Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals

Mikolajczyk RT, Kauermann G, Sagel U, Kretzschmar M (2009)
Infection Control and Hospital Epidemiology 30(8): 730-736.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
OBJECTIVE. Creation of a mixture model based on Poisson processes for assessment of the extent of cross-transmission of multidrug-resistant pathogens in the hospital. METHODS. We propose a 2-component mixture of Poisson processes to describe the time series of detected cases of colonization. The first component describes the admission process of patients with colonization, and the second describes the cross-transmission. The data set used to illustrate the method consists of the routinely collected records for methicillin-resistant Staphylococcus aureus (MRSA), imipenem-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii over a period of 3 years in a German tertiary care hospital. RESULTS. For MRSA and multidrug-resistant A. baumannii, cross-transmission was estimated to be responsible for more than 80% of cases; for imipenem-resistant P. aeruginosa, cross-transmission was estimated to be responsible for 59% of cases. For new cases observed within a window of less than 28 days for MRSA and multidrug-resistant A. baumannii or 40 days for imipenem-resistant P. aeruginosa, there was a 50% or greater probability that the cause was cross-transmission. CONCLUSIONS. The proposed method offers a solution to assessing of the extent of cross-transmission, which can be of clinical use. The method can be applied using freely available software (the package FlexMix in R) and it requires relatively little data.
Erscheinungsjahr
Zeitschriftentitel
Infection Control and Hospital Epidemiology
Band
30
Zeitschriftennummer
8
Seite
730-736
ISSN
eISSN
PUB-ID

Zitieren

Mikolajczyk RT, Kauermann G, Sagel U, Kretzschmar M. Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology. 2009;30(8):730-736.
Mikolajczyk, R. T., Kauermann, G., Sagel, U., & Kretzschmar, M. (2009). Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology, 30(8), 730-736. doi:10.1086/599016
Mikolajczyk, R. T., Kauermann, G., Sagel, U., and Kretzschmar, M. (2009). Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology 30, 730-736.
Mikolajczyk, R.T., et al., 2009. Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology, 30(8), p 730-736.
R.T. Mikolajczyk, et al., “Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals”, Infection Control and Hospital Epidemiology, vol. 30, 2009, pp. 730-736.
Mikolajczyk, R.T., Kauermann, G., Sagel, U., Kretzschmar, M.: Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology. 30, 730-736 (2009).
Mikolajczyk, Rafael T., Kauermann, Göran, Sagel, Ulrich, and Kretzschmar, Mirjam. “Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals”. Infection Control and Hospital Epidemiology 30.8 (2009): 730-736.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Whence Resistance?
Guidry CA, Davies SW, Metzger R, Swenson BR, Sawyer RG., Surg Infect (Larchmt) 16(6), 2015
PMID: 26186101
A multiplicative hazard regression model to assess the risk of disease transmission at hospital during community epidemics.
Voirin N, Roche S, Vanhems P, Giard M, David-Tchouda S, Barret B, Ecochard R., BMC Med Res Methodol 11(), 2011
PMID: 21507247

19 References

Daten bereitgestellt von Europe PubMed Central.

How to assess the relative importance of different colonization routes of pathogens within hospital settings.
Pelupessy I, Bonten MJ, Diekmann O., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11943870

AUTHOR UNKNOWN, 2006
Low prevalence of methicillin-resistant Staphylococcus aureus (MRSA) at hospital admission in the Netherlands: the value of search and destroy and restrictive antibiotic use.
Wertheim HF, Vos MC, Boelens HA, Voss A, Vandenbroucke-Grauls CM, Meester MH, Kluytmans JA, van Keulen PH, Verbrugh HA., J. Hosp. Infect. 56(4), 2004
PMID: 15066745
The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges.
Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y., Infect Control Hosp Epidemiol 26(2), 2005
PMID: 15756888

AUTHOR UNKNOWN, Health Stat Q (), 2004
Methicillin-resistant Staphylococcus aureus in Europe, 1999-2002.
Tiemersma EW, Bronzwaer SL, Lyytikainen O, Degener JE, Schrijnemakers P, Bruinsma N, Monen J, Witte W, Grundman H; European Antimicrobial Resistance Surveillance System Participants., Emerging Infect. Dis. 10(9), 2004
PMID: 15498166
The analysis of hospital infection data using hidden Markov models.
Cooper B, Lipsitch M., Biostatistics 5(2), 2004
PMID: 15054027
An algorithm to estimate the importance of bacterial acquisition routes in hospital settings.
Bootsma MC, Bonten MJ, Nijssen S, Fluit AC, Diekmann O., Am. J. Epidemiol. 166(7), 2007
PMID: 17644823
How many infections are caused by patient-to-patient transmission in intensive care units?
Grundmann H, Barwolff S, Tami A, Behnke M, Schwab F, Geffers C, Halle E, Gobel UB, Schiller R, Jonas D, Klare I, Weist K, Witte W, Beck-Beilecke K, Schumacher M, Ruden H, Gastmeier P., Crit. Care Med. 33(5), 2005
PMID: 15891318

AUTHOR UNKNOWN, J R Stat Soc Series B Stat Methodol 44(), 1982

AUTHOR UNKNOWN, J Stat Softw 11(), 2004

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19583514
PubMed | Europe PMC

Suchen in

Google Scholar