The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion

Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009)
JOURNAL OF BIOLOGICAL CHEMISTRY 284(35): 23415-23425.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ;
Abstract
The metabolome of the model species Chlamydomonas reinhardtii has been analyzed during 120 h of sulfur depletion to induce anaerobic hydrogen (H-2) production, using NMR spectroscopy, gas chromatography coupled to mass spectrometry, and TLC. The results indicate that these unicellular green algae consume freshly supplied acetate in the medium to accumulate energy reserves during the first 24 h of sulfur depletion. In addition to the previously reported accumulation of starch, large amounts of triacylglycerides were deposited in the cells. During the early 24- to 72-h time period fermentative energy metabolism lowered the pH, H-2 was produced, and amino acid levels generally increased. In the final phase from 72 to 120 h, metabolism slowed down leading to a stabilization of pH, even though some starch and most triacylglycerides remained. We conclude that H-2 production does not slow down due to depletion of energy reserves but rather due to loss of essential functions resulting from sulfur depletion or due to a build-up of the toxic fermentative products formate and ethanol.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Matthew T, Zhou W, Rupprecht J, et al. The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY. 2009;284(35):23415-23425.
Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S. R., Doebbe, A., Kruse, O., et al. (2009). The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY, 284(35), 23415-23425. doi:10.1074/jbc.M109.003541
Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S. R., Doebbe, A., Kruse, O., Hankamer, B., Marx, U. C., Smith, S. M., et al. (2009). The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY 284, 23415-23425.
Matthew, T., et al., 2009. The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY, 284(35), p 23415-23425.
T. Matthew, et al., “The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 284, 2009, pp. 23415-23425.
Matthew, T., Zhou, W., Rupprecht, J., Lim, L., Thomas-Hall, S.R., Doebbe, A., Kruse, O., Hankamer, B., Marx, U.C., Smith, S.M., Schenk, P.M.: The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion. JOURNAL OF BIOLOGICAL CHEMISTRY. 284, 23415-23425 (2009).
Matthew, Timmins, Zhou, Wenxu, Rupprecht, Jens, Lim, Lysha, Thomas-Hall, Skye R., Doebbe, Anja, Kruse, Olaf, Hankamer, Ben, Marx, Ute C., Smith, Steven M., and Schenk, Peer M. “The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H-2 Production by Sulfur Depletion”. JOURNAL OF BIOLOGICAL CHEMISTRY 284.35 (2009): 23415-23425.
This data publication is cited in the following publications:
This publication cites the following data publications:

46 Citations in Europe PMC

Data provided by Europe PubMed Central.

New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics.
Toepel J, Illmer-Kephalides M, Jaenicke S, Straube J, May P, Goesmann A, Kruse O., Plant Biotechnol J 11(6), 2013
PMID: 23551401
Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach.
Jamers A, Blust R, De Coen W, Griffin JL, Jones OA., Biometals 26(5), 2013
PMID: 23775669
TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.
Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J., Curr Opin Biotechnol 23(3), 2012
PMID: 22209109
Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas.
Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS., J Biol Chem 287(19), 2012
PMID: 22403401
Evolutionarily conserved Delta(25(27))-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii.
Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD., J Lipid Res 53(8), 2012
PMID: 22591742
Distinct mechanisms regulating gene expression coexist within the fermentative pathways in Chlamydomonas reinhardtii.
Swirsky Whitney LA, Novi G, Perata P, Loreti E., ScientificWorldJournal 2012(), 2012
PMID: 22792045
Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
Antal TK, Krendeleva TE, Rubin AB., Appl Microbiol Biotechnol 89(1), 2011
PMID: 20878321
Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.
Nguyen AV, Toepel J, Burgess S, Uhmeyer A, Blifernez O, Doebbe A, Hankamer B, Nixon P, Wobbe L, Kruse O., PLoS One 6(12), 2011
PMID: 22242116
Genetic engineering of algae for enhanced biofuel production.
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC., Eukaryot Cell 9(4), 2010
PMID: 20139239
Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics.
Terashima M, Specht M, Naumann B, Hippler M., Mol Cell Proteomics 9(7), 2010
PMID: 20190198
Photobiological production of hydrogen gas as a biofuel.
McKinlay JB, Harwood CS., Curr Opin Biotechnol 21(3), 2010
PMID: 20303737
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekçe E, Niehaus K, Kruse O., J Biol Chem 285(39), 2010
PMID: 20581114
Hydrogen production by Chlamydomonas reinhardtii revisited: Rubisco as a biotechnological target
Marín-Navarro J, Esquivel MG, Moreno J., World J Microbiol Biotechnol 26(10), 2010
PMID: IND44426409

28 References

Data provided by Europe PubMed Central.

Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii.
Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML., Plant Cell 16(8), 2004
PMID: 15269330
Improved photobiological H2 production in engineered green algal cells.
Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B., J. Biol. Chem. 280(40), 2005
PMID: 16100118

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19478077
PubMed | Europe PMC

Search this title in

Google Scholar