Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o

Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lazaro J-J, Dietz K-J (2008)
JOURNAL OF EXPERIMENTAL BOTANY 59(12): 3259-3269.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a K-D of 126 +/- 14 pM. Binding was driven by a favourable enthalpy change (Delta H= -60.6 kcal mol(-1)) which was counterbalanced by unfavourable entropy changes (T Delta S = -47.1 kcal mol(-1)). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein-protein interaction and function.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lazaro J-J, Dietz K-J. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. JOURNAL OF EXPERIMENTAL BOTANY. 2008;59(12):3259-3269.
Barranco-Medina, S., Krell, T., Bernier-Villamor, L., Sevilla, F., Lazaro, J. - J., & Dietz, K. - J. (2008). Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. JOURNAL OF EXPERIMENTAL BOTANY, 59(12), 3259-3269.
Barranco-Medina, S., Krell, T., Bernier-Villamor, L., Sevilla, F., Lazaro, J. - J., and Dietz, K. - J. (2008). Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. JOURNAL OF EXPERIMENTAL BOTANY 59, 3259-3269.
Barranco-Medina, S., et al., 2008. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. JOURNAL OF EXPERIMENTAL BOTANY, 59(12), p 3259-3269.
S. Barranco-Medina, et al., “Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o”, JOURNAL OF EXPERIMENTAL BOTANY, vol. 59, 2008, pp. 3259-3269.
Barranco-Medina, S., Krell, T., Bernier-Villamor, L., Sevilla, F., Lazaro, J.-J., Dietz, K.-J.: Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. JOURNAL OF EXPERIMENTAL BOTANY. 59, 3259-3269 (2008).
Barranco-Medina, Sergio, Krell, Tino, Bernier-Villamor, Laura, Sevilla, Francisca, Lazaro, Juan-Jose, and Dietz, Karl-Josef. “Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o”. JOURNAL OF EXPERIMENTAL BOTANY 59.12 (2008): 3259-3269.
This data publication is cited in the following publications:
This publication cites the following data publications:

19 Citations in Europe PMC

Data provided by Europe PubMed Central.

A universal entropy-driven mechanism for thioredoxin-target recognition.
Palde PB, Carroll KS., Proc. Natl. Acad. Sci. U.S.A. 112(26), 2015
PMID: 26080424
Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.
Ortiz-Espin A, Locato V, Camejo D, Schiermeyer A, De Gara L, Sevilla F, Jimenez A., Ann. Bot. 116(4), 2015
PMID: 26041732
Functional and structural changes in plant mitochondrial PrxII F caused by NO.
Camejo D, Ortiz-Espin A, Lazaro JJ, Romero-Puertas MC, Lazaro-Payo A, Sevilla F, Jimenez A., J Proteomics 119(), 2015
PMID: 25682994
Redox regulation of Arabidopsis mitochondrial citrate synthase.
Schmidtmann E, Konig AC, Orwat A, Leister D, Hartl M, Finkemeier I., Mol Plant 7(1), 2014
PMID: 24198232
Redox regulation of chloroplastic G6PDH activity by thioredoxin occurs through structural changes modifying substrate accessibility and cofactor binding.
Nee G, Aumont-Nicaise M, Zaffagnini M, Nessler S, Valerio-Lepiniec M, Issakidis-Bourguet E., Biochem. J. 457(1), 2014
PMID: 24079807
Systematic exploration of thioredoxin target proteins in plant mitochondria.
Yoshida K, Noguchi K, Motohashi K, Hisabori T., Plant Cell Physiol. 54(6), 2013
PMID: 23444301
Mitochondrial energy and redox signaling in plants.
Schwarzlander M, Finkemeier I., Antioxid. Redox Signal. 18(16), 2013
PMID: 23234467
Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus.
Hakmaoui A, Perez-Bueno ML, Garcia-Fontana B, Camejo D, Jimenez A, Sevilla F, Baron M., J. Exp. Bot. 63(15), 2012
PMID: 22915745
Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance.
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C., Antioxid. Redox Signal. 17(8), 2012
PMID: 22531002
Chaperone-like properties of tobacco plastid thioredoxins f and m.
Sanz-Barrio R, Fernandez-San Millan A, Carballeda J, Corral-Martinez P, Segui-Simarro JM, Farran I., J. Exp. Bot. 63(1), 2012
PMID: 21948853
Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.
Tovar-Mendez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M., Plant Physiol. 156(3), 2011
PMID: 21562331
Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves.
Marti MC, Florez-Sarasa I, Camejo D, Ribas-Carbo M, Lazaro JJ, Sevilla F, Jimenez A., J. Exp. Bot. 62(11), 2011
PMID: 21460385
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis.
Chim N, Riley R, The J, Im S, Segelke B, Lekin T, Yu M, Hung LW, Terwilliger T, Whitelegge JP, Goulding CW., J. Mol. Biol. 396(5), 2010
PMID: 20060836
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Thioredoxins and glutaredoxins: unifying elements in redox biology.
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428

38 References

Data provided by Europe PubMed Central.

Energetics of the HIV gp120-CD4 binding reaction
Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML., 2000
Early events in erythroid differentiation: accumulation of the acidic peroxidoxin (PRP/TSA/NKEF-B).
Rabilloud T, Berthier R, Vincon M, Ferbus D, Goubin G, Lawrence JJ., Biochem. J. 312 ( Pt 3)(), 1995
PMID: 8554508
Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site.
Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J., J. Biol. Chem. 277(22), 2002
PMID: 11904290
Disulfide bridges in the mesophilic triosephosphate isomerase from Giardia lamblia are related to oligomerization and activity.
Reyes-Vivas H, Diaz A, Peon J, Mendoza-Hernandez G, Hernandez-Alcantara G, De la Mora-De la Mora I, Enriquez-Flores S, Dominguez-Ramirez L, Lopez-Velazquez G., J. Mol. Biol. 365(3), 2007
PMID: 17095008
Identification of plant glutaredoxin targets
Rouhier N, Villarejo A, Srivastava M., 2005
Protein–protein interactions: interface structure, binding thermodynamics, and mutational analysis
Stites WE., 1997
Concepts and approaches towards understanding the cellular redox proteome.
Stroher E, Dietz KJ., Plant Biol (Stuttg) 8(4), 2006
PMID: 16906481
Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase
Thurman RG, Ley HG, Scholz R., 1972
Rapid measurement of binding constants and heats of binding using a new titration calorimeter
Wiseman T, Williston S, Brandts JF, Lin LN., 1989
Structure, mechanism and regulation of peroxiredoxins
Wood ZA, Schröder E, Harris JL, Poole LB., 2003
Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53-induced apoptosis.
Zhou Y, Kok KH, Chun AC, Wong CM, Wu HW, Lin MC, Fung PC, Kung H, Jin DY., Biochem. Biophys. Res. Commun. 268(3), 2000
PMID: 10679306

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18632730
PubMed | Europe PMC

Search this title in

Google Scholar