Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes

Kurtz R, Egelhaaf M, Meyer HG, Kern R (2009)
Proceedings of The Royal Society B: Biological Sciences 276(1673): 3711-3719.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Erscheinungsjahr
Zeitschriftentitel
Proceedings of The Royal Society B: Biological Sciences
Band
276
Zeitschriftennummer
1673
Seite
3711-3719
ISSN
eISSN
PUB-ID

Zitieren

Kurtz R, Egelhaaf M, Meyer HG, Kern R. Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes. Proceedings of The Royal Society B: Biological Sciences. 2009;276(1673):3711-3719.
Kurtz, R., Egelhaaf, M., Meyer, H. G., & Kern, R. (2009). Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes. Proceedings of The Royal Society B: Biological Sciences, 276(1673), 3711-3719. doi:10.1098/rspb.2009.0596
Kurtz, R., Egelhaaf, M., Meyer, H. G., and Kern, R. (2009). Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes. Proceedings of The Royal Society B: Biological Sciences 276, 3711-3719.
Kurtz, R., et al., 2009. Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes. Proceedings of The Royal Society B: Biological Sciences, 276(1673), p 3711-3719.
R. Kurtz, et al., “Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes”, Proceedings of The Royal Society B: Biological Sciences, vol. 276, 2009, pp. 3711-3719.
Kurtz, R., Egelhaaf, M., Meyer, H.G., Kern, R.: Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes. Proceedings of The Royal Society B: Biological Sciences. 276, 3711-3719 (2009).
Kurtz, Rafael, Egelhaaf, Martin, Meyer, Hanno Gerd, and Kern, Roland. “Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes”. Proceedings of The Royal Society B: Biological Sciences 276.1673 (2009): 3711-3719.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-02-01T10:41:29Z

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Local motion adaptation enhances the representation of spatial structure at EMD arrays.
Li J, Lindemann JP, Egelhaaf M., PLoS Comput Biol 13(12), 2017
PMID: 29281631
Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.
Lee YJ, Jönsson HO, Nordström K., PLoS One 10(5), 2015
PMID: 25955416
Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish.
Hollmann V, Lucks V, Kurtz R, Engelmann J., J Neurophysiol 114(5), 2015
PMID: 26378206
The natural variation of a neural code.
Kfir Y, Renan I, Schneidman E, Segev R., PLoS One 7(3), 2012
PMID: 22427973
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordström K., Front Neural Circuits 6(), 2012
PMID: 23087617
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

49 References

Daten bereitgestellt von Europe PubMed Central.

Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Neural networks in the cockpit of the fly
Borst A., Haag J.., 2002
Adaptation of response transients in fly motion vision. II: Model studies
Borst A., Reisenman C., Haag J.., 2003
Adaptation without parameter change: Dynamic gain control in motion detection.
Borst A, Flanagin VL, Sompolinsky H., Proc. Natl. Acad. Sci. U.S.A. 102(17), 2005
PMID: 15833815
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog. Neurobiol. 68(6), 2002
PMID: 12576294
An adaptive Reichardt detector model of motion adaptation in insects and mammals.
Clifford CW, Ibbotson MR, Langley K., Vis. Neurosci. 14(4), 1997
PMID: 9279002
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala
de R., Zaagman W., Mastebroeck H.., 1986
The impact of photoreceptor noise on retinal gain controls.
Dunn FA, Rieke F., Curr. Opin. Neurobiol. 16(4), 2006
PMID: 16837189
Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia
Eckert H.., 1980
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Novel approaches to visual information processing in insects: case studies on neuronal computations in the blowfly
Egelhaaf M., Grewe J., Karmeier K., Kern R., Kurtz R., Warzecha A.., 2005
Adaptation in vertebrate photoreceptors.
Fain GL, Matthews HR, Cornwall MC, Koutalos Y., Physiol. Rev. 81(1), 2001
PMID: 11152756
Adaptation in auditory hair cells.
Fettiplace R, Ricci AJ., Curr. Opin. Neurobiol. 13(4), 2003
PMID: 12965292
Sampling of visual environment by the compound eye of the fly: fundamentals and applications
Franceschini N.., 1975
Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex.
Garcia-Lazaro JA, Ho SS, Nair A, Schnupp JW., Eur. J. Neurosci. 26(8), 2007
PMID: 17953623
What's that sound? Auditory area CLM encodes stimulus surprise, not intensity or intensity changes.
Gill P, Woolley SM, Fremouw T, Theunissen FE., J. Neurophysiol. 99(6), 2008
PMID: 18287545
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Motion sensitive interneurons in the optomotor system of the fly: II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system.
Kalb J, Egelhaaf M, Kurtz R., J. Neurosci. 28(37), 2008
PMID: 18784299
Neuronal adaptation to visual motion in area MT of the macaque.
Kohn A, Movshon JA., Neuron 39(4), 2003
PMID: 12925281
Adaptation changes the direction tuning of macaque MT neurons.
Kohn A, Movshon JA., Nat. Neurosci. 7(7), 2004
PMID: 15195097
Neuronal matched filters for optic flow processing in flying insects.
Krapp HG., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605643
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Adaptation: from single cells to BOLD signals.
Krekelberg B, Boynton GM, van Wezel RJ., Trends Neurosci. 29(5), 2006
PMID: 16529826
Matching coding, circuits, cells, and molecules to signals: general principles of retinal design in the fly's eye
Laughlin S.., 1994
The representation of stimulus familiarity in anterior inferior temporal cortex.
Li L, Miller EK, Desimone R., J. Neurophysiol. 69(6), 1993
PMID: 8350131
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess T., Laughlin S.., 1985
Nonparametric tests against trends
Mann H.., 1945
Changes in the intensity-response function of an insect's photoreceptors due to light adaptation
Matic T., Laughlin S.., 1981
Global versus local adaptation in fly motion-sensitive neurons
Neri P., Laughlin S.., 2005
The motion after-effect: local and global contributions to contrast sensitivity
Nordström K., O'Carroll D.., 2009
Insect motion detectors matched to visual ecology.
O'Carroll DC, Bidwell NJ, Laughlin SB, Warrant EJ., Nature 382(6586), 1996
PMID: 21638927
Stimulus-specific adaptations in the gaze control system of the barn owl.
Reches A, Gutfreund Y., J. Neurosci. 28(6), 2008
PMID: 18256273
Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster.
Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M., Neuron 56(1), 2007
PMID: 17920022
Adaptation and information transmission in fly motion detection.
Safran MN, Flanagin VL, Borst A, Sompolinsky H., J. Neurophysiol. 98(6), 2007
PMID: 17928564
Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro.
Sanchez-Vives MV, Nowak LG, McCormick DA., J. Neurosci. 20(11), 2000
PMID: 10818164
Spatial and temporal contrast sensitivity of striate cortical neurones.
Tolhurst DJ, Movshon JA., Nature 257(5528), 1975
PMID: 1186842
Processing of low-probability sounds by cortical neurons.
Ulanovsky N, Las L, Nelken I., Nat. Neurosci. 6(4), 2003
PMID: 12652303
Temperature-dependence of neuronal performance in the motion pathway of the blowfly calliphora erythrocephala
Warzecha A, Horstmann W, Egelhaaf M., J. Exp. Biol. 202 Pt 22(), 1999
PMID: 10539965

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19656791
PubMed | Europe PMC

Suchen in

Google Scholar