Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins

Radu I, Schleeger M, Bolwien C, Heberle J (2009)
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 8(11): 1517-1528.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
The introduction of time-resolved Fourier transform infrared (FT-IR) spectroscopy to biochemistry opened the possibility of monitoring the catalytic mechanism of proteins along their reaction pathways. The infrared approach is very fruitful, particularly in the application to membrane proteins where NMR and X-ray crystallography are challenged by the size and protein hydrophobicity, as well as by their limited time-resolution. Here, we summarize the principles and experimental realizations of time-resolved FT-IR spectroscopy developed in our group and compare with aspects emerging from other laboratories. Examples of applications to retinal proteins and energy transduction complexes are reviewed, which emphasize the impact of time-resolved FT-IR spectroscopy on the understanding of protein reactions on the level of single bonds.
Erscheinungsjahr
Zeitschriftentitel
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
Band
8
Zeitschriftennummer
11
Seite
1517-1528
ISSN
eISSN
PUB-ID

Zitieren

Radu I, Schleeger M, Bolwien C, Heberle J. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES. 2009;8(11):1517-1528.
Radu, I., Schleeger, M., Bolwien, C., & Heberle, J. (2009). Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 8(11), 1517-1528. doi:10.1039/b9pp00050j
Radu, I., Schleeger, M., Bolwien, C., and Heberle, J. (2009). Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 8, 1517-1528.
Radu, I., et al., 2009. Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 8(11), p 1517-1528.
I. Radu, et al., “Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins”, PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, vol. 8, 2009, pp. 1517-1528.
Radu, I., Schleeger, M., Bolwien, C., Heberle, J.: Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES. 8, 1517-1528 (2009).
Radu, Ionela, Schleeger, Michael, Bolwien, Carsten, and Heberle, Joachim. “Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins”. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 8.11 (2009): 1517-1528.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s.
Schultz BJ, Mohrmann H, Lorenz-Fonfria VA, Heberle J., Spectrochim Acta A Mol Biomol Spectrosc 188(), 2018
PMID: 28110813
Time-resolved infrared spectroscopy in the study of photosynthetic systems.
Mezzetti A, Leibl W., Photosynth Res 131(2), 2017
PMID: 27678250
New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution.
Süss B, Ringleb F, Heberle J., Rev Sci Instrum 87(6), 2016
PMID: 27370432
Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
Inaguma A, Tsukamoto H, Kato HE, Kimura T, Ishizuka T, Oishi S, Yawo H, Nureki O, Furutani Y., J Biol Chem 290(18), 2015
PMID: 25796616
Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2.
Resler T, Schultz BJ, Lórenz-Fonfría VA, Schlesinger R, Heberle J., Biophys J 109(2), 2015
PMID: 26200864
Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy.
Furutani Y, Shimizu H, Asai Y, Oiki S, Kandori H., Biophys Physicobiol 12(), 2015
PMID: 27493853
Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.
Lórenz-Fonfría VA, Bamann C, Resler T, Schlesinger R, Bamberg E, Heberle J., Proc Natl Acad Sci U S A 112(43), 2015
PMID: 26460012
Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations.
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C., Phys Chem Chem Phys 15(26), 2013
PMID: 23733145
Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.
Ataka K, Stripp ST, Heberle J., Biochim Biophys Acta 1828(10), 2013
PMID: 23816441
Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system.
Kubo M, Nakashima S, Yamaguchi S, Ogura T, Mochizuki M, Kang J, Tateno M, Shinzawa-Itoh K, Kato K, Yoshikawa S., J Biol Chem 288(42), 2013
PMID: 23996000
The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156.
Nack M, Radu I, Gossing M, Bamann C, Bamberg E, von Mollard GF, Heberle J., Photochem Photobiol Sci 9(2), 2010
PMID: 20126794
Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53.
Radu I, Budyak IL, Hoomann T, Kim YJ, Engelhard M, Labahn J, Büldt G, Heberle J, Schlesinger R., Biophys Chem 150(1-3), 2010
PMID: 20303644
Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems.
Ataka K, Kottke T, Heberle J., Angew Chem Int Ed Engl 49(32), 2010
PMID: 20818765

89 References

Daten bereitgestellt von Europe PubMed Central.

Nano- and microsecond time-resolved FTIR spectroscopy of the halorhodopsin photocycle.
Dioumaev AK, Braiman MS., Photochem. Photobiol. 66(6), 1997
PMID: 9421962
The proton donor for O-O bond scission by cytochrome c oxidase.
Gorbikova EA, Belevich I, Wikstrom M, Verkhovsky MI., Proc. Natl. Acad. Sci. U.S.A. 105(31), 2008
PMID: 18664577
Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium.
Lozier RH, Bogomolni RA, Stoeckenius W., Biophys. J. 15(9), 1975
PMID: 1182271
Spectrally silent transitions in the bacteriorhodopsin photocycle.
Chizhov I, Chernavskii DS, Engelhard M, Mueller KH, Zubov BV, Hess B., Biophys. J. 71(5), 1996
PMID: 8913574
Nanosecond time-resolved infrared spectroscopy distinguishes two K species in the bacteriorhodopsin photocycle.
Sasaki J, Yuzawa T, Kandori H, Maeda A, Hamaguchi H., Biophys. J. 68(5), 1995
PMID: 7612850
Halide dependence of the halorhodopsin photocycle as measured by time-resolved infrared spectra.
Hutson MS, Shilov SV, Krebs R, Braiman MS., Biophys. J. 80(3), 2001
PMID: 11222305

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19862409
PubMed | Europe PMC

Suchen in

Google Scholar