Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin

Barranco-Medina S, Kakorin S, Lazaro JJ, Dietz K-J (2008)
BIOCHEMISTRY 47(27): 7196-7204.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Abstract
Isothermal titration calorimetry (ITC) is a powerful technique for investigating self-association processes of protein complexes and was expected to reveal quantitative data on., peroxiredoxin oligomerization by directly measuring the thermodynamic parameters of dimer-dimer interaction. Recombinant classical 2-cysteine peroxoredoxins from Homo sapiens, Arabidopsis thaliana, and Pisum sativum as well as a carboxy-terminally truncated variant were subjected to ITC analysis by stepwise injection into the reaction vessel under various redox conditions. The direct measurement of the decamer-dimer equilibrium of reduced peroxiredoxin revealed a critical concentration in the very low micromolar range. The data suggest a cooperative assembly above this critical transition concentration where a nucleus facilitates assembly. The rather abrupt transition indicates that assembly processes do not occur below the critical transition concentration while oligomerization is efficiently triggered above it. The magnitude of the measured enthalpy confirmed the endothermic nature of the peroxiredoxin oligomerization. Heterocomplexes between peroxiredoxin polypeptides from different species were not formed. We conclude that a functional constraint conserved the dimer-decamer transition with highly similar critical transition concentrations despite emerging sequence variation during evolution.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Barranco-Medina S, Kakorin S, Lazaro JJ, Dietz K-J. Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY. 2008;47(27):7196-7204.
Barranco-Medina, S., Kakorin, S., Lazaro, J. J., & Dietz, K. - J. (2008). Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY, 47(27), 7196-7204. doi:10.1021/bi8002956
Barranco-Medina, S., Kakorin, S., Lazaro, J. J., and Dietz, K. - J. (2008). Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY 47, 7196-7204.
Barranco-Medina, S., et al., 2008. Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY, 47(27), p 7196-7204.
S. Barranco-Medina, et al., “Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin”, BIOCHEMISTRY, vol. 47, 2008, pp. 7196-7204.
Barranco-Medina, S., Kakorin, S., Lazaro, J.J., Dietz, K.-J.: Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. BIOCHEMISTRY. 47, 7196-7204 (2008).
Barranco-Medina, Sergio, Kakorin, Sergej, Lazaro, Juan Jose, and Dietz, Karl-Josef. “Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin”. BIOCHEMISTRY 47.27 (2008): 7196-7204.
This data publication is cited in the following publications:
This publication cites the following data publications:

29 Citations in Europe PMC

Data provided by Europe PubMed Central.

Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS., Antioxid. Redox Signal. 28(7), 2018
PMID: 28762774
Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.
Nelson KJ, Perkins A, Van Swearingen AED, Hartman S, Brereton AE, Parsonage D, Salsbury FR Jr., Karplus PA, Poole LB., Antioxid. Redox Signal. 28(7), 2018
PMID: 28375740
Alteration of molecular assembly of peroxiredoxins from hyperthermophilic archaea.
Nakamura T, Oshima M, Yasuda M, Shimamura A, Morita J, Uegaki K., J. Biochem. 162(6), 2017
PMID: 28992240
Calcium and magnesium ions modulate the oligomeric state and function of mitochondrial 2-Cys peroxiredoxins in Leishmania parasites.
Morais MAB, Giuseppe PO, Souza TACB, Castro H, Honorato RV, Oliveira PSL, Netto LES, Tomas AM, Murakami MT., J. Biol. Chem. 292(17), 2017
PMID: 28292930

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18553980
PubMed | Europe PMC

Search this title in

Google Scholar