Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production

Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007)
J. Biotechnol. 131 131(1): 27-33.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Phototrophic organisms use photosynthesis to convert solar energy into chemical energy. In nature, the chemical energy is stored in a diverse range of biopolymers. These sunlight-derived, energy-rich biopolymers can be converted into environmentally clean and CO2 neutral fuels. A select group of photosynthetic microorganisms have evolved the ability to extract and divert protons and electrons derived from water, to chloroplast hydrogenase(s) to produce molecular H2 fuel. Here, we describe the development and characterization of C. reinhardtii strains, derived from the high H2 production mutant Stm6, into which the HUP1 (hexose uptake protein) hexose symporter from Chlorella kessleri was introduced. The isolated cell lines can use externally supplied glucose for heterotrophic growth in the dark. More importantly, external glucose supply (1mM) was shown to increase the H2 production capacity in strain Stm6Glc4 to ~150% of that of the high-H2 producing strain, Stm6. This establishes the foundations for a new fuel production process in which H2O and glucose can simultaneously be used for H2 production. It also opens new perspectives on future strategies for improving Bio-H2 production efficiency under natural day/night regimes and for using sugar waste material for energy production in green algae as photosynthetic catalysts.
Publishing Year
ISSN
PUB-ID

Cite this

Doebbe A, Rupprecht J, Beckmann J, et al. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131. 2007;131(1):27-33.
Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., & Kruse, O. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131, 131(1), 27-33.
Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J. H., Hallmann, A., Hankamer, B., and Kruse, O. (2007). Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131 131, 27-33.
Doebbe, A., et al., 2007. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131, 131(1), p 27-33.
A. Doebbe, et al., “Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production”, J. Biotechnol. 131, vol. 131, 2007, pp. 27-33.
Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J.H., Hallmann, A., Hankamer, B., Kruse, O.: Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131. 131, 27-33 (2007).
Doebbe, Anja, Rupprecht, Jens, Beckmann, Julia, Mussgnug, Jan H., Hallmann, Armin, Hankamer, Ben, and Kruse, Olaf. “Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production”. J. Biotechnol. 131 131.1 (2007): 27-33.
This data publication is cited in the following publications:
This publication cites the following data publications:

24 Citations in Europe PMC

Data provided by Europe PubMed Central.

Analysis of green algal growth via dynamic model simulation and process optimization.
Zhang D, Chanona EA, Vassiliadis VS, Tamburic B., Biotechnol. Bioeng. 112(10), 2015
PMID: 25855209
Algae after dark: mechanisms to cope with anoxic/hypoxic conditions.
Yang W, Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR., Plant J. 82(3), 2015
PMID: 25752440
Heterotrophic growth of microalgae: metabolic aspects.
Morales-Sanchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A., World J. Microbiol. Biotechnol. 31(1), 2015
PMID: 25388473
Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions.
Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D., Environ. Microbiol. 17(2), 2015
PMID: 24965277
Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
Torzillo G, Scoma A, Faraloni C, Giannelli L., Crit. Rev. Biotechnol. 35(4), 2015
PMID: 24754449
Engineering photosynthetic organisms for the production of biohydrogen.
Dubini A, Ghirardi ML., Photosyn. Res. 123(3), 2015
PMID: 24671643
Advances in microalgae engineering and synthetic biology applications for biofuel production.
Gimpel JA, Specht EA, Georgianna DR, Mayfield SP., Curr Opin Chem Biol 17(3), 2013
PMID: 23684717
Production of xylitol by recombinant microalgae.
Pourmir A, Noor-Mohammadi S, Johannes TW., J. Biotechnol. 165(3-4), 2013
PMID: 23597921
AlgaGEM--a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome.
Dal'Molin CG, Quek LE, Palfreyman RW, Nielsen LK., BMC Genomics 12 Suppl 4(), 2011
PMID: 22369158
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS ONE 6(12), 2011
PMID: 22242116
Heterotrophic cultures of microalgae: metabolism and potential products.
Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y., Water Res. 45(1), 2011
PMID: 20970155
Renewable fuels from algae: an answer to debatable land based fuels.
Singh A, Nigam PS, Murphy JD., Bioresour. Technol. 102(1), 2011
PMID: 20615690
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O., J. Biol. Chem. 285(39), 2010
PMID: 20581114
Microalgal hydrogen production.
Kruse O, Hankamer B., Curr. Opin. Biotechnol. 21(3), 2010
PMID: 20399635
Engineering algae for biohydrogen and biofuel production.
Beer LL, Boyd ES, Peters JW, Posewitz MC., Curr. Opin. Biotechnol. 20(3), 2009
PMID: 19560336
A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution.
Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ., Curr. Opin. Biotechnol. 19(5), 2008
PMID: 18725295
Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.
Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM., Eukaryotic Cell 7(11), 2008
PMID: 18708561

27 References

Data provided by Europe PubMed Central.

Nucleotide sequence of the hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.
Zalacain M, Gonzalez A, Guerrero MC, Mattaliano RJ, Malpartida F, Jimenez A., Nucleic Acids Res. 14(4), 1986
PMID: 3005976
Trophic conversion of an obligate photoautotrophic organism through metabolic engineering.
Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE., Science 292(5524), 2001
PMID: 11408656

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17624461
PubMed | Europe PMC

Search this title in

Google Scholar