Redox signal integration: from stimulus to networks and genes

Dietz K-J (2008)

Journal Article | Published | English

No fulltext has been uploaded

Recent research has established redox-dependent thiol modification of proteins as a major regulatory layer superimposed on most cell functional categories in plants. Modern proteomics and forward as well as reverse genetics approaches have enabled the identification of a high number of novel targets of redox regulation. Redox-controlled processes range from metabolism to transport, transcription and translation. Gene activity regulation by transcription factors such as TGA, Athb-9 and RAP2 directly or indirectly is controlled by the redox state. Knowledge on putative redox sensors such as the peroxiredoxins, on redox transmitters including thioredoxins and glutaredoxins and biochemical mechanisms of their linkage to the metabolic redox environment has emerged as the framework of a functional redox regulatory network. Its basic principle is similar in eukaryotic cells and particularly complex in the photosynthesizing chloroplast. Methods and knowledge are now at hand to develop a quantitative understanding of redox signalling and the redox regulatory network in the eukaryotic cell.
Publishing Year

Cite this

Dietz K-J. Redox signal integration: from stimulus to networks and genes. PHYSIOLOGIA PLANTARUM. 2008;133(3):459-468.
Dietz, K. - J. (2008). Redox signal integration: from stimulus to networks and genes. PHYSIOLOGIA PLANTARUM, 133(3), 459-468.
Dietz, K. - J. (2008). Redox signal integration: from stimulus to networks and genes. PHYSIOLOGIA PLANTARUM 133, 459-468.
Dietz, K.-J., 2008. Redox signal integration: from stimulus to networks and genes. PHYSIOLOGIA PLANTARUM, 133(3), p 459-468.
K.-J. Dietz, “Redox signal integration: from stimulus to networks and genes”, PHYSIOLOGIA PLANTARUM, vol. 133, 2008, pp. 459-468.
Dietz, K.-J.: Redox signal integration: from stimulus to networks and genes. PHYSIOLOGIA PLANTARUM. 133, 459-468 (2008).
Dietz, Karl-Josef. “Redox signal integration: from stimulus to networks and genes”. PHYSIOLOGIA PLANTARUM 133.3 (2008): 459-468.
This data publication is cited in the following publications:
This publication cites the following data publications:

21 Citations in Europe PMC

Data provided by Europe PubMed Central.

Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms.
van Creveld SG, Rosenwasser S, Schatz D, Koren I, Vardi A., ISME J 9(2), 2015
PMID: 25083933
Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light.
Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J., Proc. Natl. Acad. Sci. U.S.A. 110(35), 2013
PMID: 23918368
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
Konig J, Galliardt H, Jutte P, Schaper S, Dittmann L, Dietz KJ., J. Exp. Bot. 64(11), 2013
PMID: 23828546
Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation.
Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Huner NP., Int J Mol Sci 14(6), 2013
PMID: 23778089
Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana.
Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire SD, Trost P., J. Biol. Chem. 288(31), 2013
PMID: 23749990
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus.
Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Chen ZX, Yu JQ., J Zhejiang Univ Sci B 13(10), 2012
PMID: 23024048
ROS homeostasis during development: an evolutionary conserved strategy.
Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B., Cell. Mol. Life Sci. 69(19), 2012
PMID: 22842779
The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses.
Schwarzlander M, Konig AC, Sweetlove LJ, Finkemeier I., J. Exp. Bot. 63(4), 2012
PMID: 22131156
Organelles contribute differentially to reactive oxygen species-related events during extended darkness.
Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H., Plant Physiol. 156(1), 2011
PMID: 21372201
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development.
Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR., Plant Physiol. 154(3), 2010
PMID: 20805327
Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7.
Jambunathan N, Penaganti A, Tang Y, Mahalingam R., BMC Plant Biol. 10(), 2010
PMID: 20704736
A novel extended family of stromal thioredoxins.
Cain P, Hall M, Schroder WP, Kieselbach T, Robinson C., Plant Mol. Biol. 70(3), 2009
PMID: 19259774

70 References

Data provided by Europe PubMed Central.

Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore.
Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E, Lemaire SD., Photosyn. Res. 89(2-3), 2006
PMID: 17089213
The mitochondrial type II peroxiredoxin from poplar
Gama F, Keech O, Eymery F, Finkemeier I, Gelhaye E, Gardestrom P, Dietz KJ, Rey P, Jacquot JP, Rouhier N., Physiol Plant 129(1), 2007
PMID: IND43860515
Redox regulation and antioxidative defence in Arabidopsis leaves viewed from a systems biology perspective.
Wormuth D, Heiber I, Shaikali J, Kandlbinder A, Baier M, Dietz KJ., J. Biotechnol. 129(2), 2007
PMID: 17207878
Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.
Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K., Proc. Natl. Acad. Sci. U.S.A. 104(2), 2007
PMID: 17197417
Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin.
Caporaletti D, D'Alessio AC, Rodriguez-Suarez RJ, Senn AM, Duek PD, Wolosiuk RA., Biochem. Biophys. Res. Commun. 355(3), 2007
PMID: 17307139
Mitochondrial redox biology and homeostasis in plants.
Noctor G, De Paepe R, Foyer CH., Trends Plant Sci. 12(3), 2007
PMID: 17293156
SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription.
Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C., Plant J. 50(1), 2007
PMID: 17397508
Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: insights into redox-driven conformational changes.
Koh CS, Didierjean C, Navrot N, Panjikar S, Mulliert G, Rouhier N, Jacquot JP, Aubry A, Shawkataly O, Corbier C., J. Mol. Biol. 370(3), 2007
PMID: 17531267
Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe-2S] cluster in poplar glutaredoxin C1.
Rouhier N, Unno H, Bandyopadhyay S, Masip L, Kim SK, Hirasawa M, Gualberto JM, Lattard V, Kusunoki M, Knaff DB, Georgiou G, Hase T, Johnson MK, Jacquot JP., Proc. Natl. Acad. Sci. U.S.A. 104(18), 2007
PMID: 17460036
S-glutathionylation in protein redox regulation.
Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A., Free Radic. Biol. Med. 43(6), 2007
PMID: 17697933
Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R., Plant J. 52(5), 2007
PMID: 17892447
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
TIC62 redox-regulated translocon composition and dynamics.
Stengel A, Benz P, Balsera M, Soll J, Bolter B., J. Biol. Chem. 283(11), 2008
PMID: 18180301
The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes.
Shaikhali J, Heiber I, Seidel T, Stroher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M., BMC Plant Biol. 8(), 2008
PMID: 18439303


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 18429942
PubMed | Europe PMC

Search this title in

Google Scholar