Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas

Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O (2009)
Proceedings of the National Academy of Sciences of the United States of America : PNAS 106(32): 13290-13295.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
The cytosolic RNA-binding protein NAB1 represses translation of LHCII (light-harvesting complex of photosystem II) encoding mRNAs by sequestration into translationally silent mRNP complexes in the green alga Chlamydomonas reinhardtii. NAB1 contains 2 cysteine residues, Cys-181 and Cys-226, within its C-terminal RRM motif. Modification of these cysteines either by oxidation or by alkylation in vitro was accompanied by a decrease in RNA-binding affinity for the target mRNA sequence. To confirm the relevance of reversible NAB1 cysteine oxidation for the regulation of its activity in vivo, we replaced both cysteines with serines. All examined cysteine single and double mutants exhibited a reduced antenna at PSII caused by a perturbed NAB1 deactivation mechanism, with double mutations and Cys-226 single mutations causing a stronger and more distinctive phenotype compared with the Cys-181 mutation. Our data indicated that the responsible redox control mechanism is mediated by modification of single cysteines. Polysome analyses and RNA co-immunoprecipitation experiments demonstrated the interconnection of the NAB1 thiol state and its activity as a translation repressor in vivo. NAB1 is fully active in its dithiol state and is reversibly deactivated by modification of its cysteines. In summary, this work is an example that cytosolic translation of nucleus encoded photosynthetic genes is regulated via a reversible cysteine-based redox switch in a RNA-binding translation repressor protein.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O. Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America : PNAS. 2009;106(32):13290-13295.
Wobbe, L., Blifernez, O., Schwarz, C., Mussgnug, J. H., Nickelsen, J., & Kruse, O. (2009). Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America : PNAS, 106(32), 13290-13295.
Wobbe, L., Blifernez, O., Schwarz, C., Mussgnug, J. H., Nickelsen, J., and Kruse, O. (2009). Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America : PNAS 106, 13290-13295.
Wobbe, L., et al., 2009. Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America : PNAS, 106(32), p 13290-13295.
L. Wobbe, et al., “Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas”, Proceedings of the National Academy of Sciences of the United States of America : PNAS, vol. 106, 2009, pp. 13290-13295.
Wobbe, L., Blifernez, O., Schwarz, C., Mussgnug, J.H., Nickelsen, J., Kruse, O.: Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America : PNAS. 106, 13290-13295 (2009).
Wobbe, Lutz, Blifernez, Olga, Schwarz, Christian, Mussgnug, Jan H., Nickelsen, Joerg, and Kruse, Olaf. “Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas”. Proceedings of the National Academy of Sciences of the United States of America : PNAS 106.32 (2009): 13290-13295.
This data publication is cited in the following publications:
This publication cites the following data publications:

16 Citations in Europe PMC

Data provided by Europe PubMed Central.

Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production.
Perin G, Bellan A, Segalla A, Meneghesso A, Alboresi A, Morosinotto T., Biotechnol Biofuels 8(), 2015
PMID: 26413160
Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.
Berger H, Blifernez-Klassen O, Ballottari M, Bassi R, Wobbe L, Kruse O., Mol Plant 7(10), 2014
PMID: 25038233
Regulation and dynamics of the light-harvesting system.
Rochaix JD., Annu Rev Plant Biol 65(), 2014
PMID: 24471838
Post-transcriptional control of light-harvesting genes expression under light stress.
Floris M, Bassi R, Robaglia C, Alboresi A, Lanet E., Plant Mol. Biol. 82(1-2), 2013
PMID: 23526054
An intermolecular disulfide-based light switch for chloroplast psbD gene expression in Chlamydomonas reinhardtii.
Schwarz C, Bohne AV, Wang F, Cejudo FJ, Nickelsen J., Plant J. 72(3), 2012
PMID: 22725132
Dynamic Light Regulation of Translation Status in Arabidopsis thaliana.
Juntawong P, Bailey-Serres J., Front Plant Sci 3(), 2012
PMID: 22645595
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS ONE 6(12), 2011
PMID: 22242116
Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii.
Toepel J, Albaum SP, Arvidsson S, Goesmann A, la Russa M, Rogge K, Kruse O., BMC Genomics 12(), 2011
PMID: 22118351
Thiol-based redox switches and gene regulation.
Antelmann H, Helmann JD., Antioxid. Redox Signal. 14(6), 2011
PMID: 20626317
Microalgal hydrogen production.
Kruse O, Hankamer B., Curr. Opin. Biotechnol. 21(3), 2010
PMID: 20399635
Biodiesel from algae: challenges and prospects.
Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG., Curr. Opin. Biotechnol. 21(3), 2010
PMID: 20399634

21 References

Data provided by Europe PubMed Central.

Towards an understanding of photosynthetic acclimation.
Walters RG., J. Exp. Bot. 56(411), 2005
PMID: 15642715
Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye.
Pursiheimo S, Mulo P, Rintamaki E, Aro EM., Plant J. 26(3), 2001
PMID: 11439120
Plastid regulation of Lhcb1 transcription in the chlorophyte alga Dunaliella tertiolecta.
Chen YB, Durnford DG, Koblizek M, Falkowski PG., Plant Physiol. 136(3), 2004
PMID: 15516517
NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii.
Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, Nixon PJ, Kruse O., Plant Cell 17(12), 2005
PMID: 16284312
Translational regulation of light-harvesting complex expression during photoacclimation to high-light in
McKim SM, Durnford DG., 2006
Signals from chloroplasts converge to regulate nuclear gene expression.
Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J., Science 316(5825), 2007
PMID: 17395793
Proteomics of Chlamydomonas reinhardtii light-harvesting proteins.
Stauber EJ, Fink A, Markert C, Kruse O, Johanningmeier U, Hippler M., Eukaryotic Cell 2(5), 2003
PMID: 14555480
Environmentally modulated phosphoproteome of photosynthetic membranes in the green alga Chlamydomonas reinhardtii.
Turkina MV, Kargul J, Blanco-Rivero A, Villarejo A, Barber J, Vener AV., Mol. Cell Proteomics 5(8), 2006
PMID: 16670252
Redox regulation: a broadening horizon.
Buchanan BB, Balmer Y., Annu Rev Plant Biol 56(), 2005
PMID: 15862094
The chloroplast protein disulfide isomerase RB60 reacts with a regulatory disulfide of the RNA-binding protein RB47.
Alergand T, Peled-Zehavi H, Katz Y, Danon A., Plant Cell Physiol. 47(4), 2006
PMID: 16497834
Evolutionary rates and expression level in Chlamydomonas.
Popescu CE, Borza T, Bielawski JP, Lee RW., Genetics 172(3), 2006
PMID: 16361241
A Quantitative analysis of cell-type specific gene expression in the green alga
Nematollahi G, Kianianmomeni A, Hallmann A., 2006
Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
Schafer FQ, Buettner GR., 2001
Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoforms.
Hudemann C, Lonn ME, Godoy JR, Zahedi Avval F, Capani F, Holmgren A, Lillig CH., Antioxid. Redox Signal. 11(1), 2009
PMID: 18707224
Polyribosome loading of spinach mRNAs for photosystem I subunits is controlled by photosynthetic electron transport.
Sherameti I, Nakamura M, Yamamoto YY, Pfannschmidt T, Obokata J, Oelmuller R., Plant J. 32(5), 2002
PMID: 12472681
Nonreversible d-Glyceraldehyde 3-Phosphate Dehydrogenase of Plant Tissues.
Kelly GJ, Gibbs M., Plant Physiol. 52(2), 1973
PMID: 16658509

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19666611
PubMed | Europe PMC

Search this title in

Google Scholar