Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome

Langenbacher T, Immeln D, Dick B, Kottke T (2009)
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131(40): 14274-14280.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Langenbacher T, Immeln D, Dick B, Kottke T. Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2009;131(40):14274-14280.
Langenbacher, T., Immeln, D., Dick, B., & Kottke, T. (2009). Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 131(40), 14274-14280.
Langenbacher, T., Immeln, D., Dick, B., and Kottke, T. (2009). Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131, 14274-14280.
Langenbacher, T., et al., 2009. Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 131(40), p 14274-14280.
T. Langenbacher, et al., “Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome”, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pp. 14274-14280.
Langenbacher, T., Immeln, D., Dick, B., Kottke, T.: Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 131, 14274-14280 (2009).
Langenbacher, Thomas, Immeln, Dominik, Dick, Bernhard, and Kottke, Tilman. “Microsecond Light-induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome”. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 131.40 (2009): 14274-14280.
This data publication is cited in the following publications:
This publication cites the following data publications:

23 Citations in Europe PMC

Data provided by Europe PubMed Central.

Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.
Yee EF, Diensthuber RP, Vaidya AT, Borbat PP, Engelhard C, Freed JH, Bittl R, Moglich A, Crane BR., Nat Commun 6(), 2015
PMID: 26648256
Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E., FEBS J. 282(16), 2015
PMID: 25879256
Plant flavoprotein photoreceptors.
Christie JM, Blackwood L, Petersen J, Sullivan S., Plant Cell Physiol. 56(3), 2015
PMID: 25516569
Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome.
Hense A, Herman E, Oldemeyer S, Kottke T., J. Biol. Chem. 290(3), 2015
PMID: 25471375
A search for radical intermediates in the photocycle of LOV domains.
Kutta RJ, Magerl K, Kensy U, Dick B., Photochem. Photobiol. Sci. 14(2), 2015
PMID: 25380177
ATP binding turns plant cryptochrome into an efficient natural photoswitch.
Muller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K., Sci Rep 4(), 2014
PMID: 24898692
Observation of magnetic field effects on transient fluorescence spectra of cryptochrome 1 from homing pigeons.
Du XL, Wang J, Pan WS, Liu QJ, Wang XJ, Wu WJ., Photochem. Photobiol. 90(5), 2014
PMID: 24689535
Biochemistry and theory of proton-coupled electron transfer.
Migliore A, Polizzi NF, Therien MJ, Beratan DN., Chem. Rev. 114(7), 2014
PMID: 24684625
Separation of photo-induced radical pair in cryptochrome to a functionally critical distance.
Solov'yov IA, Domratcheva T, Schulten K., Sci Rep 4(), 2014
PMID: 24457842
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2014
PMID: 24081482
A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
Dodson CA, Hore PJ, Wallace MI., Trends Biochem. Sci. 38(9), 2013
PMID: 23938034
Variable electron transfer pathways in an amphibian cryptochrome: tryptophan versus tyrosine-based radical pairs.
Biskup T, Paulus B, Okafuji A, Hitomi K, Getzoff ED, Weber S, Schleicher E., J. Biol. Chem. 288(13), 2013
PMID: 23430261
Decrypting cryptochrome: revealing the molecular identity of the photoactivation reaction.
Solov'yov IA, Domratcheva T, Moughal Shahi AR, Schulten K., J. Am. Chem. Soc. 134(43), 2012
PMID: 23009093
Fourier-transform infrared study of the photoactivation process of Xenopus (6-4) photolyase.
Yamada D, Zhang Y, Iwata T, Hitomi K, Getzoff ED, Kandori H., Biochemistry 51(29), 2012
PMID: 22747528
Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor.
Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ., Proc. Natl. Acad. Sci. U.S.A. 109(13), 2012
PMID: 22421133
Reaction kinetics and mechanism of magnetic field effects in cryptochrome.
Solov'yov IA, Schulten K., J Phys Chem B 116(3), 2012
PMID: 22171949
Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
Kondoh M, Shiraishi C, Muller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M., J. Mol. Biol. 413(1), 2011
PMID: 21875594
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds.
Megerle U, Wenninger M, Kutta RJ, Lechner R, Konig B, Dick B, Riedle E., Phys Chem Chem Phys 13(19), 2011
PMID: 21461426
Reaction mechanisms of DNA photolyase.
Brettel K, Byrdin M., Curr. Opin. Struct. Biol. 20(6), 2010
PMID: 20705454

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19754110
PubMed | Europe PMC

Search this title in

Google Scholar