The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis

Vorhölter F-J, Schneiker-Bekel S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, et al. (2008)
Journal of Biotechnology 134(1-2): 33-45.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
The complete genome sequence of the Xanthomonas campestris pv. campestris strain B100 was established. It consisted of a chromosome of 5,079,003bp, with 4471 protein-coding genes and 62 RNA genes. Comparative genomics showed that the genes required for the synthesis of xanthan and xanthan precursors were highly conserved among three sequenced X. campestris pv. campestris genomes, but differed noticeably when compared to the remaining four Xanthomonas genomes available. For the xanthan biosynthesis genes gumB and gumK earlier translational starts were proposed, while gumI and gumL turned out to be unique with no homologues beyond the Xanthomonas genomes sequenced. From the genomic data the biosynthesis pathways for the production of the exopolysaccharide xanthan could be elucidated. The first step of this process is the uptake of sugars serving as carbon and energy sources wherefore genes for 15 carbohydrate import systems could be identified. Metabolic pathways playing a role for xanthan biosynthesis could be deduced from the annotated genome. These reconstructed pathways concerned the storage and metabolization of the imported sugars. The recognized sugar utilization pathways included the Entner-Doudoroff and the pentose phosphate pathway as well as the Embden-Meyerhof pathway (glycolysis). The reconstruction indicated that the nucleotide sugar precursors for xanthan can be converted from intermediates of the pentose phosphate pathway, some of which are also intermediates of glycolysis or the Entner-Doudoroff pathway. Xanthan biosynthesis requires in particular the nucleotide sugars UDP-glucose, UDP-glucuronate, and GDP-mannose, from which xanthan repeat units are built under the control of the gum genes. The updated genome annotation data allowed reconsidering and refining the mechanistic model for xanthan biosynthesis.
Erscheinungsjahr
Zeitschriftentitel
Journal of Biotechnology
Band
134
Zeitschriftennummer
1-2
Seite
33-45
ISSN
PUB-ID

Zitieren

Vorhölter F-J, Schneiker-Bekel S, Goesmann A, et al. The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology. 2008;134(1-2):33-45.
Vorhölter, F. - J., Schneiker-Bekel, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., Linke, B., et al. (2008). The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 134(1-2), 33-45. doi:10.1016/j.jbiotec.2007.12.013
Vorhölter, F. - J., Schneiker-Bekel, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., Linke, B., Patschkowski, T., Rückert, C., Schmid, J., et al. (2008). The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology 134, 33-45.
Vorhölter, F.-J., et al., 2008. The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 134(1-2), p 33-45.
F.-J. Vorhölter, et al., “The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis”, Journal of Biotechnology, vol. 134, 2008, pp. 33-45.
Vorhölter, F.-J., Schneiker-Bekel, S., Goesmann, A., Krause, L., Bekel, T., Kaiser, O., Linke, B., Patschkowski, T., Rückert, C., Schmid, J., Sidhu, V.K., Sieber, V., Tauch, A., Watt, S.A., Weisshaar, B., Becker, A., Niehaus, K., Pühler, A.: The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology. 134, 33-45 (2008).
Vorhölter, Frank-Jörg, Schneiker-Bekel, Susanne, Goesmann, Alexander, Krause, Lutz, Bekel, Thomas, Kaiser, Olaf, Linke, Burkhard, Patschkowski, Thomas, Rückert, Christian, Schmid, Joachim, Sidhu, Vishaldeep Kaur, Sieber, Volker, Tauch, Andreas, Watt, Steven Alexander, Weisshaar, Bernd, Becker, Anke, Niehaus, Karsten, and Pühler, Alfred. “The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis”. Journal of Biotechnology 134.1-2 (2008): 33-45.

96 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Operating bioreactors for microbial exopolysaccharide production.
Seviour RJ, McNeil B, Fazenda ML, Harvey LM., Crit Rev Biotechnol 31(2), 2011
PMID: 20919952
Insights into the extracytoplasmic stress response of Xanthomonas campestris pv. campestris: role and regulation of {sigma}E-dependent activity.
Bordes P, Lavatine L, Phok K, Barriot R, Boulanger A, Castanié-Cornet MP, Déjean G, Lauber E, Becker A, Arlat M, Gutierrez C., J Bacteriol 193(1), 2011
PMID: 20971899
Regulation and secretion of Xanthomonas virulence factors.
Büttner D, Bonas U., FEMS Microbiol Rev 34(2), 2010
PMID: 19925633
Proteomic approaches to study plant-pathogen interactions.
Quirino BF, Candido ES, Campos PF, Franco OL, Krüger RH., Phytochemistry 71(4), 2010
PMID: 20005547
Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species.
Oshiro EE, Tavares MB, Suzuki CF, Pimenta DC, Angeli CB, de Oliveira JC, Ferro MI, Ferreira LC, Ferreira RC., Genet Mol Biol 33(2), 2010
PMID: 21637492
Identification of four novel small non-coding RNAs from Xanthomonas campestris pathovar campestris.
Jiang RP, Tang DJ, Chen XL, He YQ, Feng JX, Jiang BL, Lu GT, Lin M, Tang JL., BMC Genomics 11(), 2010
PMID: 20482898
Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt.
Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JD., FEMS Microbiol Lett 310(2), 2010
PMID: 20695894
The Sequence Analysis and Management System -- SAMS-2.0: data management and sequence analysis adapted to changing requirements from traditional sanger sequencing to ultrafast sequencing technologies.
Bekel T, Henckel K, Küster H, Meyer F, Mittard Runte V, Neuweger H, Paarmann D, Rupp O, Zakrzewski M, Pühler A, Stoye J, Goesmann A., J Biotechnol 140(1-2), 2009
PMID: 19297685
An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence.
Lu GT, Tang YQ, Li CY, Li RF, An SQ, Feng JX, He YQ, Jiang BL, Tang DJ, Tang JL., J Bacteriol 191(11), 2009
PMID: 19329636
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
Genomics of plant-associated microbes.
van Baarlen P, Siezen RJ., Microb Biotechnol 2(4), 2009
PMID: 21255272
The type III effectors of Xanthomonas.
White FF, Potnis N, Jones JB, Koebnik R., Mol Plant Pathol 10(6), 2009
PMID: 19849782
MeltDB: a software platform for the analysis and integration of metabolomics experiment data.
Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A., Bioinformatics 24(23), 2008
PMID: 18765459
Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.
Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ., PLoS One 3(11), 2008
PMID: 19043590

60 References

Daten bereitgestellt von Europe PubMed Central.

Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta.
Vojnov AA, Slater H, Daniels MJ, Dow JM., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386372
Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris.
Vojnov AA, Zorreguieta A, Dow JM, Daniels MJ, Dankert MA., Microbiology (Reading, Engl.) 144 ( Pt 6)(), 1998
PMID: 9639919
Comparison of two Xanthomonas campestris pathovar campestris genomes revealed differences in their gene composition.
Vorholter FJ, Thias T, Meyer F, Bekel T, Kaiser O, Puhler A, Niehaus K., J. Biotechnol. 106(2-3), 2003
PMID: 14651861
The gene encoding UDP-glucose pyrophosphorylase is required for the synthesis of xanthan gum in Xanthomonas campestris.
Wei CL, Lin NT, Weng SF, Tseng YH., Biochem. Biophys. Res. Commun. 226(3), 1996
PMID: 8831665
Glucose metabolism of Xanthomonas campestris
Whitfield, J. Gen. Microbiol. 128(), 1982

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18304669
PubMed | Europe PMC

Suchen in

Google Scholar