Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning

Twellmann T, Meyer-Baese A, Lange O, Foo S, Nattkemper TW (2008)
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 21(2): 129-140.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent art important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems Lire expected to have substantial implications in healthcare politics by contributing to the diagnosis of by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. (c) 2007 Elsevier Ltd. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Band
21
Zeitschriftennummer
2
Seite
129-140
ISSN
PUB-ID

Zitieren

Twellmann T, Meyer-Baese A, Lange O, Foo S, Nattkemper TW. Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE. 2008;21(2):129-140.
Twellmann, T., Meyer-Baese, A., Lange, O., Foo, S., & Nattkemper, T. W. (2008). Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 21(2), 129-140. doi:10.1016/j.engappai.2007.04.005
Twellmann, T., Meyer-Baese, A., Lange, O., Foo, S., and Nattkemper, T. W. (2008). Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 21, 129-140.
Twellmann, T., et al., 2008. Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 21(2), p 129-140.
T. Twellmann, et al., “Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning”, ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, vol. 21, 2008, pp. 129-140.
Twellmann, T., Meyer-Baese, A., Lange, O., Foo, S., Nattkemper, T.W.: Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE. 21, 129-140 (2008).
Twellmann, Thorsten, Meyer-Baese, Anke, Lange, Oliver, Foo, Simon, and Nattkemper, Tim Wilhelm. “Model-free visualization of suspicious lesions in breast MRI based on supervised and unsupervised learning”. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 21.2 (2008): 129-140.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Appearance Constrained Semi-Automatic Segmentation from DCE-MRI is Reproducible and Feasible for Breast Cancer Radiomics: A Feasibility Study.
Veeraraghavan H, Dashevsky BZ, Onishi N, Sadinski M, Morris E, Deasy JO, Sutton EJ., Sci Rep 8(1), 2018
PMID: 29556054
Tensor based multichannel reconstruction for breast tumours identification from DCE-MRIs.
Yin XX, Hadjiloucas S, Chen JH, Zhang Y, Wu JL, Su MY., PLoS One 12(3), 2017
PMID: 28282379
Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.
Agner SC, Soman S, Libfeld E, McDonald M, Thomas K, Englander S, Rosen MA, Chin D, Nosher J, Madabhushi A., J Digit Imaging 24(3), 2011
PMID: 20508965

27 References

Daten bereitgestellt von Europe PubMed Central.

Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges.
Collins DJ, Padhani AR., IEEE Eng Med Biol Mag 23(5), 2004
PMID: 15565801

Cristiani, 2000
Signal characteristics of malignant and benign lesions in dynamic 2D-MRI of the breast
Fischer, RoeFo 158(), 1993
MR imaging of the breast with Gd-DTPA: use and limitations.
Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W., Radiology 171(1), 1989
PMID: 2648479
Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography.
Hoffmann U, Brix G, Knopp MV, Hess T, Lorenz WJ., Magn Reson Med 33(4), 1995
PMID: 7776881
Clinical testing of high-spatial-resolution parametric contrast-enhanced MR imaging of the breast.
Kelcz F, Furman-Haran E, Grobgeld D, Degani H., AJR Am J Roentgenol 179(6), 2002
PMID: 12438042
Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?
Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild HH., Radiology 211(1), 1999
PMID: 10189459
Classification of signal-time curves from dynamic MR mammography by neural networks.
Lucht RE, Knopp MV, Brix G., Magn Reson Imaging 19(1), 2001
PMID: 11295347
Neural network-based segmentation of dynamic (MR) mammography images
Lucht, Magnetic Resonance Imaging 20(8), 2002

Meyer-Bäse, 2003

AUTHOR UNKNOWN, 0
Vector quantization by deterministic annealing
Rose, IEEE Transactions on Information Theory 38(3), 1992
Interactive detection and visualization of breast lesions from dynamic contrast enhanced MRI volumes.
Subramanian KR, Brockway JP, Carruthers WB., Comput Med Imaging Graph 28(8), 2004
PMID: 15541950
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.
Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM., J Magn Reson Imaging 10(3), 1999
PMID: 10508281
Feature extraction and classification of dynamic contrast-enhanced T2*-weighted breast image data.
Torheim G, Godtliebsen F, Axelson D, Kvistad KA, Haraldseth O, Rinck PA., IEEE Trans Med Imaging 20(12), 2001
PMID: 11811829
Image fusion for dynamic contrast-enhanced magnetic resonance imaging
Twellmann, BMC BioMedical Engineering OnLine 3(35), 2004

AUTHOR UNKNOWN, 0

Vapnik, 1995
Breast fibroadenoma: mapping of pathophysiologic features with three-time-point, contrast-enhanced MR imaging--pilot study.
Weinstein D, Strano S, Cohen P, Fields S, Gomori JM, Degani H., Radiology 210(1), 1999
PMID: 9885614
Cluster analysis of biomedical image time-series
Wismüller, International Journal on Computer Vision 46(2), 2002
Segmentation and classification of dynamic breast magnetic resonance image data
Wismüller, Journal of Electronic Imaging 15(1), 2006
Magnetic resonance imaging of the breast
Yousef, Radiology 150(2), 1984

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 19255616
PubMed | Europe PMC

Suchen in

Google Scholar