Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain

Frese M-A, Milz F, Dick M, Lamanna WC, Dierks T (2009)
JOURNAL OF BIOLOGICAL CHEMISTRY 284(41): 28033-28044.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
The extracellular sulfartases Sulf1 and Sulf2 remodel the 60-sulfation state of heparan sulfate proteoglycans on the cell surface, thereby modulating growth factor signaling. Different from all other sulfartases, the Sulfs contain a unique, positively charged hydrophilic domain (HD) of about 320 amino acid residues. Using various HD deletion mutants and glutathione S-transferase (GST)-HD fusion proteins, this study demonstrates that the HD is required for enzymatic activity and acts as a high affinity heparin/heparan sulfate interaction domain. Association of the HD with the cell surface is sensitive to heparinase treatment, underlining specificity toward heparan sulfate chains. Correspondingly, isolated GST-HD binds strongly to both heparin and heparan sulfate in vitro and also to living cells. Surface plasmon resonance studies indicate nanomolar affinity of GST-HD toward immobilized heparin. The comparison of different mutants reveals that especially the outer regions of the HD mediate heparan sulfate binding, probably involving "tandem" interactions. Interestingly, binding to heparan sulfate depends on the presence of 60-sulfate substrate groups, suggesting that substrate turnover facilitates release of the enzyme from its substrate. Deletion of the inner, less conserved region of the HD drastically increases Sulf1 secretion without affecting enzymatic activity or substrate specificity, thus providing a tool for the in vitro modulation of HS-dependent signaling as demonstrated here for the signal transduction of fibroblast growth factor 2. Taken together, the present study shows that specific regions of the HD influence different aspects of HS binding, cellular localization, and enzyme function.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Frese M-A, Milz F, Dick M, Lamanna WC, Dierks T. Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain. JOURNAL OF BIOLOGICAL CHEMISTRY. 2009;284(41):28033-28044.
Frese, M. - A., Milz, F., Dick, M., Lamanna, W. C., & Dierks, T. (2009). Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain. JOURNAL OF BIOLOGICAL CHEMISTRY, 284(41), 28033-28044. doi:10.1074/jbc.M109.035808
Frese, M. - A., Milz, F., Dick, M., Lamanna, W. C., and Dierks, T. (2009). Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain. JOURNAL OF BIOLOGICAL CHEMISTRY 284, 28033-28044.
Frese, M.-A., et al., 2009. Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain. JOURNAL OF BIOLOGICAL CHEMISTRY, 284(41), p 28033-28044.
M.-A. Frese, et al., “Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain”, JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 284, 2009, pp. 28033-28044.
Frese, M.-A., Milz, F., Dick, M., Lamanna, W.C., Dierks, T.: Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain. JOURNAL OF BIOLOGICAL CHEMISTRY. 284, 28033-28044 (2009).
Frese, Marc-Andre, Milz, Fabian, Dick, Marina, Lamanna, William C., and Dierks, Thomas. “Characterization of the Human Sulfatase Sulf1 and Its High Affinity Heparin/Heparan Sulfate Interaction Domain”. JOURNAL OF BIOLOGICAL CHEMISTRY 284.41 (2009): 28033-28044.
This data publication is cited in the following publications:
This publication cites the following data publications:

25 Citations in Europe PMC

Data provided by Europe PubMed Central.

Catch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
Harder A, Moller AK, Milz F, Neuhaus P, Walhorn V, Dierks T, Anselmetti D., Biophys. J. 108(7), 2015
PMID: 25863062
Increased sulfatase 1 gene expression in degenerative intervertebral disc cells.
Tsai TT, Ho NY, Fang HC, Lai PL, Niu CC, Chen LH, Chen WJ, Pang JH., J. Orthop. Res. 33(3), 2015
PMID: 25469740
SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis.
Singer MS, Phillips JJ, Lemjabbar-Alaoui H, Wang YQ, Wu J, Goldman R, Rosen SD., Clin. Chim. Acta 440(), 2015
PMID: 25444749
Post-Synthetic Regulation of HS Structure: The Yin and Yang of the Sulfs in Cancer.
Vives RR, Seffouh A, Lortat-Jacob H., Front Oncol 3(), 2014
PMID: 24459635
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate.
Milz F, Harder A, Neuhaus P, Breitkreuz-Korff O, Walhorn V, Lubke T, Anselmetti D, Dierks T., Biochim. Biophys. Acta 1830(11), 2013
PMID: 23891937
Activation of the transcription factor GLI1 by WNT signaling underlies the role of SULFATASE 2 as a regulator of tissue regeneration.
Nakamura I, Fernandez-Barrena MG, Ortiz-Ruiz MC, Almada LL, Hu C, Elsawa SF, Mills LD, Romecin PA, Gulaid KH, Moser CD, Han JJ, Vrabel A, Hanse EA, Akogyeram NA, Albrecht JH, Monga SP, Sanderson SO, Prieto J, Roberts LR, Fernandez-Zapico ME., J. Biol. Chem. 288(29), 2013
PMID: 23740243
Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode.
Chabrol E, Nurisso A, Daina A, Vassal-Stermann E, Thepaut M, Girard E, Vives RR, Fieschi F., PLoS ONE 7(11), 2012
PMID: 23226363
Roles of heparan sulfate sulfation in dentinogenesis.
Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, Islam MN, Kawanabe N, Saito M, Kamioka H, Adachi T, Dierks T, Yamashiro T., J. Biol. Chem. 287(15), 2012
PMID: 22351753
Age-related changes in rat myocardium involve altered capacities of glycosaminoglycans to potentiate growth factor functions and heparan sulfate-altered sulfation.
Huynh MB, Morin C, Carpentier G, Garcia-Filipe S, Talhas-Perret S, Barbier-Chassefiere V, van Kuppevelt TH, Martelly I, Albanese P, Papy-Garcia D., J. Biol. Chem. 287(14), 2012
PMID: 22298772
Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice.
Nagamine S, Tamba M, Ishimine H, Araki K, Shiomi K, Okada T, Ohto T, Kunita S, Takahashi S, Wismans RG, van Kuppevelt TH, Masu M, Keino-Masu K., J. Biol. Chem. 287(12), 2012
PMID: 22298771
Genetic analysis of the heparan modification network in Caenorhabditis elegans.
Townley RA, Bulow HE., J. Biol. Chem. 286(19), 2011
PMID: 21454666
Type 2 diabetes in mice induces hepatic overexpression of sulfatase 2, a novel factor that suppresses uptake of remnant lipoproteins.
Chen K, Liu ML, Schaffer L, Li M, Boden G, Wu X, Williams KJ., Hepatology 52(6), 2010
PMID: 21049473
Glucosamine-6-sulfamate analogues of heparan sulfate as inhibitors of endosulfatases.
Schelwies M, Brinson D, Otsuki S, Hong YH, Lotz MK, Wong CH, Hanson SR., Chembiochem 11(17), 2010
PMID: 20973023
Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts.
Peterson SM, Iskenderian A, Cook L, Romashko A, Tobin K, Jones M, Norton A, Gomez-Yafal A, Heartlein MW, Concino MF, Liaw L, Martini PG., BMC Cancer 10(), 2010
PMID: 20707913
Transmembrane signaling proteoglycans.
Couchman JR., Annu. Rev. Cell Dev. Biol. 26(), 2010
PMID: 20565253
Proteolytic cleavage of the rat heparan sulfate 6-O-endosulfatase SulfFP2 by furin-type proprotein convertases.
Nagamine S, Keino-Masu K, Shiomi K, Masu M., Biochem. Biophys. Res. Commun. 391(1), 2010
PMID: 19900405
Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88.
Hossain MM, Hosono-Fukao T, Tang R, Sugaya N, van Kuppevelt TH, Jenniskens GJ, Kimata K, Rosen SD, Uchimura K., Glycobiology 20(2), 2010
PMID: 19822709

41 References

Data provided by Europe PubMed Central.

Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin.
Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL., Nature 407(6807), 2000
PMID: 11069186
Molecular modeling of protein-glycosaminoglycan interactions.
Cardin AD, Weintraub HJ., Arteriosclerosis 9(1), 1989
PMID: 2463827
Localization and characterization of a heparin binding domain peptide of human von Willebrand factor.
Sobel M, Soler DF, Kermode JC, Harris RB., J. Biol. Chem. 267(13), 1992
PMID: 1577724
Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins.
Hileman RE, Fromm JR, Weiler JM, Linhardt RJ., Bioessays 20(2), 1998
PMID: 9631661
Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2.
Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP Jr., J. Biol. Chem. 281(8), 2006
PMID: 16377625
Functional consequences of the subdomain organization of the sulfs.
Tang R, Rosen SD., J. Biol. Chem. 284(32), 2009
PMID: 19520866
A modular set of prokaryotic and eukaryotic expression vectors.
Melcher K., Anal. Biochem. 277(1), 2000
PMID: 10610695
Arylsulfatase G, a novel lysosomal sulfatase.
Frese MA, Schulz S, Dierks T., J. Biol. Chem. 283(17), 2008
PMID: 18283100
Molecular characterization of the human Calpha-formylglycine-generating enzyme.
Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T., J. Biol. Chem. 280(15), 2005
PMID: 15657036
Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization.
Osmond RI, Kett WC, Skett SE, Coombe DR., Anal. Biochem. 310(2), 2002
PMID: 12423639
Turbidimetry of inorganic sulfate, ester sulfate, and total sulfur in urine.
Lundquist P, Martensson J, Sorbo B, Ohman S., Clin. Chem. 26(8), 1980
PMID: 7389089
The molecular phenotype of heparan sulfate in the Hs2st-/- mutant mouse.
Merry CL, Bullock SL, Swan DC, Backen AC, Lyon M, Beddington RS, Wilson VA, Gallagher JT., J. Biol. Chem. 276(38), 2001
PMID: 11457822
Quail Sulf1 function requires asparagine-linked glycosylation.
Ambasta RK, Ai X, Emerson CP Jr., J. Biol. Chem. 282(47), 2007
PMID: 17855356
The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters.
Eisenthal R, Cornish-Bowden A., Biochem. J. 139(3), 1974
PMID: 4854723

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19666466
PubMed | Europe PMC

Search this title in

Google Scholar