Parameterizations for ice nucleation in biological and atmospheric systems

Koop T, Zobrist B (2009)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11(46): 10839-10850.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
Ice nucleation is an important process in numerous environmental systems such as atmospheric aerosol droplets or biological tissues. Here we analyze two widely used approaches for describing homogeneous ice nucleation in aqueous solutions with respect to their applicability to heterogeneous ice nucleation processes: the lambda approach and the water-activity-based approach. We study experimentally the heterogeneous ice nucleation behaviour of mineral dust particles and biological ice nuclei (Snomax; Pseudomonas syringae) in aqueous solutions as a function of solute concentration for various solutes (sulfuric acid, ammonium sulfate, glucose, and poly(ethylene glycol) with two different molar masses of 400 and 6000 g mol(-1)). We show that the ice nucleation temperature and the corresponding lambda values depend on both the type of ice nucleus and the type of solute, while the water-activity-based approach depends only on the type of ice nucleus when the solution water activity is known. Finally, we employ both approaches to the study of ice nucleation in biological systems such as the supercooling point of living larvae and insects. We show that the behaviour of freeze tolerant and freeze avoiding species can be described using the two approaches and we discuss how the analysis can be used to interpret experimental results of the freezing behaviour of living species.
Erscheinungsjahr
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
11
Zeitschriftennummer
46
Seite
10839-10850
ISSN
eISSN
PUB-ID

Zitieren

Koop T, Zobrist B. Parameterizations for ice nucleation in biological and atmospheric systems. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2009;11(46):10839-10850.
Koop, T., & Zobrist, B. (2009). Parameterizations for ice nucleation in biological and atmospheric systems. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 11(46), 10839-10850. doi:10.1039/b914289d
Koop, T., and Zobrist, B. (2009). Parameterizations for ice nucleation in biological and atmospheric systems. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11, 10839-10850.
Koop, T., & Zobrist, B., 2009. Parameterizations for ice nucleation in biological and atmospheric systems. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 11(46), p 10839-10850.
T. Koop and B. Zobrist, “Parameterizations for ice nucleation in biological and atmospheric systems”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 11, 2009, pp. 10839-10850.
Koop, T., Zobrist, B.: Parameterizations for ice nucleation in biological and atmospheric systems. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 11, 10839-10850 (2009).
Koop, Thomas, and Zobrist, Bernhard. “Parameterizations for ice nucleation in biological and atmospheric systems”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 11.46 (2009): 10839-10850.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Secondary Electrons as an Energy Source for Life.
Stelmach KB, Neveu M, Vick-Majors TJ, Mickol RL, Chou L, Webster KD, Tilley M, Zacchei F, Escudero C, Flores Martinez CL, Labrado A, Fernández EJG., Astrobiology 18(1), 2018
PMID: 29314901
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale TF, Holden MA, Wilson TW, O'Sullivan D, Murray BJ., Chem Sci 9(17), 2018
PMID: 29780544
Boreal pollen contain ice-nucleating as well as ice-binding 'antifreeze' polysaccharides.
Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T., Sci Rep 7(), 2017
PMID: 28157236
Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.
Charnawskas JC, Alpert PA, Lambe AT, Berkemeier T, O'Brien RE, Massoli P, Onasch TB, Shiraiwa M, Moffet RC, Gilles MK, Davidovits P, Worsnop DR, Knopf DA., Faraday Discuss 200(), 2017
PMID: 28574555
Ice-nucleating bacteria control the order and dynamics of interfacial water.
Pandey R, Usui K, Livingstone RA, Fischer SA, Pfaendtner J, Backus EH, Nagata Y, Fröhlich-Nowoisky J, Schmüser L, Mauri S, Scheel JF, Knopf DA, Pöschl U, Bonn M, Weidner T., Sci Adv 2(4), 2016
PMID: 27152346
A design equation for low dosage additives that accelerate nucleation.
Poon GG, Seritan S, Peters B., Faraday Discuss 179(), 2015
PMID: 25951032
A marine biogenic source of atmospheric ice-nucleating particles.
Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM, Browse J, Burrows SM, Carslaw KS, Huffman JA, Judd C, Kilthau WP, Mason RH, McFiggans G, Miller LA, Nájera JJ, Polishchuk E, Rae S, Schiller CL, Si M, Temprado JV, Whale TF, Wong JP, Wurl O, Yakobi-Hancock JD, Abbatt JP, Aller JY, Bertram AK, Knopf DA, Murray BJ., Nature 525(7568), 2015
PMID: 26354482
A Low Temperature Limit for Life on Earth.
Clarke A, Morris GJ, Fonseca F, Murray BJ, Acton E, Price HC., PLoS One 8(6), 2013
PMID: 23840425
Ice nucleation by electric surface fields of varying range and geometry.
Yan JY, Patey GN., J Chem Phys 139(14), 2013
PMID: 24116629
Homogeneous ice nucleation from supercooled water.
Li T, Donadio D, Russo G, Galli G., Phys Chem Chem Phys 13(44), 2011
PMID: 21989826

109 References

Daten bereitgestellt von Europe PubMed Central.


Angell, Annu. Rev. Phys. Chem. 34(), 1983

Mishima, Nature 396(), 1998
Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
Koop T, Luo B, Tsias A, Peter T., Nature 406(6796), 2000
PMID: 10949298

Baker, Science 276(), 1997

Lohmann, Atmos. Chem. Phys. 5(), 2005
Small-scale cloud processes and climate.
Baker MB, Peter T., Nature 451(7176), 2008
PMID: 18202649

Andreae, Earth-Sci. Rev. 89(), 2008

Kärcher, J. Geophys. Res. 108(), 2003

Liou, Mon. Weather Rev. 114(), 1986

Wylie, J. Clim. 7(), 1994

Wang, J. Geophys. Res. 101(), 1996

Wylie, J. Clim. 12(), 1999

Sherwood, Geophys. Res. Lett. 27(), 2000

Holton, Geophys. Res. Lett. 28(), 2001

Evans, J. Geophys. Res. 103(), 1998

Kirk-Davidoff, Nature 402(), 1999

Dvortsov, J. Geophys. Res. 106(), 2001

Shindell, Geophys. Res. Lett. 28(), 2001

Forster, Geophys. Res. Lett. 29(), 2002

Stenke, Atmos. Chem. Phys. 5(), 2005

Tian, Adv. Atmos. Sci. 26(), 2009

Bertram, J. Phys. Chem. 100(), 1996

Koop, J. Phys. Chem. A 102(), 1998

Chang, J. Phys. Chem. A 103(), 1999

Chen, J. Atmos. Sci. 57(), 2000

Vortisch, Phys. Chem. Chem. Phys. 2(), 2000

Möhler, Atmos. Chem. Phys. 3(), 2003
Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.
Abbatt JP, Benz S, Cziczo DJ, Kanji Z, Lohmann U, Mohler O., Science 313(5794), 2006
PMID: 16946035

Zuberi, Geophys. Res. Lett. 29(), 2002

Archuleta, Atmos. Chem. Phys. 5(), 2005

Möhler, Atmos. Chem. Phys. 6(), 2006

Knopf, J. Geophys. Res. 111(), 2006

Marcolli, Atmos. Chem. Phys. 7(), 2007

Zimmermann, Atmos. Environ. 41(), 2007
Heterogeneous ice nucleation in aqueous solutions: the role of water activity.
Zobrist B, Marcolli C, Peter T, Koop T., J Phys Chem A 112(17), 2008
PMID: 18363389

Eastwood, Geophys. Res. Lett. 36(), 2009

Zuberi, J. Phys. Chem. A 105(), 2001

Wise, Atmos. Chem. Phys. 9(), 2009

Zobrist, Atmos. Chem. Phys. 6(), 2006

Cantrell, Geophys. Res. Lett. 33(), 2006

Prenni, Geophys. Res. Lett. 36(), 2009

Petters, J. Geophys. Res. 114(), 2009

Wood, Rev. Sci. Instrum. 73(), 2002

Diehl, Atmos. Res. 61(), 2002

von, Atmos. Res. 78(), 2005

Möhler, Biogeosciences 4(), 2007
Ubiquity of biological ice nucleators in snowfall.
Christner BC, Morris CE, Foreman CM, Cai R, Sands DC., Science 319(5867), 2008
PMID: 18309078

Möhler, Biogeosciences 5(), 2008

Vali, Atmos. Chem. Phys. 8(), 2008

Schnell, J. Atmos. Sci. 33(), 1976

DeMott, Geophys. Res. Lett. 30(), 2003

Sassen, Geophys. Res. Lett. 30(), 2003

Pratt, Nat. Geosci. 2(), 2009

Prenni, Nat. Geosci. 2(), 2009

Franks, Philos. Trans. R. Soc. London, Ser. B 326(), 1990
Freezing resistance in some Antarctic fishes.
DeVries AL, Wohlschlag DE., Science 163(3871), 1969
PMID: 5764871

DeVries, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 73(), 1982
Freezing of living cells: mechanisms and implications.
Mazur P., Am. J. Physiol. 247(3 Pt 1), 1984
PMID: 6383068

Bowles, Philos. Trans. R. Soc. London, Ser. B 357(), 2002
Antifreeze Proteins: Structures and Mechanisms of Function.
Yeh Y, Feeney RE., Chem. Rev. 96(2), 1996
PMID: 11848766
Ice nucleation and antinucleation in nature.
Zachariassen KE, Kristiansen E., Cryobiology 41(4), 2000
PMID: 11222024
Ice nucleation induced by pseudomonas syringae.
Maki LR, Galyan EL, Chang-Chien MM, Caldwell DR., Appl Microbiol 28(3), 1974
PMID: 4371331

Krog, Nature 282(), 1979

Morris, J. Phys. IV 121(), 2004
Physiology of cold tolerance in insects.
Zachariassen KE., Physiol. Rev. 65(4), 1985
PMID: 3903795
Ice nucleation in solutions and freeze-avoiding insects-homogeneous or heterogeneous?
Zachariassen KE, Kristiansen E, Pedersen SA, Hammel HT., Cryobiology 48(3), 2004
PMID: 15157779

Karlsson, J. Appl. Phys. 75(), 1994

Khvorostyanov, J. Atmos. Sci. 61(), 2004

Zhao, AIChE J. 52(), 2006

Salt, Can. J. Zool. 37(), 1959

Zhao, Annu. Rev. Phytopathol. 21(), 1983

Pearce, Ann. Bot. 87(), 2001

MacKenzie, Philos. Trans. R. Soc. London, Ser. B 278(), 1977

Rasmussen, J. Cryst. Growth 56(), 1982

Block, Cryo-Lett. 1(), 1979
Effect of cryoprotectants on the activity of hemolymph nucleating agents in physical solutions.
Lee RE Jr, Zachariassen KE, Baust JG., Cryobiology 18(5), 1981
PMID: 7326945

Gehrken, J. Insect Physiol. 30(), 1984

Chen, Acta Phys.-Chim. Sin. 24(), 2008

Bertram, J. Phys. Chem. A 104(), 2000

Zobrist, J. Chem. Phys. 118(), 2003
Ice nucleation and supercooling behavior of polymer aqueous solutions.
Kimizuka N, Viriyarattanasak C, Suzuki T., Cryobiology 56(1), 2007
PMID: 18166169

Zobrist, Atmos. Chem. Phys. 8(), 2008
Supercooling behavior in aqueous solutions.
Kimizuka N, Suzuki T., J Phys Chem B 111(9), 2007
PMID: 17298087

Koop, Z. Phys. Chem. 218(), 2004

Siggaard-Andersen, Pure Appl. Chem. 56(), 1984
The osmotic potential of polyethylene glycol 6000.
Michel BE, Kaufmann MR., Plant Physiol. 51(5), 1973
PMID: 16658439
Water potential of aqueous polyethylene glycol.
Steuter AA., Plant Physiol. 67(1), 1981
PMID: 16661635

Murray, Atmos. Chem. Phys. 8(), 2008

Hung, J. Phys. Chem. A 106(), 2002

Swanson, J. Atmos. Sci. 66(), 2009

Vali, J. Atmos. Sci. 33(), 1976

Sassen, J. Atmos. Sci. 45(), 1988

DeMott, J. Atmos. Sci. 51(), 1994

Baker, Geophys. Res. Lett. 31(), 2004

Miller, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 73(), 1982

Gehrken, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 112(), 1995

Gehrken, J. Insect Physiol. 35(), 1989

Gehrken, J. Insect Physiol. 38(), 1992
Enhancement of insect antifreeze protein activity by solutes of low molecular mass.
Li N, Andorfer CA, Duman JG., J. Exp. Biol. 201(Pt 15), 1998
PMID: 9662495
Salt-induced enhancement of antifreeze protein activity: a salting-out effect.
Kristiansen E, Pedersen SA, Zachariassen KE., Cryobiology 57(2), 2008
PMID: 18703038

Amornwittawat, Biochim. Biophys. Acta, Proteins Proteomics 1794(), 2009

Block, Philos. Trans. R. Soc. London, Ser. B 326(), 1990

Koop, Bull. Chem. Soc. Jpn. 75(), 2002

Murphy, Q. J. R. Meteorol. Soc. 131(), 2005

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19924318
PubMed | Europe PMC

Suchen in

Google Scholar