VA., Biol Cybern 103(4), 2010
PMID: 20589508
Elements for a general memory structure: properties of recurrent neural networks used to form situation models.
Makarov VA, Song Y, Velarde MG, Hübner D, Cruse H., Biol Cybern 98(5), 2008
PMID: 18350312
Selforganizing memory: active learning of landmarks used for navigation.
Cruse H, Hübner D., Biol Cybern 99(3), 2008
PMID: 18797951

53 References

Daten bereitgestellt von Europe PubMed Central.

Perceptual symbol systems.
Barsalou LW., Behav Brain Sci 22(4), 1999
PMID: 11301525
Perception of acceleration with short presentation times: can acceleration be used in interception?
Brouwer AM, Brenner E, Smeets JB., Percept Psychophys 64(7), 2002
PMID: 12489669

AUTHOR UNKNOWN, 0

N, 1957

N, Language 35(), 1959

N, 1965

H, Cogn Sci 27(), 2003

H, Evol Cogn 5(), 1999
Embodied meaning in a neural theory of language.
Feldman J, Narayanan S., Brain Lang 89(2), 2004
PMID: 15068922

C, Berkeley Linguist Soc 14(), 1988
Perceptual components of situation models.
Fincher-Kiefer R., Mem Cognit 29(2), 2001
PMID: 11352217

C, Lang Cogn Proc 9(), 1994
Parietal lobe: from action organization to intention understanding.
Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G., Science 308(5722), 2005
PMID: 15860620

JJ, 1993

JJ, J Exp Psychol Learn Mem Cogn 10(), 1984

JJ, 1979

AM, Discour Proc 28(), 1999

AM, J Mem Lang 43(), 2000
Grounding language in action.
Glenberg AM, Kaschak MP., Psychon Bull Rev 9(3), 2002
PMID: 12412897

AE, 1995

E, 2002
Somatotopic representation of action words in human motor and premotor cortex.
Hauk O, Johnsrude I, Pulvermuller F., Neuron 41(2), 2004
PMID: 14741110
The faculty of language: what is it, who has it, and how did it evolve?
Hauser MD, Chomsky N, Fitch WT., Science 298(5598), 2002
PMID: 12446899
Representation of visual gravitational motion in the human vestibular cortex.
Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F., Science 308(5720), 2005
PMID: 15831760

PN, 1983

MP, J Mem Lang 43(), 2000
Activation in human MT/MST by static images with implied motion.
Kourtzi Z, Kanwisher N., J Cogn Neurosci 12(1), 2000
PMID: 10769305

S, 2005

S, Connect Sci 17(), 2005

AUTHOR UNKNOWN, 0

G, 1987
Visual motion analysis for pursuit eye movements in area MT of macaque monkeys.
Lisberger SG, Movshon JA., J. Neurosci. 19(6), 1999
PMID: 10066275
Does the brain model Newton's laws?
McIntyre J, Zago M, Berthoz A, Lacquaniti F., Nat. Neurosci. 4(7), 2001
PMID: 11426224

LR, Psychol Sci 9(), 1998

D, 2003

D, Vis Res 11(), 1971

E, 1996

S, 1989
Psychology. Is language the key to human intelligence?
Premack D., Science 303(5656), 2004
PMID: 14726578
The mirror-neuron system.
Rizzolatti G, Craighero L., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217330

L, 1995

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 1991
Visual information about moving objects.
Todd JT., J Exp Psychol Hum Percept Perform 7(4), 1981
PMID: 6457104

M, 2000

TA, 1983

B, 1993

B, 1999

AUTHOR UNKNOWN, 0

DM, Philos Trans R Soc Lond B 358(), 2003
Multiple paired forward and inverse models for motor control.
Wolpert DM, Kawato M., Neural Netw 11(7-8), 1998
PMID: 12662752

RA, Cogn Sci 28(), 2004
Situation models in language comprehension and memory.
Zwaan RA, Radvansky GA., Psychol Bull 123(2), 1998
PMID: 9522683

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17211627
PubMed | Europe PMC

Suchen in

Google Scholar