Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains

Daidone I, Neuweiler H, Doose S, Sauer M, Smith JC (2010)
PLOS COMPUTATIONAL BIOLOGY 6(1): e1000645.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Daidone I, Neuweiler H, Doose S, Sauer M, Smith JC. Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY. 2010;6(1): e1000645.
Daidone, I., Neuweiler, H., Doose, S., Sauer, M., & Smith, J. C. (2010). Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY, 6(1): e1000645.
Daidone, I., Neuweiler, H., Doose, S., Sauer, M., and Smith, J. C. (2010). Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY 6:e1000645.
Daidone, I., et al., 2010. Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY, 6(1): e1000645.
I. Daidone, et al., “Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains”, PLOS COMPUTATIONAL BIOLOGY, vol. 6, 2010, : e1000645.
Daidone, I., Neuweiler, H., Doose, S., Sauer, M., Smith, J.C.: Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains. PLOS COMPUTATIONAL BIOLOGY. 6, : e1000645 (2010).
Daidone, Isabella, Neuweiler, Hannes, Doose, Soeren, Sauer, Markus, and Smith, Jeremy C. “Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains”. PLOS COMPUTATIONAL BIOLOGY 6.1 (2010): e1000645.
This data publication is cited in the following publications:
This publication cites the following data publications:

11 Citations in Europe PMC

Data provided by Europe PubMed Central.

β-Structure within the Denatured State of the Helical Protein Domain BBL.
Thukral L, Schwarze S, Daidone I, Neuweiler H., J. Mol. Biol. 427(19), 2015
PMID: 26281710
Force field-dependent solution properties of glycine oligomers.
Drake JA, Pettitt BM., J Comput Chem 36(17), 2015
PMID: 25952623
The roughness of the protein energy landscape results in anomalous diffusion of the polypeptide backbone.
Volk M, Milanesi L, Waltho JP, Hunter CA, Beddard GS., Phys Chem Chem Phys 17(2), 2015
PMID: 25412176
Identification of slow molecular order parameters for Markov model construction.
Perez-Hernandez G, Paul F, Giorgino T, De Fabritiis G, Noe F., J Chem Phys 139(1), 2013
PMID: 23822324
Polypeptide chain collapse and protein folding.
Udgaonkar JB., Arch. Biochem. Biophys. 531(1-2), 2013
PMID: 23085151
Dimer formation of organic fluorophores reports on biomolecular dynamics under denaturing conditions.
Bollmann S, Lollmann M, Sauer M, Doose S., Phys Chem Chem Phys 13(28), 2011
PMID: 21687885
Backbone-driven collapse in unfolded protein chains.
Teufel DP, Johnson CM, Lum JK, Neuweiler H., J. Mol. Biol. 409(2), 2011
PMID: 21497607

70 References

Data provided by Europe PubMed Central.

Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding.
Daidone I, Ulmschneider MB, Di Nola A, Amadei A, Smith JC., Proc. Natl. Acad. Sci. U.S.A. 104(39), 2007
PMID: 17881585

Flory JP., 1989
Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation.
Vaiana AC, Neuweiler H, Schulz A, Wolfrum J, Sauer M, Smith JC., J. Am. Chem. Soc. 125(47), 2003
PMID: 14624606
Diffusion-controlled intrachain reactions of polymers. II Results for a pair of terminal reactive groups.
Wilemski G, Fixman M., 1974
Effect of environment on hydrogen bond dynamics in liquid water.
Luzar A, Chandler D., Phys. Rev. Lett. 76(6), 1996
PMID: 10061587
Polyproline II structure in a sequence of seven alanine residues.
Shi Z, Olson CA, Rose GD, Baldwin RL, Kallenbach NR., Proc. Natl. Acad. Sci. U.S.A. 99(14), 2002
PMID: 12091708
Amino and carboxy-terminal regions in globular proteins.
Thornton JM, Sibanda BL., J. Mol. Biol. 167(2), 1983
PMID: 6864804
Implications of N and C-terminal proximity for protein folding.
Christopher JA, Baldwin TO., J. Mol. Biol. 257(1), 1996
PMID: 8632453
The N-terminal to C-terminal motif in protein folding and function.
Krishna MM, Englander SW., Proc. Natl. Acad. Sci. U.S.A. 102(4), 2005
PMID: 15657118
Random-coil behavior and the dimensions of chemically unfolded proteins.
Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM, Cingel N, Dothager RS, Seifert S, Thiyagarajan P, Sosnick TR, Hasan MZ, Pande VS, Ruczinski I, Doniach S, Plaxco KW., Proc. Natl. Acad. Sci. U.S.A. 101(34), 2004
PMID: 15314214
GROningen MAchine for Chemical Simulation.
van D, van R, Berendsen HJC., 1994

van WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P., 1996
The missing term in effective pair potentials.
Berendsen HJC, Grigera JR, Straatsma TP., 1987
A comparison of constant energy, constant temperature, and constant pressure ensembles in molecular dynamics simulations of atomic liquids.
Brown D, Clarke JHR., 1984
Lincs: A linear constraint solver for molecular simulations.
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM., 1997
Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems.
Darden T, York D, Pedersen L., 1993
Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides.
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL., 2001
Picosecond dynamics of tyrosine side chains in proteins.
McCammon JA, Wolynes PG, Karplus M., Biochemistry 18(6), 1979
PMID: 427100

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20098498
PubMed | Europe PMC

Search this title in

Google Scholar