The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy

Nack M, Radu I, Bamann C, Bamberg E, Heberle J (2009)
FEBS LETTERS 583(22): 3676-3680.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Channelrhodopsin-2 mediates phototaxis in green algae by acting as a light-gated cation channel. As a result of this property, it is used as a novel optogenetic tool in neurophysiological applications. Structural information is still scant and we present here the first resonance Raman spectra of channelrhodopsin-2. Spectra of detergent solubilized and lipid-reconstituted protein were recorded under pre-resonant conditions to exclusively probe retinal in its electronic ground state. All-trans retinal was identified to be the favoured configuration of the chromophore but significant contributions of 13-cis were detected. Pre-illumination hardly changed the isomeric composition but small amounts of presumably 9-cis retinal were found in the light-adapted state. Spectral analysis suggested that the Schiff base proton is strongly hydrogen-bonded to a nearby water molecule. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Nack M, Radu I, Bamann C, Bamberg E, Heberle J. The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS LETTERS. 2009;583(22):3676-3680.
Nack, M., Radu, I., Bamann, C., Bamberg, E., & Heberle, J. (2009). The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS LETTERS, 583(22), 3676-3680.
Nack, M., Radu, I., Bamann, C., Bamberg, E., and Heberle, J. (2009). The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS LETTERS 583, 3676-3680.
Nack, M., et al., 2009. The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS LETTERS, 583(22), p 3676-3680.
M. Nack, et al., “The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy”, FEBS LETTERS, vol. 583, 2009, pp. 3676-3680.
Nack, M., Radu, I., Bamann, C., Bamberg, E., Heberle, J.: The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy. FEBS LETTERS. 583, 3676-3680 (2009).
Nack, Melanie, Radu, Ionela, Bamann, Christian, Bamberg, Ernst, and Heberle, Joachim. “The retinal structure of channelrhodopsin-2 assessed by resonance Raman spectroscopy”. FEBS LETTERS 583.22 (2009): 3676-3680.
This data publication is cited in the following publications:
This publication cites the following data publications:

20 Citations in Europe PMC

Data provided by Europe PubMed Central.

The primary photoreaction of channelrhodopsin-1: wavelength dependent photoreactions induced by ground-state heterogeneity.
Stensitzki T, Muders V, Schlesinger R, Heberle J, Heyne K., Front Mol Biosci 2(), 2015
PMID: 26258130
Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin.
Ritter E, Puskar L, Bartl FJ, Aziz EF, Hegemann P, Schade U., Front Mol Biosci 2(), 2015
PMID: 26217670
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy.
Becker-Baldus J, Bamann C, Saxena K, Gustmann H, Brown LJ, Brown RC, Reiter C, Bamberg E, Wachtveitl J, Schwalbe H, Glaubitz C., Proc. Natl. Acad. Sci. U.S.A. 112(32), 2015
PMID: 26216996
Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2.
Resler T, Schultz BJ, Lorenz-Fonfria VA, Schlesinger R, Heberle J., Biophys. J. 109(2), 2015
PMID: 26200864
Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae.
Ogren JI, Yi A, Mamaev S, Li H, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ., Biochemistry 54(2), 2015
PMID: 25469620
Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae.
Ogren JI, Mamaev S, Russano D, Li H, Spudich JL, Rothschild KJ., Biochemistry 53(24), 2014
PMID: 24869998
Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
Muders V, Kerruth S, Lorenz-Fonfria VA, Bamann C, Heberle J, Schlesinger R., FEBS Lett. 588(14), 2014
PMID: 24859039
Role of a helix B lysine residue in the photoactive site in channelrhodopsins.
Li H, Govorunova EG, Sineshchekov OA, Spudich JL., Biophys. J. 106(8), 2014
PMID: 24739160
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H., Chem. Rev. 114(1), 2014
PMID: 24364740
Channelrhodopsins: a bioinformatics perspective.
Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN., Biochim. Biophys. Acta 1837(5), 2014
PMID: 24252597
Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel.
Lorenz-Fonfria VA, Heberle J., Biochim. Biophys. Acta 1837(5), 2014
PMID: 24212055
Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL., J. Biol. Chem. 288(41), 2013
PMID: 23995841
Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating.
Lorenz-Fonfria VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J., Proc. Natl. Acad. Sci. U.S.A. 110(14), 2013
PMID: 23509282
Light-dark adaptation of channelrhodopsin C128T mutant.
Ritter E, Piwowarski P, Hegemann P, Bartl FJ., J. Biol. Chem. 288(15), 2013
PMID: 23439646
Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism.
Watanabe HC, Welke K, Sindhikara DJ, Hegemann P, Elstner M., J. Mol. Biol. 425(10), 2013
PMID: 23376098
Tuning the primary reaction of channelrhodopsin-2 by imidazole, pH, and site-specific mutations.
Scholz F, Bamberg E, Bamann C, Wachtveitl J., Biophys. J. 102(11), 2012
PMID: 22713581
Channelrhodopsin engineering and exploration of new optogenetic tools.
Hegemann P, Moglich A., Nat. Methods 8(1), 2011
PMID: 21191371
The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps.
Verhoefen MK, Bamann C, Blocher R, Forster U, Bamberg E, Wachtveitl J., Chemphyschem 11(14), 2010
PMID: 20730849
Evolution of the channelrhodopsin photocycle model.
Stehfest K, Hegemann P., Chemphyschem 11(6), 2010
PMID: 20349494
The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156.
Nack M, Radu I, Gossing M, Bamann C, Bamberg E, von Mollard GF, Heberle J., Photochem. Photobiol. Sci. 9(2), 2010
PMID: 20126794

33 References

Data provided by Europe PubMed Central.

Structure of the retinal chromophore in sensory rhodopsin I from resonance Raman spectroscopy.
Fodor SP, Gebhard R, Lugtenburg J, Bogomolni RA, Mathies RA., J. Biol. Chem. 264(31), 1989
PMID: 2808377
Role of water in bacteriorhodopsins chromophore – resonance Raman-study
Hildebrandt, Biochemistry 23(), 1984
Role of internal water molecules in bacteriorhodopsin.
Kandori H., Biochim. Biophys. Acta 1460(1), 2000
PMID: 10984599
The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin.
Miranda MR, Choi AR, Shi L, Bezerra AG Jr, Jung KH, Brown LS., Biophys. J. 96(4), 2009
PMID: 19217863
Resonance Raman spectroscopy of sensory rhodopsin II from Natronobacterium pharaonis.
Gellini C, Luttenberg B, Sydor J, Engelhard M, Hildebrandt P., FEBS Lett. 472(2-3), 2000
PMID: 10788623
Vibrational analysis of the all-trans retinal protonated Schiff base.
Smith SO, Myers AB, Mathies RA, Pardoen JA, Winkel C, van den Berg EM, Lugtenburg J., Biophys. J. 47(5), 1985
PMID: 4016185
Resonance Raman-study on binding of chloride to the chromophore of halorhodopsin
Maeda, Biochemistry 24(), 1985

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19854176
PubMed | Europe PMC

Search this title in

Google Scholar