Spiropyrans as molecular optical switches

Seefeldt B, Kasper R, Beining M, Mattay J, Arden-Jacob J, Kemnitzer N, Drexhage KH, Heilemann M, Sauer M (2010)
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 9(2): 213-220.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Abstract / Bemerkung
Optical microscopes use visible light and an arrangement of lenses to provide us with magnified images of small samples. Combined with efficient fluorescent probes and highly sensitive fluorescence detection techniques they allow the non-invasive 3D study of subcellular structures even in living cells or tissue. However, optical microscopes are subject to diffraction of light which limits optical resolution to approximately 200 nm in the imaging plane. In the recent past, powerful methods emerged that enable fluorescence microscopy with subdiffraction optical resolution. Since most of these methods are based on the temporal control of fluorescence emission of fluorophores, photochromic molecules that can be switched reversibly between a fluorescent on- and a non-fluorescent off-state are the key for super-resolution imaging methods. Here, we present our approach to use spiropyran-fluorophore conjugates as efficient molecular optical switches (photoswitches). In these photochromic conjugates fluorescence emission of the fluorophore is controlled by the state of the spiropyran, which can be switched reversibly between a colorless spiropyran and a colored merocyanine form upon irradiation with light. Thus, the efficiency of energy transfer from the fluorophore to the spiropyran can be modulated by the irradiation conditions. We present ensemble data of the switching process of various spiropyrans and spiropyran-fluorophore conjugates and demonstrate photoswitching at the single-molecule level. Our data suggest that spiropyrans have to be immobilized in polymers to stabilize the merocyanine form in order to be useful for super-resolution fluorescence imaging based on precise localization of individual emitters. Special emphasis is put on photobleaching of donor fluorophores due to UV irradiation, i.e. photoswitching of the photochromic acceptor. Furthermore, we present a water soluble switchable spiropyran derivative and demonstrate the first intermolecular single-molecule photoswitching experiments in polymers.
Erscheinungsjahr
Zeitschriftentitel
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
Band
9
Zeitschriftennummer
2
Seite
213-220
ISSN
eISSN
PUB-ID

Zitieren

Seefeldt B, Kasper R, Beining M, et al. Spiropyrans as molecular optical switches. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES. 2010;9(2):213-220.
Seefeldt, B., Kasper, R., Beining, M., Mattay, J., Arden-Jacob, J., Kemnitzer, N., Drexhage, K. H., et al. (2010). Spiropyrans as molecular optical switches. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 9(2), 213-220. doi:10.1039/b9pp00118b
Seefeldt, B., Kasper, R., Beining, M., Mattay, J., Arden-Jacob, J., Kemnitzer, N., Drexhage, K. H., Heilemann, M., and Sauer, M. (2010). Spiropyrans as molecular optical switches. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 9, 213-220.
Seefeldt, B., et al., 2010. Spiropyrans as molecular optical switches. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 9(2), p 213-220.
B. Seefeldt, et al., “Spiropyrans as molecular optical switches”, PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, vol. 9, 2010, pp. 213-220.
Seefeldt, B., Kasper, R., Beining, M., Mattay, J., Arden-Jacob, J., Kemnitzer, N., Drexhage, K.H., Heilemann, M., Sauer, M.: Spiropyrans as molecular optical switches. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES. 9, 213-220 (2010).
Seefeldt, Britta, Kasper, Robert, Beining, Mirco, Mattay, Jochen, Arden-Jacob, Jutta, Kemnitzer, Norbert, Drexhage, Karl Heinz, Heilemann, Mike, and Sauer, Markus. “Spiropyrans as molecular optical switches”. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 9.2 (2010): 213-220.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Photoswitchable phospholipid FRET acceptor: Detergent free intermembrane transfer assay of fluorescent lipid analogs.
Sumi M, Makino A, Inaba T, Sako Y, Fujimori F, Greimel P, Kobayashi T., Sci Rep 7(1), 2017
PMID: 28588242
Advanced carbon nanotubes functionalization.
Setaro A., J Phys Condens Matter 29(42), 2017
PMID: 28745302
A new photoactivatable near-infrared-emitting QCy7 fluorophore for single-molecule super-resolution microscopy.
Klötzner DP, Klehs K, Heilemann M, Heckel A., Chem Commun (Camb) 53(71), 2017
PMID: 28825088
Development of molecular photoswitch with very fast photoresponse based on asymmetrical bis-azospiropyran.
Nourmohammadian F, Abdi AA., Spectrochim Acta A Mol Biomol Spectrosc 153(), 2016
PMID: 26296250
Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP.
Gong WL, Yan J, Zhao LX, Li C, Huang ZL, Tang BZ, Zhu MQ., Photochem Photobiol Sci 15(11), 2016
PMID: 27739551
Photoisomerisation in Aminoazobenzene-Substituted Ruthenium(II) Tris(bipyridine) Complexes: Influence of the Conjugation Pathway.
Amar A, Savel P, Akdas-Kilig H, Katan C, Meghezzi H, Boucekkine A, Malval JP, Fillaut JL., Chemistry 21(22), 2015
PMID: 25846371
High-contrast fluorescence imaging in fixed and living cells using optimized optical switches.
Wu L, Dai Y, Jiang X, Petchprayoon C, Lee JE, Jiang T, Yan Y, Marriott G., PLoS One 8(6), 2013
PMID: 23755140
Synthesis and characterization of photoswitchable fluorescent SiO2 nanoparticles.
May F, Peter M, Hütten A, Prodi L, Mattay J., Chemistry 18(3), 2012
PMID: 22213584
Molecular strategies to read and write at the nanoscale with far-field optics.
Cusido J, Impellizzeri S, Raymo FM., Nanoscale 3(1), 2011
PMID: 20936237
Kinetic studies on visible-light-switchable photochromic fluorophores based on diarylethenes.
Seefeldt B, Altenhöner K, Tosic O, Geisler T, Sauer M, Mattay J., Photochem Photobiol Sci 10(9), 2011
PMID: 21603721

48 References

Daten bereitgestellt von Europe PubMed Central.


Abbe, Arch. Mikrosk. Anat. 9(), 1873
Far-field optical nanoscopy.
Hell SW., Science 316(5828), 2007
PMID: 17525330
Advances in the speed and resolution of light microscopy.
Ji N, Shroff H, Zhong H, Betzig E., Curr. Opin. Neurobiol. 18(6), 2008
PMID: 19375302

Heilemann, Laser & Photonics Rev. 3(), 2009
Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW., Proc. Natl. Acad. Sci. U.S.A. 97(15), 2000
PMID: 10899992
A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants.
Flors C, Hotta J, Uji-i H, Dedecker P, Ando R, Mizuno H, Miyawaki A, Hofkens J., J. Am. Chem. Soc. 129(45), 2007
PMID: 17956094
Imaging intracellular fluorescent proteins at nanometer resolution.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF., Science 313(5793), 2006
PMID: 16902090
Ultra-high resolution imaging by fluorescence photoactivation localization microscopy.
Hess ST, Girirajan TP, Mason MD., Biophys. J. 91(11), 2006
PMID: 16980368
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
Rust MJ, Bates M, Zhuang X., Nat. Methods 3(10), 2006
PMID: 16896339
Fluorescence nanoscopy by ground-state depletion and single-molecule return.
Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW., Nat. Methods 5(11), 2008
PMID: 18794861

Heilemann, Angew. Chem., Int. Ed. 47(), 2008
Superresolution microscopy on the basis of engineered dark states.
Steinhauer C, Forthmann C, Vogelsang J, Tinnefeld P., J. Am. Chem. Soc. 130(50), 2008
PMID: 19053449

van, Appl. Phys. B: Lasers Opt. 93(), 2008
Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy.
Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P., Proc. Natl. Acad. Sci. U.S.A. 106(20), 2009
PMID: 19433792
Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging.
van de Linde S, Endesfelder U, Mukherjee A, Schuttpelz M, Wiebusch G, Wolter S, Heilemann M, Sauer M., Photochem. Photobiol. Sci. 8(4), 2009
PMID: 19337659
Real-time computation of subdiffraction-resolution fluorescence images.
Wolter S, Schuttpelz M, Tscherepanow M, VAN DE Linde S, Heilemann M, Sauer M., J Microsc 237(1), 2010
PMID: 20055915

Heilemann, Angew. Chem., Int. Ed. 48(), 2009
Precise nanometer localization analysis for individual fluorescent probes.
Thompson RE, Larson DR, Webb WW., Biophys. J. 82(5), 2002
PMID: 11964263
Kinesin walks hand-over-hand.
Yildiz A, Tomishige M, Vale RD, Selvin PR., Science 303(5658), 2003
PMID: 14684828
Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting.
Ando R, Mizuno H, Miyawaki A., Science 306(5700), 2004
PMID: 15550670
Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa.
Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J., Proc. Natl. Acad. Sci. U.S.A. 102(27), 2005
PMID: 15972810
A photoactivatable GFP for selective photolabeling of proteins and cells.
Patterson GH, Lippincott-Schwartz J., Science 297(5588), 2002
PMID: 12228718
EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion.
Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU., Proc. Natl. Acad. Sci. U.S.A. 101(45), 2004
PMID: 15505211
Innovation: Photoactivatable fluorescent proteins.
Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV., Nat. Rev. Mol. Cell Biol. 6(11), 2005
PMID: 16167053
Spiropyrans and Spirooxazines for Memories and Switches.
Berkovic G, Krongauz V, Weiss V., Chem. Rev. 100(5), 2000
PMID: 11777418
Diarylethenes for Memories and Switches.
Irie M., Chem. Rev. 100(5), 2000
PMID: 11777416
Fulgides for Memories and Switches.
Yokoyama Y., Chem. Rev. 100(5), 2000
PMID: 11777417
Organic chemistry: a digital fluorescent molecular photoswitch.
Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T., Nature 420(6917), 2002
PMID: 12490936
Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level.
Fukaminato T, Sasaki T, Kawai T, Tamai N, Irie M., J. Am. Chem. Soc. 126(45), 2004
PMID: 15535710

Sheng, Nanotechnology 18(), 2007

Yamamoto, Angew. Chem., Int. Ed. 42(), 2003
Photochromism of diarylethene single molecules in polymer matrices.
Fukaminato T, Umemoto T, Iwata Y, Yokojima S, Yoneyama M, Nakamura S, Irie M., J. Am. Chem. Soc. 129(18), 2007
PMID: 17432858

Yan, Eur. J. Org.Chem. (), 2008

Duerr, Angew. Chem. 116(), 2004

Menju, Macromolecules 14(), 1981

Minami, J. Phys. Chem. 95(), 1991
Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad.
Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA, Gust D., J. Am. Chem. Soc. 123(29), 2001
PMID: 11459493
Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence.
Zhu MQ, Zhu L, Han JJ, Wu W, Hurst JK, Li AD., J. Am. Chem. Soc. 128(13), 2006
PMID: 16569006
Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging.
Zhu L, Wu W, Zhu MQ, Han JJ, Hurst JK, Li AD., J. Am. Chem. Soc. 129(12), 2007
PMID: 17335209

Bossi, Angew. Chem., Int. Ed. 45(), 2006
Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.
Folling J, Polyakova S, Belov V, van Blaaderen A, Bossi ML, Hell SW., Small 4(1), 2008
PMID: 18064615

Dvornikov, Mol. Cryst. Liq. Cryst. 246(), 1994
Carbocyanine dyes as efficient reversible single-molecule optical switch.
Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P., J. Am. Chem. Soc. 127(11), 2005
PMID: 15771514
Single-molecule photophysics of oxazines on DNA and its application in a FRET switch.
Vogelsang J, Cordes T, Tinnefeld P., Photochem. Photobiol. Sci. 8(4), 2009
PMID: 19337662

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20126797
PubMed | Europe PMC

Suchen in

Google Scholar