Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals

Mikolajczyk RT, Kauermann G, Sagel U, Kretzschmar M (2009)
Infection Control and Hospital Epidemiology 30(8): 730-736.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
OBJECTIVE. Creation of a mixture model based on Poisson processes for assessment of the extent of cross-transmission of multidrug-resistant pathogens in the hospital. METHODS. We propose a 2-component mixture of Poisson processes to describe the time series of detected cases of colonization. The first component describes the admission process of patients with colonization, and the second describes the cross-transmission. The data set used to illustrate the method consists of the routinely collected records for methicillin-resistant Staphylococcus aureus (MRSA), imipenem-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii over a period of 3 years in a German tertiary care hospital. RESULTS. For MRSA and multidrug-resistant A. baumannii, cross-transmission was estimated to be responsible for more than 80% of cases; for imipenem-resistant P. aeruginosa, cross-transmission was estimated to be responsible for 59% of cases. For new cases observed within a window of less than 28 days for MRSA and multidrug-resistant A. baumannii or 40 days for imipenem-resistant P. aeruginosa, there was a 50% or greater probability that the cause was cross-transmission. CONCLUSIONS. The proposed method offers a solution to assessing of the extent of cross-transmission, which can be of clinical use. The method can be applied using freely available software (the package FlexMix in R) and it requires relatively little data.
Erscheinungsjahr
Zeitschriftentitel
Infection Control and Hospital Epidemiology
Band
30
Zeitschriftennummer
8
Seite
730-736
ISSN
eISSN
PUB-ID

Zitieren

Mikolajczyk RT, Kauermann G, Sagel U, Kretzschmar M. Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology. 2009;30(8):730-736.
Mikolajczyk, R. T., Kauermann, G., Sagel, U., & Kretzschmar, M. (2009). Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology, 30(8), 730-736. doi:10.1086/599016
Mikolajczyk, R. T., Kauermann, G., Sagel, U., and Kretzschmar, M. (2009). Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology 30, 730-736.
Mikolajczyk, R.T., et al., 2009. Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology, 30(8), p 730-736.
R.T. Mikolajczyk, et al., “Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals”, Infection Control and Hospital Epidemiology, vol. 30, 2009, pp. 730-736.
Mikolajczyk, R.T., Kauermann, G., Sagel, U., Kretzschmar, M.: Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals. Infection Control and Hospital Epidemiology. 30, 730-736 (2009).
Mikolajczyk, Rafael T., Kauermann, Göran, Sagel, Ulrich, and Kretzschmar, Mirjam. “Mixture Model to Assess the Extent of Cross-Transmission of Multidrug-Resistant Pathogens in Hospitals”. Infection Control and Hospital Epidemiology 30.8 (2009): 730-736.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Whence Resistance?
Guidry CA, Davies SW, Metzger R, Swenson BR, Sawyer RG., Surg Infect (Larchmt) 16(6), 2015
PMID: 26186101
A multiplicative hazard regression model to assess the risk of disease transmission at hospital during community epidemics.
Voirin N, Roche S, Vanhems P, Giard M, David-Tchouda S, Barret B, Ecochard R., BMC Med Res Methodol 11(), 2011
PMID: 21507247

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19583514
PubMed | Europe PMC

Suchen in

Google Scholar