Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy

Schüttpelz M, Schöning JC, Doose S, Neuweiler H, Peters E, Staiger D, Sauer M (2008)
Journal of the American Chemical Society 130(29): 9507-9513.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
The clock-regulated RNA recognition motif (RRM)-containing protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences the amplitude of its transcript oscillation at the post-transcriptional level. This autoregulation relies on AtGRP7 binding to its own pre-mRNA. The sequence and structural requirements for this interaction are unknown at present. In this work, we used photoinduced electron transfer fluorescence correlation spectroscopy (PET-FCS) as a novel technique to study the role of target RNA secondary structure and conformational dynamics during the recognition and binding process. Conformational dynamics of single-stranded (ss) oligonucleotides were studied in aqueous solution with single-molecule sensitivity and high temporal resolution by monitoring fluorescence quenching of the oxazine fluorophore MR121 by guanosine residues. Comparative analysis of translational diffusion constants revealed that both ssRNA and ssDNA bind to AtGRP7 with similar dissociation constants on the order of 10(-7) M and that a minimal binding sequence 5'-UUC UGG-3' is needed for recognition by AtGRP7. PET-FCS experiments demonstrated that conformational flexibility of short, single-stranded, MR121-labeled oligonucleotides is reduced upon AtGRP7 binding. In contrast to many other RRM proteins, AtGRP7 binds to ssRNA preferentially if the RNA is fully stretched and not embedded within a stable secondary structure. The results suggest that AtGRP7 binding leads to a conformational rearrangement in the mRNA, arresting the flexible target sequence in an extended structure of reduced flexibility that may have consequences for further post-transcriptional processing of the mRNA.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Schüttpelz M, Schöning JC, Doose S, et al. Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. Journal of the American Chemical Society. 2008;130(29):9507-9513.
Schüttpelz, M., Schöning, J. C., Doose, S., Neuweiler, H., Peters, E., Staiger, D., & Sauer, M. (2008). Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. Journal of the American Chemical Society, 130(29), 9507-9513. doi:10.1021/ja801994z
Schüttpelz, M., Schöning, J. C., Doose, S., Neuweiler, H., Peters, E., Staiger, D., and Sauer, M. (2008). Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. Journal of the American Chemical Society 130, 9507-9513.
Schüttpelz, M., et al., 2008. Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. Journal of the American Chemical Society, 130(29), p 9507-9513.
M. Schüttpelz, et al., “Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy”, Journal of the American Chemical Society, vol. 130, 2008, pp. 9507-9513.
Schüttpelz, M., Schöning, J.C., Doose, S., Neuweiler, H., Peters, E., Staiger, D., Sauer, M.: Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. Journal of the American Chemical Society. 130, 9507-9513 (2008).
Schüttpelz, Mark, Schöning, Jan C., Doose, Sören, Neuweiler, Hannes, Peters, Elisabeth, Staiger, Dorothee, and Sauer, Markus. “Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy”. Journal of the American Chemical Society 130.29 (2008): 9507-9513.
This data publication is cited in the following publications:
This publication cites the following data publications:

27 Citations in Europe PMC

Data provided by Europe PubMed Central.

Functional diversity of the plant glycine-rich proteins superfamily.
Mangeon A, Junqueira RM, Sachetto-Martins G., Plant Signal Behav 5(2), 2010
PMID: 20009520

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18576621
PubMed | Europe PMC

Search this title in

Google Scholar