The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis

Vorhölter F-J, Schneiker-Bekel S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, et al. (2008)
Journal of Biotechnology 134(1-2): 33-45.

Journal Article | Published | English

No fulltext has been uploaded

Author
Abstract
The complete genome sequence of the Xanthomonas campestris pv. campestris strain B100 was established. It consisted of a chromosome of 5,079,003bp, with 4471 protein-coding genes and 62 RNA genes. Comparative genomics showed that the genes required for the synthesis of xanthan and xanthan precursors were highly conserved among three sequenced X. campestris pv. campestris genomes, but differed noticeably when compared to the remaining four Xanthomonas genomes available. For the xanthan biosynthesis genes gumB and gumK earlier translational starts were proposed, while gumI and gumL turned out to be unique with no homologues beyond the Xanthomonas genomes sequenced. From the genomic data the biosynthesis pathways for the production of the exopolysaccharide xanthan could be elucidated. The first step of this process is the uptake of sugars serving as carbon and energy sources wherefore genes for 15 carbohydrate import systems could be identified. Metabolic pathways playing a role for xanthan biosynthesis could be deduced from the annotated genome. These reconstructed pathways concerned the storage and metabolization of the imported sugars. The recognized sugar utilization pathways included the Entner-Doudoroff and the pentose phosphate pathway as well as the Embden-Meyerhof pathway (glycolysis). The reconstruction indicated that the nucleotide sugar precursors for xanthan can be converted from intermediates of the pentose phosphate pathway, some of which are also intermediates of glycolysis or the Entner-Doudoroff pathway. Xanthan biosynthesis requires in particular the nucleotide sugars UDP-glucose, UDP-glucuronate, and GDP-mannose, from which xanthan repeat units are built under the control of the gum genes. The updated genome annotation data allowed reconsidering and refining the mechanistic model for xanthan biosynthesis.
Publishing Year
ISSN
PUB-ID

Cite this

Vorhölter F-J, Schneiker-Bekel S, Goesmann A, et al. The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology. 2008;134(1-2):33-45.
Vorhölter, F. - J., Schneiker-Bekel, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., Linke, B., et al. (2008). The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 134(1-2), 33-45.
Vorhölter, F. - J., Schneiker-Bekel, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., Linke, B., Patschkowski, T., Rückert, C., Schmid, J., et al. (2008). The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology 134, 33-45.
Vorhölter, F.-J., et al., 2008. The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 134(1-2), p 33-45.
F.-J. Vorhölter, et al., “The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis”, Journal of Biotechnology, vol. 134, 2008, pp. 33-45.
Vorhölter, F.-J., Schneiker-Bekel, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., Linke, B., Patschkowski, T., Rückert, C., Schmid, J., Sidhu, V.K., Sieber, V., Tauch, A., Watt, S.A., Weisshaar, B., Becker, A., Niehaus, K., Pühler, A.: The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology. 134, 33-45 (2008).
Vorhölter, Frank-Jörg, Schneiker-Bekel, Susanne, Goesmann, Alexander, Krause, Lutz, Bekel, Thomas, Kaiser, Olaf, Linke, Burkhard, Patschkowski, Thomas, Rückert, Christian, Schmid, Joachim, Sidhu, Vishaldeep Kaur, Sieber, Volker, Tauch, Andreas, Watt, Steven Alexander, Weisshaar, Bernd, Becker, Anke, Niehaus, Karsten, and Pühler, Alfred. “The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis”. Journal of Biotechnology 134.1-2 (2008): 33-45.
This data publication is cited in the following publications:
This publication cites the following data publications:

68 Citations in Europe PMC

Data provided by Europe PubMed Central.

Metagenomic Analysis from the Interior of a Speleothem in Tjuv-Ante's Cave, Northern Sweden.
Zepeda Mendoza ML, Lundberg J, Ivarsson M, Campos P, Nylander JA, Sallstedt T, Dalen L., PLoS ONE 11(3), 2016
PMID: 26985997
The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation.
Yu X, Liang X, Liu K, Dong W, Wang J, Zhou MG., PLoS ONE 10(7), 2015
PMID: 26222282
Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies.
Schmid J, Sieber V, Rehm B., Front Microbiol 6(), 2015
PMID: 26074894
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 125(), 2015
PMID: 25896738
Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts.
Huang CL, Pu PH, Huang HJ, Sung HM, Liaw HJ, Chen YM, Chen CM, Huang MB, Osada N, Gojobori T, Pai TW, Chen YT, Hwang CC, Chiang TY., BMC Genomics 16(), 2015
PMID: 25879893
Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Xanthomonas campestris pv. campestris.
Frese M, Schatschneider S, Voss J, Vorholter FJ, Niehaus K., Arch. Biochem. Biophys. 546(), 2014
PMID: 24508689
Glutamate transport and xanthan gum production in the plant pathogen Xanthomonas axonopodis pv. citri
Rojas R, Nishidomi S, Nepomuceno R, Oshiro E, de Cassia Cafe Ferreira R., World J. Microbiol. Biotechnol. 29(11), 2013
PMID: IND500698211
Genome Sequences of Three Atypical Xanthomonas campestris pv. campestris Strains, CN14, CN15, and CN16.
Bolot S, Roux B, Carrere S, Jiang BL, Tang JL, Arlat M, Noel LD., Genome Announc 1(4), 2013
PMID: 23846270
Glutamate transport and xanthan gum production in the plant pathogen Xanthomonas axonopodis pv. citri.
Rojas R, Nishidomi S, Nepomuceno R, Oshiro E, de Cassia Cafe Ferreira R., World J. Microbiol. Biotechnol. 29(11), 2013
PMID: 23719672
The Burkholderia contaminans MS14 ocfC gene encodes a xylosyltransferase for production of the antifungal occidiofungin.
Chen KC, Ravichandran A, Guerrero A, Deng P, Baird SM, Smith L, Lu SE., Appl. Environ. Microbiol. 79(9), 2013
PMID: 23435879
Sugarcane glycoproteins may act as signals for the production of xanthan in the plant-associated bacterium Xanthomonas albilineans.
Legaz ME, Blanch M, Pinon D, Santiago R, Fontaniella B, Blanco Y, Solas MT, Vicente C., Plant Signal Behav 6(8), 2011
PMID: 21791980
Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species.
Oshiro EE, Tavares MB, Suzuki CF, Pimenta DC, Angeli CB, de Oliveira JC, Ferro MI, Ferreira LC, Ferreira RC., Genet. Mol. Biol. 33(2), 2010
PMID: 21637492
Genomics of plant-associated microbes.
van Baarlen P, Siezen RJ., Microb Biotechnol 2(4), 2009
PMID: 21255272

60 References

Data provided by Europe PubMed Central.

Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta.
Vojnov AA, Slater H, Daniels MJ, Dow JM., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386372
Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris.
Vojnov AA, Zorreguieta A, Dow JM, Daniels MJ, Dankert MA., Microbiology (Reading, Engl.) 144 ( Pt 6)(), 1998
PMID: 9639919
Comparison of two Xanthomonas campestris pathovar campestris genomes revealed differences in their gene composition.
Vorholter FJ, Thias T, Meyer F, Bekel T, Kaiser O, Puhler A, Niehaus K., J. Biotechnol. 106(2-3), 2003
PMID: 14651861
The gene encoding UDP-glucose pyrophosphorylase is required for the synthesis of xanthan gum in Xanthomonas campestris.
Wei CL, Lin NT, Weng SF, Tseng YH., Biochem. Biophys. Res. Commun. 226(3), 1996
PMID: 8831665
Glucose metabolism of Xanthomonas campestris
Whitfield, J. Gen. Microbiol. 128(), 1982

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18304669
PubMed | Europe PMC

Search this title in

Google Scholar