On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data

Saalbach A, Lange O, Nattkemper TW, Meyer-Baese A (2009)
BIOMEDICAL SIGNAL PROCESSING AND CONTROL 4(3): 247-253.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
In this contribution we investigate the applicability of different methods from the field of independent component analysis (ICA) for the examination of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data from breast cancer research. DCE-MRI has evolved in recent years as a powerful complement to X-ray based mammography for breast cancer diagnosis and monitoring. In DCE-MRI the time related development of the signal intensity after the administration of a contrast agent can provide valuable information about tissue states and characteristics. To this end, techniques related to ICA, offer promising options for data integration and feature extraction at voxel level. In order to evaluate the applicability of ICA, topographic ICA and tree-dependent component analysis (TCA), these methods are applied to twelve clinical cases from breast cancer research with a histopathologically confirmed diagnosis. For ICA these experiments are complemented by a reliability analysis of the estimated components. The outcome of all algorithms is quantitatively evaluated by means of receiver operating characteristics (ROC) statistics whereas the results for specific data sets are discussed exemplarily in terms of reification, score-plots and score images. (C) 2009 Elsevier Ltd. All rights reserved.
Erscheinungsjahr
Band
4
Zeitschriftennummer
3
Seite
247-253
ISSN
PUB-ID

Zitieren

Saalbach A, Lange O, Nattkemper TW, Meyer-Baese A. On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data. BIOMEDICAL SIGNAL PROCESSING AND CONTROL. 2009;4(3):247-253.
Saalbach, A., Lange, O., Nattkemper, T. W., & Meyer-Baese, A. (2009). On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 4(3), 247-253. doi:10.1016/j.bspc.2009.03.010
Saalbach, A., Lange, O., Nattkemper, T. W., and Meyer-Baese, A. (2009). On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data. BIOMEDICAL SIGNAL PROCESSING AND CONTROL 4, 247-253.
Saalbach, A., et al., 2009. On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 4(3), p 247-253.
A. Saalbach, et al., “On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data”, BIOMEDICAL SIGNAL PROCESSING AND CONTROL, vol. 4, 2009, pp. 247-253.
Saalbach, A., Lange, O., Nattkemper, T.W., Meyer-Baese, A.: On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data. BIOMEDICAL SIGNAL PROCESSING AND CONTROL. 4, 247-253 (2009).
Saalbach, Axel, Lange, Oliver, Nattkemper, Tim Wilhelm, and Meyer-Baese, Anke. “On the application of (topographic) independent and tree-dependent component analysis for the examination of DCE-MRI data”. BIOMEDICAL SIGNAL PROCESSING AND CONTROL 4.3 (2009): 247-253.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

DCT-Based Preprocessing Approach for ICA in Hyperspectral Data Analysis.
Boukhechba K, Wu H, Bazine R., Sensors (Basel) 18(4), 2018
PMID: 29642496
Standardization of radiological evaluation of dynamic contrast enhanced MRI: application in breast cancer diagnosis.
Furman-Haran E, Feinberg MS, Badikhi D, Eyal E, Zehavi T, Degani H., Technol Cancer Res Treat 13(5), 2014
PMID: 24000989
Classification of vocal aging using parameters extracted from the glottal signal.
Forero Mendoza LA, Cataldo E, Vellasco MM, Silva MA, Apolinário JA., J Voice 28(5), 2014
PMID: 24880675

28 References

Daten bereitgestellt von Europe PubMed Central.

Dynamic MR imaging of the breast. Analysis of kinetic and morphologic diagnostic criteria.
Szabo BK, Aspelin P, Wiberg MK, Bone B., Acta Radiol 44(4), 2003
PMID: 12846687
MR imaging of the breast with Gd-DTPA: use and limitations.
Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W., Radiology 171(1), 1989
PMID: 2648479
Comparison between radiological and artificial neural network diagnosis in clinical screening
Degenhard A, Tanner C, Hayes C, Hawkes DJ, Leach MO., 1999
Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?
Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild HH., Radiology 211(1), 1999
PMID: 10189459
Breast fibroadenoma: mapping of pathophysiologic features with three-time-point, contrast-enhanced MR imaging--pilot study.
Weinstein D, Strano S, Cohen P, Fields S, Gomori JM, Degani H., Radiology 210(1), 1999
PMID: 9885614
Neural network-based segmentation of dynamic MR mammographic images
Lucht R, Delorme S, Brix G., 2002
Detection of suspicious lesions in dynamic contrast-enhanced MRI data
Twellmann T, Saalbach A, Mueller C, Nattkemper TW, Wismüller A., 2004
Visual exploratory analysis of DCE-MRI data in breast cancer by dimensional data reduction: A comparative study
Varini C, Degenhard A, Nattkemper TW., 2006
Analysis of breast MRI data based on (topographic) independent and tree-dependent component analysis
Saalbach A, Lange O, Nattkemper TW, Meyer-Baese A., 2007
Cluster analysis of biomedical image time-series
Wismüller A, Lange O, Dersch DR, Leinsinger GL, Hahn K, Pütz B, Auer D., 2002
Image fusion for dynamic contrast-enhanced magnetic resonance imaging
Twellmann T, Saalbach A, Gerstung O, Leach MO, Nattkemper TW., 2004
Computer-aided diagnosis in breast MRI based on ICA and unsupervised clustering techniques
Meyer-Baese A, Lange O, Wismüller A, Leinsinger G., 2005
A threshold selection method from gray level histograms
Otsu N., 1979

Jähne B., 2002
Fast and robust fixed-point algorithms for independent component analysis.
Hyvarinen A., IEEE Trans Neural Netw 10(3), 1999
PMID: 18252563
Topographic independent component analysis.
Hyvarinen A, Hoyer PO, Inki M., Neural Comput 13(7), 2001
PMID: 11440596
Finding clusters in independent component analysis
Bach F, Jordan M., 2003
Survey on independent component analysis
Hyvärinen A., 1999
Independent component analysis of dynamic contrast-enhanced magnetic resonance images of breast carcinoma: a feasibility study.
Koh TS, Thng CH, Ho JT, Tan PH, Rumpel H, Khoo JB., J Magn Reson Imaging 28(1), 2008
PMID: 18421682

Nattkemper TW, Degenhard A, Twellmann T., 2007
Independent component analysis of fMRI data: examining the assumptions.
McKeown MJ, Sejnowski TJ., Hum Brain Mapp 6(5-6), 1998
PMID: 9788074
Unsupervised subpixel target detection for hyperspectral images using projection pursuit
Chiang SS, Chang CI, Ginsberg IW., 2001

Egan JP., 1975

Saalbach A., 2006

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20689662
PubMed | Europe PMC

Suchen in

Google Scholar