Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome

Immeln D, Schlesinger R, Heberle J, Kottke T (2007)
JOURNAL OF BIOLOGICAL CHEMISTRY 282(30): 21720-21728.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Immeln D, Schlesinger R, Heberle J, Kottke T. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY. 2007;282(30):21720-21728.
Immeln, D., Schlesinger, R., Heberle, J., & Kottke, T. (2007). Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(30), 21720-21728.
Immeln, D., Schlesinger, R., Heberle, J., and Kottke, T. (2007). Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY 282, 21720-21728.
Immeln, D., et al., 2007. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY, 282(30), p 21720-21728.
D. Immeln, et al., “Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, 2007, pp. 21720-21728.
Immeln, D., Schlesinger, R., Heberle, J., Kottke, T.: Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. JOURNAL OF BIOLOGICAL CHEMISTRY. 282, 21720-21728 (2007).
Immeln, Dominik, Schlesinger, Ramona, Heberle, Joachim, and Kottke, Tilman. “Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome”. JOURNAL OF BIOLOGICAL CHEMISTRY 282.30 (2007): 21720-21728.
This data publication is cited in the following publications:
This publication cites the following data publications:

20 Citations in Europe PMC

Data provided by Europe PubMed Central.

Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M., Plant Signal Behav 10(9), 2015
PMID: 26313597
Plant flavoprotein photoreceptors.
Christie JM, Blackwood L, Petersen J, Sullivan S., Plant Cell Physiol. 56(3), 2015
PMID: 25516569
Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome.
Hense A, Herman E, Oldemeyer S, Kottke T., J. Biol. Chem. 290(3), 2015
PMID: 25471375
Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
Engelhard C, Wang X, Robles D, Moldt J, Essen LO, Batschauer A, Bittl R, Ahmad M., Plant Cell 26(11), 2014
PMID: 25428980
Ion transport in broad bean leaf mesophyll under saline conditions.
Percey WJ, Shabala L, Breadmore MC, Guijt RM, Bose J, Shabala S., Planta 240(4), 2014
PMID: 25048444
ATP binding turns plant cryptochrome into an efficient natural photoswitch.
Muller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K., Sci Rep 4(), 2014
PMID: 24898692
A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Buchel C., FEBS J. 281(9), 2014
PMID: 24628952
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2014
PMID: 24081482
Lifetimes of Arabidopsis cryptochrome signaling states in vivo.
Herbel V, Orth C, Wenzel R, Ahmad M, Bittl R, Batschauer A., Plant J. 74(4), 2013
PMID: 23398192
News about cryptochrome photoreceptors in algae.
Beel B, Muller N, Kottke T, Mittag M., Plant Signal Behav 8(2), 2013
PMID: 23154511
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.
Rea G, Lambreva M, Polticelli F, Bertalan I, Antonacci A, Pastorelli S, Damasso M, Johanningmeier U, Giardi MT., PLoS ONE 6(1), 2011
PMID: 21249156
The Cryptochrome Blue Light Receptors.
Yu X, Liu H, Klejnot J, Lin C., Arabidopsis Book 8(), 2010
PMID: 21841916
How the green alga Chlamydomonas reinhardtii keeps time.
Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M., Protoplasma 244(1-4), 2010
PMID: 20174954
Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean.
Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C., Proc. Natl. Acad. Sci. U.S.A. 105(52), 2008
PMID: 19106300
Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase.
Kao YT, Tan C, Song SH, Ozturk N, Li J, Wang L, Sancar A, Zhong D., J. Am. Chem. Soc. 130(24), 2008
PMID: 18500802
Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH.
Zikihara K, Ishikawa T, Todo T, Tokutomi S., Photochem. Photobiol. 84(4), 2008
PMID: 18494763

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17548357
PubMed | Europe PMC

Search this title in

Google Scholar