Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities

Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J (2008)
MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 651(1-2): 71-81.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract / Notes
Bisphenol A (BPA), a widely used environmental contaminant, may exert weak estrogenic, anti-androgenic and anti-thyroidic activities. BPA is suspected to possess aneugenic properties that may affect somatic cells and mammalian oocytes. Oocyte growth and maturation depend upon a complex bi-directional signaling between the oocyte and its companion somatic cells. Consequently, disturbances in oocyte maturation may originate either from direct effects of BPA at the level of the oocyte or from indirect influences at the follicular level, such as alterations in hormonal homeostasis. This study aimed to analyze the effects of chronic BPA exposure (3 nM to 30 mu M) on follicle-enclosed growth and maturation of mouse oocytes in vitro. Oocytes were cultured and their spindle and chromosomes were stained by alpha-tubulin immunofluorescence and ethidium homodimer-2, respectively. Confocal microscopy was utilized for subsequent analysis. Only follicles that were exposed to 30 mu M BPA during follicular development showed a slightly reduced granulosa cell proliferation and a lower total estrogen production, but they still developed and formed antral-like cavities. However, 18% of oocytes were unable to resume meiosis after stimulation of oocyte maturation, and 37% arrested after germinal vesicle breakdown, significantly different from controls (p < 0.05). Only 45% of the oocytes extruded a first polar body (p < 0.05). 30 mu M BPA led also to a significant increase in meiosis I-arrested oocytes with unaligned chromosomes and spindle aberrations. Oocytes that were able to progress beyond meiosis I, frequently arrested at an abnormal telophase I. Additionally, in many oocytes exposed to low chronic BPA that matured to meiosis II chromosomes failed to congress at the spindle equator. In conclusion, mouse follicle culture reveals non-linear dose-dependent effects of BPA on the meiotic spindle in mouse oocytes when exposure was chronic throughout oocyte growth and maturation. (c) 2007 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS. 2008;651(1-2):71-81.
Lenie, S., Cortvrindt, R., Eichenlaub-Ritter, U., & Smitz, J. (2008). Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 651(1-2), 71-81. doi:10.1016/j.mrgentox.2007.10.017
Lenie, S., Cortvrindt, R., Eichenlaub-Ritter, U., and Smitz, J. (2008). Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 651, 71-81.
Lenie, S., et al., 2008. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 651(1-2), p 71-81.
S. Lenie, et al., “Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities”, MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, vol. 651, 2008, pp. 71-81.
Lenie, S., Cortvrindt, R., Eichenlaub-Ritter, U., Smitz, J.: Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS. 651, 71-81 (2008).
Lenie, Sandy, Cortvrindt, Rita, Eichenlaub-Ritter, Ursula, and Smitz, Johan. “Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities”. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 651.1-2 (2008): 71-81.
This data publication is cited in the following publications:
This publication cites the following data publications:

61 Citations in Europe PMC

Data provided by Europe PubMed Central.

Urinary bisphenol A concentrations and ovarian response among women undergoing IVF.
Mok-Lin E, Ehrlich S, Williams PL, Petrozza J, Wright DL, Calafat AM, Ye X, Hauser R., Int J Androl 33(2), 2010
PMID: 20002217
Designing follicle-environment interactions with biomaterials.
Smith RM, Woodruff TK, Shea LD., Cancer Treat Res 156(), 2010
PMID: 20811822
Environmental aneugens--the need for replication.
Bell DR., Trends Genet 25(1), 2009
PMID: 18977054
Bisphenol A effects on the growing mouse oocyte are influenced by diet.
Muhlhauser A, Susiarjo M, Rubio C, Griswold J, Gorence G, Hassold T, Hunt PA., Biol Reprod 80(5), 2009
PMID: 19164168
The bisphenol A experience: a primer for the analysis of environmental effects on mammalian reproduction.
Hunt PA, Susiarjo M, Rubio C, Hassold TJ., Biol Reprod 81(5), 2009
PMID: 19458313
Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse.
Pacchierotti F, Ranaldi R, Eichenlaub-Ritter U, Attia S, Adler ID., Mutat Res 651(1-2), 2008
PMID: 18083607
Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy.
Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J., Mutat Res 651(1-2), 2008
PMID: 18096426

56 References

Data provided by Europe PubMed Central.

Mad2 prevents aneuploidy and premature proteolysis of cyclin B and securin during meiosis I in mouse oocytes.
Homer HA, McDougall A, Levasseur M, Yallop K, Murdoch AP, Herbert M., Genes Dev. 19(2), 2005
PMID: 15655110
Model for aging: knockdown of Mad2 expression predisposes to non-disjunction in mammalian oocytes possessing aberrant spindles
Eichenlaub-Ritter, Hum. Reprod. 20(Suppl. 1), 2005
Non-invasive method to assess genotoxicity of nocodazole interfering with spindle formation in mammalian oocytes.
Shen Y, Betzendahl I, Sun F, Tinneberg HR, Eichenlaub-Ritter U., Reprod. Toxicol. 19(4), 2005
PMID: 15749259
Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells.
Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED., J. Cell Biol. 153(3), 2001
PMID: 11331303
Analysis of gene expression in single oocytes and embryos by real-time rapid cycle fluorescence monitored RT-PCR.
Steuerwald N, Cohen J, Herrera RJ, Brenner CA., Mol. Hum. Reprod. 5(11), 1999
PMID: 10541565
Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro.
Pan H, O'brien MJ, Wigglesworth K, Eppig JJ, Schultz RM., Dev. Biol. 286(2), 2005
PMID: 16168984

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18093867
PubMed | Europe PMC

Search this title in

Google Scholar