Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment

Evstigneev M, Zvyagolskaya O, Bleil S, Eichhorn R, Bechinger C, Reimann P (2008)
PHYSICAL REVIEW E 77(4).

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
We investigate the diffusion of a colloidal particle in a tilted periodic potential created by means of ten rotating optical tweezers arranged on a circle. Because of the viscous drag, the trap rotation leads to the onset of a tilting force in the corotating reference frame, so that in that frame the system can be described as an overdamped Brownian particle in a tilted periodic potential. The excellent agreement of the velocity and diffusion coefficient as a function of rotating frequency with theoretical predictions allowed us to extract the main parameters characterizing the system-the coefficient of free thermal diffusion and the potential corrugation depth-from the experimental results.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Evstigneev M, Zvyagolskaya O, Bleil S, Eichhorn R, Bechinger C, Reimann P. Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment. PHYSICAL REVIEW E. 2008;77(4).
Evstigneev, M., Zvyagolskaya, O., Bleil, S., Eichhorn, R., Bechinger, C., & Reimann, P. (2008). Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment. PHYSICAL REVIEW E, 77(4).
Evstigneev, M., Zvyagolskaya, O., Bleil, S., Eichhorn, R., Bechinger, C., and Reimann, P. (2008). Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment. PHYSICAL REVIEW E 77.
Evstigneev, M., et al., 2008. Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment. PHYSICAL REVIEW E, 77(4).
M. Evstigneev, et al., “Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment”, PHYSICAL REVIEW E, vol. 77, 2008.
Evstigneev, M., Zvyagolskaya, O., Bleil, S., Eichhorn, R., Bechinger, C., Reimann, P.: Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment. PHYSICAL REVIEW E. 77, (2008).
Evstigneev, Mykhaylo, Zvyagolskaya, Olga, Bleil, Stefan, Eichhorn, Ralf, Bechinger, Clemens, and Reimann, Peter. “Diffusion of colloidal particles in a tilted periodic potential: Theory versus experiment”. PHYSICAL REVIEW E 77.4 (2008).
This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths.
Gapinski J, Nagele G, Patkowski A., J Chem Phys 141(12), 2014
PMID: 25273449
Force mapping of an extended light pattern in an inclined plane: deterministic regime.
Arzola AV, Volke-Sepulveda K, Mateos JL., Opt Express 17(5), 2009
PMID: 19259181

19 References

Data provided by Europe PubMed Central.


happel, 1965

risken, 1989
Direct measurement of tube wall effect on the Stokes force
Ambari, Physics of Fluids 28(5), 1985
Giant acceleration of free diffusion by use of tilted periodic potentials.
Reimann P, Van den Broeck C, Linke H, Hanggi P, Rubi JM, Perez-Madrid A., Phys. Rev. Lett. 87(1), 2001
PMID: 11461454
Diffusion in tilted periodic potentials: Enhancement, universality, and scaling.
Reimann P, Van den Broeck C, Linke H, Hanggi P, Rubi JM, Perez-Madrid A., Phys Rev E Stat Nonlin Soft Matter Phys 65(3 Pt 1), 2002
PMID: 11909026
Periodic forcing of a Brownian particle.
Faucheux LP, Stolovitzky G, Libchaber A., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(6), 1995
PMID: 9963256
Direct measurements of constrained brownian motion of an isolated sphere between two walls
Lin B, Yu J, Rice SA., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62(3 Pt B), 2000
PMID: 11088911
Like-charge attraction and hydrodynamic interaction
Squires TM, Brenner MP., Phys. Rev. Lett. 85(23), 2000
PMID: 11102165
Accurate measurements of the viscosity of water in the temperature range 19.5–25.5°C
BERSTAD, Physica A Statistical and Theoretical Physics 151(2-3), 1988
Threshold diffusion in a tilted washboard potential
Costantini, EPL (Europhysics Letters) 48(5), 1999
Stochastic resonance in colloidal systems
Babič, EPL (Europhysics Letters) 67(2), 2004
On the Self-Diffusion of Ions in a Polyelectrolyte Solution
Lifson, The Journal of Chemical Physics 36(9), 1962
Noise-enhanced performance of ratchet cellular automata.
Babic D, Bechinger C., Phys. Rev. Lett. 94(14), 2005
PMID: 15904122
Entropic transport: kinetics, scaling, and control mechanisms.
Reguera D, Schmid G, Burada PS, Rubi JM, Reimann P, Hanggi P., Phys. Rev. Lett. 96(13), 2006
PMID: 16711977
Giant colloidal diffusivity on corrugated optical vortices.
Lee SH, Grier DG., Phys. Rev. Lett. 96(19), 2006
PMID: 16803093
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
Einstein, Annalen der Physik 322(8), 1905
Characterizing potentials by a generalized Boltzmann factor.
Blickle V, Speck T, Seifert U, Bechinger C., Phys Rev E Stat Nonlin Soft Matter Phys 75(6 Pt 1), 2007
PMID: 17677202
Single-file diffusion of interacting particles in a one-dimensional channel
Nelissen, EPL (Europhysics Letters) 80(5), 2007
Dimer diffusion in a washboard potential.
Heinsalu E, Patriarca M, Marchesoni F., Phys Rev E Stat Nonlin Soft Matter Phys 77(2 Pt 1), 2008
PMID: 18352009

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18517578
PubMed | Europe PMC

Search this title in

Google Scholar