Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth

Liu P, Li R-L, Zhang L, Wang Q-L, Niehaus K, Baluska F, Samaj J, Lin J-X (2009)
Plant Journal 60(2): 303-313.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract / Notes
The polarization of sterol-enriched lipid microdomains has been linked to morphogenesis and cell movement in diverse cell types. Recent biochemical evidence has confirmed the presence of lipid microdomains in plant cells; however, direct evidence for a functional link between these microdomains and plant cell growth is still lacking. Here, we reported the involvement of lipid microdomains in NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) signaling in Picea meyeri pollen tube growth. Staining with di-4-ANEPPDHQ or filipin revealed that sterol-enriched microdomains were polarized to the growing tip of the pollen tube. Sterol sequestration with filipin disrupted membrane microdomain polarization, depressed tip-based ROS formation, dissipated tip-focused cytosolic Ca2+ gradient and thereby arrested tip growth. NOX clustered at the growing tip, and corresponded with the ordered membrane domains. Immunoblot analysis and native gel assays demonstrated that NOX was partially associated with detergent-resistant membranes and, furthermore, that NOX in a sterol-dependent fashion depends on membrane microdomains for its enzymatic activity. In addition, in vivo time-lapse imaging revealed the coexistence of a steep tip-high apical ROS gradient and subapical ROS production, highlighting the reported signaling role for ROS in polar cell growth. Our results suggest that the polarization of lipid microdomains to the apical plasma membrane, and the inclusion of NOX into these domains, contribute, at least in part, to the ability to grow in a highly polarized manner to form pollen tubes.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Liu P, Li R-L, Zhang L, et al. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal. 2009;60(2):303-313.
Liu, P., Li, R. - L., Zhang, L., Wang, Q. - L., Niehaus, K., Baluska, F., Samaj, J., et al. (2009). Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal, 60(2), 303-313. doi:10.1111/j.1365-313X.2009.03955.x
Liu, P., Li, R. - L., Zhang, L., Wang, Q. - L., Niehaus, K., Baluska, F., Samaj, J., and Lin, J. - X. (2009). Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal 60, 303-313.
Liu, P., et al., 2009. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal, 60(2), p 303-313.
P. Liu, et al., “Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth”, Plant Journal, vol. 60, 2009, pp. 303-313.
Liu, P., Li, R.-L., Zhang, L., Wang, Q.-L., Niehaus, K., Baluska, F., Samaj, J., Lin, J.-X.: Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth. Plant Journal. 60, 303-313 (2009).
Liu, Peng, Li, Rui-Li, Zhang, Liang, Wang, Qin-Li, Niehaus, Karsten, Baluska, Frantisek, Samaj, Jozef, and Lin, Jin-Xing. “Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth”. Plant Journal 60.2 (2009): 303-313.
This data publication is cited in the following publications:
This publication cites the following data publications:

47 Citations in Europe PMC

Data provided by Europe PubMed Central.

Calcium - a central regulator of pollen germination and tube growth.
Steinhorst L, Kudla J., Biochim Biophys Acta 1833(7), 2013
PMID: 23072967
Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.
Malinsky J, Opekarová M, Grossmann G, Tanner W., Annu Rev Plant Biol 64(), 2013
PMID: 23638827
Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life.
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J., Biol Direct 8(), 2013
PMID: 23557484
Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions.
Wang GF, Li WQ, Li WY, Wu GL, Zhou CY, Chen KM., Int J Mol Sci 14(5), 2013
PMID: 23629674
Cell polarity signaling.
Bloch D, Yalovsky S., Curr Opin Plant Biol 16(6), 2013
PMID: 24238831
ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases.
Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U., PLoS Biol 11(11), 2013
PMID: 24302886
Reactive oxygen species are involved in pollen tube initiation in kiwifruit.
Speranza A, Crinelli R, Scoccianti V, Geitmann A., Plant Biol (Stuttg) 14(1), 2012
PMID: 21973108
High-resolution imaging of Ca2+ , redox status, ROS and pH using GFP biosensors.
Choi WG, Swanson SJ, Gilroy S., Plant J 70(1), 2012
PMID: 22449047
Cell wall constrains lateral diffusion of plant plasma-membrane proteins.
Martinière A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L, Luu DT, Botchway SW, Webb SE, Mongrand S, Maurel C, Martin-Fernandez ML, Kleine-Vehn J, Friml J, Moreau P, Runions J., Proc Natl Acad Sci U S A 109(31), 2012
PMID: 22689944
On the fast lane: mitochondria structure, dynamics and function in growing pollen tubes.
Colaço R, Moreno N, Feijó JA., J Microsc 247(1), 2012
PMID: 22681536
A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning.
Marino D, Andrio E, Danchin EG, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N., New Phytol 189(2), 2011
PMID: 21155825
In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants.
Swanson SJ, Choi WG, Chanoca A, Gilroy S., Annu Rev Plant Biol 62(), 2011
PMID: 21370977
Recognition of lipid-protein rafts in vacuolar membrane.
Ozolina NV, Nesterkina IS, Nurminsky VN, Stepanov AV, Kolesnikova EV, Gurina VV, Salyaev RK., Dokl Biochem Biophys 438(), 2011
PMID: 21725887
Rapid tip growth: insights from pollen tubes.
Qin Y, Yang Z., Semin Cell Dev Biol 22(8), 2011
PMID: 21729760
Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues.
Carmona-Salazar L, El Hafidi M, Enríquez-Arredondo C, Vázquez-Vázquez C, González de la Vara LE, Gavilanes-Ruíz M., Anal Biochem 417(2), 2011
PMID: 21723848
At the poles across kingdoms: phosphoinositides and polar tip growth.
Ischebeck T, Seiler S, Heilmann I., Protoplasma 240(1-4), 2010
PMID: 20091065
Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells.
Bonneau L, Gerbeau-Pissot P, Thomas D, Der C, Lherminier J, Bourque S, Roche Y, Simon-Plas F., Biochim Biophys Acta 1798(11), 2010
PMID: 20674542
Membrane rafts in plant cells.
Mongrand S, Stanislas T, Bayer EM, Lherminier J, Simon-Plas F., Trends Plant Sci 15(12), 2010
PMID: 20934367

48 References

Data provided by Europe PubMed Central.

New signalling molecules regulating root hair tip growth.
Samaj J, Baluska F, Menzel D., Trends Plant Sci. 9(5), 2004
PMID: 15130546
Lipid raft polarization contributes to hyphal growth in Candida albicans.
Martin SW, Konopka JB., Eukaryotic Cell 3(3), 2004
PMID: 15189988
Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane.
Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ., J. Biol. Chem. 279(35), 2004
PMID: 15190066
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast.
Takeda T, Kawate T, Chang F., Nat. Cell Biol. 6(11), 2004
PMID: 15517003
Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts.
Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P., Plant Physiol. 137(1), 2005
PMID: 15618420
Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain.
Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R., Proc. Natl. Acad. Sci. U.S.A. 102(8), 2005
PMID: 15703292
A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes.
Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z., J. Cell Biol. 169(1), 2005
PMID: 15824136
Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39.
Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S., J. Biol. Chem. 280(28), 2005
PMID: 15890655
Lipid rafts in plants.
Bhat RA, Panstruga R., Planta 223(1), 2005
PMID: 16136329
Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes.
Hwang JU, Gu Y, Lee YJ, Yang Z., Mol. Biol. Cell 16(11), 2005
PMID: 16148045
A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells.
Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L., Nature 438(7070), 2005
PMID: 16355224
Characterization and application of a new optical probe for membrane lipid domains.
Jin L, Millard AC, Wuskell JP, Dong X, Wu D, Clark HA, Loew LM., Biophys. J. 90(7), 2006
PMID: 16415047
Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells.
Owen DM, Lanigan PM, Dunsby C, Munro I, Grant D, Neil MA, French PM, Magee AI., Biophys. J. 90(11), 2006
PMID: 16617080
NAD(P)H oscillates in pollen tubes and is correlated with tip growth.
Cardenas L, McKenna ST, Kunkel JG, Hepler PK., Plant Physiol. 142(4), 2006
PMID: 17041030
Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase.
Sorek N, Poraty L, Sternberg H, Bar E, Lewinsohn E, Yalovsky S., Mol. Cell. Biol. 27(6), 2007
PMID: 17242203
Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth.
Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V., New Phytol. 174(4), 2007
PMID: 17504458
Optical techniques for imaging membrane lipid microdomains in living cells.
Owen DM, Neil MA, French PM, Magee AI., Semin. Cell Dev. Biol. 18(5), 2007
PMID: 17728161
Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension.
Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K., Plant Cell 19(12), 2007
PMID: 18156215
Local positive feedback regulation determines cell shape in root hair cells.
Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L., Science 319(5867), 2008
PMID: 18309082
Unraveling the tapestry of networks involving reactive oxygen species in plants.
Van Breusegem F, Bailey-Serres J, Mittler R., Plant Physiol. 147(3), 2008
PMID: 18612075

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19566595
PubMed | Europe PMC

Search this title in

Google Scholar