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Preface

Coincidence site lattices (CSLs) are an important tool in crystallography to describe

grain boundaries in crystals. Hence, CSLs of 3-dimensional lattices were intensively studied

by crystallographers in the sixties and seventies of the last century.

After the discovery of quasicrystals by D. Shechtman in 1982, it became necessary to

generalise this concept, and the notion of coincidence site modules (CSMs) was introduced.

Mathematicians got interested in the subject in the nineties and CSMs and CSLs were inves-

tigated not only in dimensions d ≤ 3, but also in higher dimensions.

The scope of the present work is to summarise part of the contributions of the author

to this field. It includes some general results on CSLs and CSMs and their relationship

to similar sublattices and submodules, respectively. Another topic are results on concrete

lattices in dimensions d = 3 and 4, including the coincidence problem for the 4-dimensional

hypercubic lattices and the root lattice A4 and the icosian ring as well as the problem of

multiple coincidences for the 3-dimensional cubic lattices. This is complemented by an article

on well-rounded sublattices of planar lattices, which have a lot of connections to planar CSLs.

The author wants to thank all people who have helped to improve the present work. In

particular, he wants to thank M. Baake, R. Scharlau, C.Huck, M.J. Loquias, M. Heuer, and

S. Glied for interesting discussions on various subjects.

Finally, he acknowledges support by the German Research Foundation (DFG), within the

CRC 701.
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CHAPTER 1

Introduction

1.1. Motivation and brief historical overview

The study of coincidence site lattices – and more generally – coincidence site modules, is

motivated by its use in crystallography. Single crystals can be idealised as periodic arrange-

ments of atoms or molecules. They can be modelled in various ways, the simplest one is to

model them as periodic point sets. This view is enough for our purposes, but it is not enough

for describing physical properties. Hence, crystals are often modelled as periodic functions or

periodic measures. In any case, the symmetry of (ideal) crystals is described by space groups,

whose subgroup of translations are lattices in R3.

However, real crystals are neither infinite nor perfectly periodic. They may have various

defects, atoms may be missing or additional atoms may be present, an atom may be replaced

by an atom of a different chemical element, they may be distorted - just to name a few. But it

is not these imperfections we are interested in. Real crystals are very often not single crystals,

but consist of several crystal grains, each of which is more or less periodic. Typically, these

crystal grains have the same chemical composition, but they are rotated with respect to each

other. Hence, each grain has to be described by its own symmetry group and its own lattice.

But these lattices are not independent of each other, in fact, they are rotated copies of

each other. Moreover, it turns out that certain angles between different grains are preferred,

namely those which correspond to rotations such that the lattices of the two grains involved

have a common sublattice of small index. This gave rise to the notion of a coincidence site

lattice (CSL), which is the intersection of a lattice with a rotated copy of itself such that

the resulting lattice is a lattice of full rank. Thus, CSLs are used to characterise the relative

orientation of crystal grains and to analyse the so-called grain boundaries, which are the

planes at which two grains meet.

It was Friedel in 1911 who first recognised the usefulness of coincidence site lattices in

describing and classifying grain boundaries of crystals [28]. Later on, in 1949, analogous

ideas were used by Kronberg and Wilson [48]. But it was not until the mid sixties that CSLs

became more popular. In fact, the widespread use of CSLs was triggered by a famous paper

by Ranganathan in 1966 [58]. Here, the famous formula for the coincidence index for cubic

lattices was derived.

A lot of papers followed in the later sixties and seventies, mainly concentrating on the

cubic lattices, including the important contributions by H. Grimmer [35, 36, 37, 39]. Later

on, other lattices with high symmetry were analysed as well, including certain hexagonal

7



8 1. INTRODUCTION

lattices [40, 38]. The activities of these days culminated in the two monographs of W. Boll-

mann [18, 19].

The discovery of quasicrystals in 1982 by D. Shechtman [64] gave rise to a re-

newed interest in CSLs, generalising the concept of CSLs for the needs of quasicrys-

tals [59, 67, 68, 56, 57, 69], which led to the concept of coincidence site modules (CSMs);

for more information on the mathematical theory of quasicrystals see [7]. The more com-

plex situation of quasicrystals made a rigorous mathematical formulation of the coincidence

problem necessary [4] and triggered a series of mathematical papers on this subject. Coin-

cidences of several prominent modules were analysed, including planar modules with n-fold

symmetry [55] and certain modules in 3-dimensional space [11].

Interest was no longer restricted to the 3-dimensional space. The 4-dimensional hypercu-

bic lattices [4, 74, 72, 16], and the A4-lattice [8, 16, 43, 42] have been studied in detail.

Results in n dimensions are still sparse, but there are some results on the possible coincidence

indices for the n-dimensional hypercubic lattices [79]. In addition, there are some results on

the structure of the group of coincidence isometries for rational lattices. In particular, an

analogue of the Cartan-Dieudonné theorem was proved for lattices [80] and later for mod-

ules [44].

Most of the explicit results for lattices and modules in dimensions d ≤ 4 are obtained

by number theoretical methods involving quadratic number fields (in dimension d = 2) and

quaternion algebras (in dimension d = 3 and 4). An alternative approach using Clifford

algebras has lead to some results in the Euclidean plane [61] and the hyperbolic plane [62].

So far, we have discussed only CSLs that are the intersection of two lattices. More

generally, one can consider the intersection of an arbitrary number of rotated lattices – the

so-called multiple CSLs. This problem is, in general, more difficult than the corresponding

problem for (ordinary) CSLs. Nevertheless, it has been analysed for planar modules with

n-fold symmetry [6] and for cubic lattices [75, 15]. Multiple CSLs have an application

in crystallography as well, in connection with so-called triple, or more generally, multiple

junctions [30, 29, 31]. These are lines or points where three or more crystal grains meet.

Applications of CSLs are not confined to crystallography. In fact, they were also applied

in coding theory in connection with so-called lattice quantizers [24, 65]. Here, the idea

is to express complicated high dimensional lattices as intersections of simpler lattices, e.g.

hypercubic lattices or direct sums of low dimensional lattices. Moreover, similar sublattices

and CSLs of the hexagonal lattice and the A4 lattice have been applied to algorithms in

practice [2, 1, 3].

The concept of CSLs has been generalised in several other ways. We have motivated the

CSLs by grains that are rotated with respect to each other, i.e., they are linked by a linear

isometry. More generally, one may consider grains that are linked by an affine isometry. This

has been done in [32, 26]. Correspondingly, affine coincidences, as well as coincidences of

shifted lattices and crystallographic point packings have been studied in [49, 52, 50].
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Furthermore, coincidences of coloured lattices have been considered [51, 50, 53]. They

occur naturally if one wants to compare the coincidence problem of two lattices, where one

is a sublattice of the other one.

Coincidence site lattices are connected to various other special sublattices. In two dimen-

sions, there exist connections to well-rounded sublattices [77, 13]. Furthermore, there exists

an important connection between similar sublattices and CSLs. In particular, the group of

coincidence isometries is a normal subgroup of the group of similarity rotations; compare [34]

for lattices and [33, 78] for modules.

1.2. Scope and Outline of the present work

The aim of the present work is to present part of the contributions of the author to the

topic of coincidence site lattices in a uniform framework. It is partly based on articles that

have been published already, extends some of them and adds new material that is so far

unpublished.

We start with a chapter on similar submodules. Its aim is not to give an exhaustive

treatment of this subject, but rather to provide the necessary tools to prove the connections

with coincidence site modules in Chapter 3. Thus, we do not include the various results

obtained for special lattices here. In particular, we do not mention the important results on

the existence of similar sublattices for rational lattices obtained in [46]. Similarly, we omit

the explicit results for planar lattices and modules that can be found in [5, 12]. Results on

the similar sublattices of A4 and the similar submodules of the icosian ring are summarised

briefly in Chapter 5, as far as we need them for the discussions of the CSLs. For further

details we refer to [9] and [10], respectively.

In Chapter 3 we discuss the general properties of coincidence site modules. Some of

them are straightforward generalisations of the corresponding results obtained in [4], whereas

other ones need different techniques to handle them. As an example, we mention the proof

of the fact that the coincidence indices of an isometry and its inverse are the same, which

can be carried out by a simple geometric argument in the case of lattices, whereas we need

arguments from algebra and number theory to prove the corresponding statement for modules.

This chapter also includes the generalisations of [76] and extends results from [78]. One of

the highlights is the connection between similar submodules and coincidence site modules as

expressed in Theorem 3.2.2. The corresponding results for lattices had been proven in [34]

and for a special class of modules in [33]. The chapter ends with a summary of the main

results of the CSLs of the cubic lattices [4, 73], which we rephrase in a way which is most

suited for our analysis of the multiple CSLs in Chapter 6.

In Chapter 4 and Chapter 5 we discuss the coincidence problem for several examples in

4 dimensions, including the 4-dimensional hypercubic lattices, the lattice A4 and the icosian

ring. For all these examples we can calculate the coincidence index explicitly and express

it in terms of quaternions. We determine an explicit expression for the CSLs and CSMs,

respectively, which allows us to formulate a criterion when two CSLs (CSMs) are equivalent.
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We count the number of coincidence isometries and CSLs (CSMs) of a given index, for which

explicit formulas exist. We construct the generating functions for these counting functions in

the form of a Dirichlet series. These Dirichlet series turn out to have nice analytic properties,

which allows us to find the asymptotic growth rates for the number of coincidence isometries

and CSLs via Delange’s theorem 7.A.1.

The methods in both chapters are very similar. In both cases a principal ideal ring of

quaternions is employed to get the results. For the hypercubic lattices, we use the Hurwitz

ring of integers, whereas we make use of the icosian ring to study the A4-lattice. Some of

the results of Chapter 4 have already been published in [74]. However, Chapter 4 is not

just an extension of (part of) the results of [74], but we have opted to completely change

the presentation so that it matches the discussion of the A4-lattice and the icosian ring in

Chapter 5.

Chapter 5 extends the results of [8] and [43] on the A4-lattice and adds the missing proofs.

For some of the details, we refer to [42].

In Chapter 6 we discuss the multiple CSLs of cubic lattices. This chapter extends results

of [75] and [15]. In particular, we count all double and multiple CSLs and express the

results in terms of Dirichlet series, which allows us to calculate the asymptotic behaviour for

the counting function also in these cases. Moreover, we get the remarkable result that any

multiple CSL is in fact a double or triple CSL. We conclude this chapter with an application

of the multiple CSLs to triple junctions; compare [30].

Chapters 7 and 8 are a reprint of [13] and its supplementary material [71]. Thus, both

chapters have their own list of references, whereas all other chapters share a common list

of references, which can be found at the end of Chapter 6. In Chapter 7, we discuss and

count well-rounded sublattices of planar lattices. Here, a lattice in Rd is called well-rounded

if the non-zero lattice vectors of minimal length span Rd. In the case of planar lattices, this is

equivalent to the property that the non-zero lattice vectors of minimal length span the lattice.

We have included this paper in the present work since there are many connections between

CSLs and well-rounded sublattices in the planar case. First, a planar lattice has well-rounded

sublattices if and only if there exists a coincidence reflection, i.e., if there exists a CSL that is

generated by a reflection. Moreover, the problem of finding all well-rounded sublattices can

be reduced to finding all coincidence reflections and their corresponding CSLs. If a lattice

has only one CSL, the asymptotic growth rate of the number of well-rounded sublattices does

not depend on the details of the lattice, but only depends on the coincidence index of this

particular CSL.

Although counting well-rounded sublattices is more difficult than counting CSLs, and the

corresponding expressions are less explicit, we still can determine the asymptotic growth rates.

In case of the square lattice and the hexagonal lattice, we are even able to calculate the first

error term explicitly. This cannot be achieved by an application of Delange’s theorem, but

by methods involving the Dirichlet hyperbola method. The explicit calculations are rather

lengthy and are presented in Chapter 8. The same methods allow to calculate the first order



1.3. PRELIMINARIES AND NOTATION 11

corrections for the asymptotic behaviour of the number of CSLs for the square lattice and

the hexagonal lattice, whose result will be published in [14].

1.3. Preliminaries and notation

The basic objects of the present work are lattices and modules. By a lattice we mean a

discrete, cocompact subgroup Γ of Rd. As any lattice has a basis {b1, . . . , bd}, the lattice Γ is

the Z-span of these basis vectors, denoted as Γ = 〈b1, . . . , bd〉Z. A sublattice Γ ′ is a subgroup

of Γ that is a lattice itself. This means that we consider only (sub)lattices of full rank, i.e.,

lattices, whose R-span is Rd.

If we do not specify otherwise, a module M is always to be understood to be a finitely

generated free Z-module embedded in R

d, such that its R-span is Rd, in other words,

R⊗
Z

M = Rd. The rank of M is the cardinality of any basis of M . In other words, by

a module of rank k in dimension d ≤ k, we mean the Z-span M = 〈b1, . . . , bk〉Z of k ≥ d vec-

tors bi ∈ Rd that span Rd and are independent over Q. If not stated otherwise, a submodule

is to be understood as a submodule of full rank, i.e., we consider only submodules N ⊆ M

such that M and N have the same rank. In this terminology, a lattice Γ in Rd is a module

of rank k = d.

Occasionally, we will need modules M ⊆ Rd over more general rings R ⊆ R. In this case,

we always specify the ring R and we call M an R-module. Here, we do not require M to be

a free R-module. Nevertheless, they usually are embedded in Rd, they are finitely generated

and span Rd.

As a special variant of a module we will sometimes use the notion of an S-lattice. Let

S ⊂ R be a ring with identity that is also a finitely generated, free Z-module. Then we call

M ⊂ Rd an S-lattice, if there exist d linearly independent vectors bi ∈ Rd such that M is the

S-span of {b1, . . . , bd}, i.e., M = 〈b1, . . . , bd〉S .
The symmetry group of a module M shall be called O(M). This is the group of all

R ∈ O(d,R) such that RM =M . Clearly, we have O(M) ⊂ O(d,R).

In our discussion of lattices in dimensions 3 and 4, quaternions will play a crucial role. We

will introduce them together with their most important properties in Section 3.5. Additional

properties may be introduced later, wherever it seems appropriate. Nevertheless, we want to

make some remarks here.

Two rings of quaternions will be of crucial importance, namely the ring of Hurwitz quater-

nions J and the icosian ring I. Both rings are principal ideal rings, i.e., all right (left) ideals are

principal right (left) ideals. Thus, for any two right ideals aJ and bJ there exist quaternions g

and m such that gJ = aJ+ bJ and mJ = aJ∩ bJ. These two quaternions g and m are unique

up to multiplication by a unit quaternion from the right. We call g a greatest common left

divisor of a and b, and m a least common right multiple of a and b, in symbols g = gcld(a, b)

and m = lcrm(a, b). As g and m are unique only up to a unit, these equations only make

sense as a shorthand notation for the corresponding equation of ideals gJ = gcld(a, b)J or

as equations of quaternions that hold only up to a multiplication by a unit quaternion from
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the right. In some cases, we may choose a particular g or m. In these cases, the equations

involving them are considered to hold exactly.

In principal, we could write all equations involving a greatest common left divisor or a

least common right multiple as equations of ideals. Nevertheless, we prefer the short hand

notation g = gcld(a, b). The reason is that we sometimes need a particular choice of a gcld

or lcrm. In particular, we use quaternions to parametrise rotations, and the rotations depend

on the actual quaternion rather than on the corresponding ideal.

Clearly, all considerations are also valid for the greatest common right divisor gcrd and

the least common left multiple lclm.



CHAPTER 2

Similar sublattices and similar submodules

2.1. Basic notions and properties

Since coincidence site lattices are closely related to similar sublattices (SSLs for short),

it is worthwhile to consider similar sublattices first. We start by recalling some important

notions.

Two modules M1,M2 ⊆ R

d are called commensurate (in symbols M1 ∼ M2) if their

intersection M1 ∩M2 has finite index in both M1 and M2. Clearly, M1 and M2 can only be

commensurate if they have the same rank. Once we know that two modules in Rd have the

same rank, the situation becomes easier as we can characterise commensurateness in several

ways, which we will use freely in the following:

Lemma 2.1.1. Let M1,M2 ⊆ Rd be modules of rank k. Then the following are equivalent:

(1) M1,M2 are commensurate.

(2) M1 ∩M2 has finite index in both M1 and M2.

(3) M1 ∩M2 has finite index in M1 or in M2.

(4) There exist (positive) integers m1 and m2 such that m1M1 ⊆M2 and m2M2 ⊆M1.

(5) There exists an integer m such that mM1 ⊆M2 or mM2 ⊆M1.

(6) M1 ∩M2 has rank k.

As an immediate consequence we obtain by applying (4) several times:

Lemma 2.1.2. Commensurateness is an equivalence relation.

An important example of commensurate modules are similar submodules. Recall that a

linear map f : Rd → R

d is called a similarity transformation if it is of the form f = αR, where

R is an isometry and α ∈ R

+. Two modules are called similar if there exists a similarity

transformation mapping one module onto the other. Clearly, similarity of modules is an

equivalence relation.

Definition 2.1.1. A similarity transformation mapping a module M ∈ Rd onto a sub-

module of M is called a similarity transformation of M . A submodule M1 ⊆ M is called a

similar submodule (SSM) of M if it is similar to M .

The similarity transformations ofM form a monoid. In fact, as similarity transformations

are invertible, they canonically generate a group, which is precisely the group of all similarity

13
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transformations mapping M onto a module commensurate to M . However, we are less in-

terested in the similarity transformations f = αR themselves, but rather on their rotational

parts R and their inflation factors α. We first mention

Theorem 2.1.3. Let

OS(M) := {R ∈ O(d,R) | ∃α ∈ R+ such that αRM ⊆M}(2.1)

be the set of all similarity isometries of M . Then OS(M) ⊆ O(d,R) is a group.

Proof. For any R1, R2 ∈ OS(M) there exist α1, α2 ∈ R+ such that α1R1M ⊆ M and

α2R2M ⊆M , hence α1α2R1R2M ⊆ α1R1M ⊆M , which proves R1R2 ∈ OS(M). It remains

to show thatR−1 ∈ OS(M) for anyR ∈ OS(M). There exists an α ∈ R+ such that αRM ⊆M

and henceM ⊆ 1
αR

−1M . AsM and 1
αR

−1M are commensurate, by Lemma 2.1.1 there exists

a positive integer m such that m
αR

−1M ⊆M , which indeed shows R−1 ∈ OS(M). �

Similar modules have isomorphic OS-groups, in particular their OS-groups are conjugated

subgroups of O(d,R):

Lemma 2.1.4. Let M and N be similar modules with N = αRM . Then

OS(N) = R OS(M)R−1.(2.2)

Let us take a look at the scaling factors α. We first define

ScalM (R) := {α ∈ R | αRM ⊆M}(2.3)

and

scalM (R) := {α ∈ R | αRM ∼M},(2.4)

where we have allowed nonpositive values for α to get “nicer” sets. ScalM (R) is nonempty for

all R as 0 ∈ ScalM (R). More importantly, ScalM (R) is non-trivial if and only if R ∈ OS(M),

i.e. ScalM (R) 6= {0} if and only if R ∈ OS(M).

Clearly, we expect that the sets of scaling factors are intimately related for similar modules.

In fact, we immediately get the following result.

Lemma 2.1.5. Let M and N be similar modules with N = αRM . Then

ScalN (S) = ScalM (R−1SR)(2.5)

scalN (S) = scalM (R−1SR).(2.6)

For a lattice Γ , we immediately see αd ∈ Z for any α ∈ ScalΓ (R), as the index [Γ : αRΓ ]

is given by [Γ : αRΓ ] = | det(αR)| = αd, if α is non-zero. Furthermore, an application

of Lemma 2.1.1 gives αd ∈ Q for any α ∈ scalΓ (R). These results can be generalised for

S-lattices, see [33] for details. Note that S-lattices have been called S-lattices in [33]. In

particular, for any α ∈ ScalM (R), we have αd ∈ S, which follows from the fact that αR is

similar to a matrix with entries in S only. Likewise, for any α ∈ scalM (R), we have αd ∈ K,

where K is the field of fractions of S.
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Our first goal is to show that every α ∈ ScalM (R) is some algebraic integer. To this end,

we consider ScalM (R) for the identity operation R = E first. For any lattice Γ , we have

ScalΓ (E) = Z, and if M is an S-lattice, we get ScalM (E) = S. In both cases, ScalM (E) is a

ring of algebraic integers and, indeed, this is a general property of ScalM (E).

Theorem 2.1.6. Let M ⊆ R

d be a module of rank k. ScalM (E) is a ring of algebraic

integers. In particular, ScalM (E) is a ring with identity and it is a finitely generated free

Z-module, whose rank is a divisor of k and is at most k
d .

Proof. If α, β ∈ ScalM (E), then αM ⊆ M and βM ⊆ M . It follows (α + β)M ⊆
αM + βM ⊆ M and (αβ)M ⊆ αM ⊆ M , hence α + β and αβ are in M , which proves

that ScalM (E) is a ring. Due to M ⊆ M we have 1 ∈ ScalM (E). Clearly, ScalM (E) is

also a Z-module. Let v1, . . . vd be d linearly independent vectors in M . For each fixed i,

Mi := {αvi | α ∈ ScalM (E)} is a Z-submodule of M , which is isomorphic to ScalM (E). As

Mi is a submodule of M , it is a finitely generated free Z-module, and so is ScalM (E). Thus

ScalM (E) is a ring of algebraic integers. All Mi have the same rank, and as the direct sum

M1 ⊕ . . .⊕Md is a submodule of M , each Mi has rank at most k
d , and so has ScalM (E).

Let m be the rank of ScalM (E) over Q and let K be the field of fractions of ScalM (E).

Then K is a vector space over Q with dimension m. The vector space Q⊗
Z

M has dimension

k over Q, and viewed as vector space over K it has dimension k
m , which finally shows that m

indeed divides k. �

In the proof, we encountered the module αM + βM . In general, this is not a similar

submodule. As an example consider a ring of algebraic integers S ⊆ R that is not a PID.

Then the similar submodules of M = S are exactly the principal ideals of S, but the sum of

two principal ideals is in general not a principal ideal. However, if M = Γ is a lattice, then

αΓ + βΓ = gcd(α, β)Γ is a similar sublattice.

Clearly, M can be also viewed as a ScalM (E)-module, and as such it is still finitely

generated, but it is not necessarily a free ScalM (E)-module, unless ScalM (E) is a PID. As an

example, consider M = Z[2
√
2]⊕ iA ⊆ C, where A = 2Z[2

√
2] + (2

√
2)Z[2

√
2] is an ideal of

Z[2
√
2] with index

[
Z[2

√
2] : A

]
= 2, but it is not a principal ideal. Here, ScalM (E) = Z[2

√
2],

but M is not a free Z[2
√
2]-module.

Since αM ∼M if and only if there is a positive integer m such that mαM ⊆M we obtain

Corollary 2.1.7. Let M ⊆ R

d be a free Z-module of finite rank. Then scalM (E) ∪ {0}
is the field of fractions of ScalM (E).

An immediate consequence of this result is the following lemma, which was first proved

for the special case of S-lattices in [33].

Theorem 2.1.8. Let α be an arbitrary element of scalM (R). Then

scalM (R) = α scalM (E).(2.7)
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Proof. Let α, β ∈ scalM (R). Hence αRM ∼ βRM , which is equivalent to β
αM ∼ M .

But the latter is equivalent to β
α ∈ scalM (E), hence scalM (R) ⊆ α scalM (E). The reverse

inclusion follows from αγRM ∼ γM ∼M for all γ ∈ scalM (E). �

The situation is different for ScalM (R). We have the following result.

Theorem 2.1.9. ScalM (R) is a finitely generated, free Z-module for any similarity isome-

try R of M . Moreover, β ScalM (R) ⊆ ScalM (R) for any β ∈ ScalM (E) and, hence, ScalM (R)

is also a finitely generated ScalM (E)-module.

If ScalM (E) is a PID, ScalM (R) is a free ScalM (E)-module of rank 1, i.e. there exists an

α ∈ ScalM (R) such that ScalM (R) = α ScalM (E).

Proof. Let α, β ∈ ScalM (R), n ∈ Z. Then (α + β)RM ⊆ αRM + βRM ⊆ M and

nαRM ⊆ αRM ⊆M show that ScalM (R) is closed under addition and scalar multiplication,

whence it is a Z-module. Let x ∈ M . Then ScalM (R) is isomorphic to ScalM (R)x, which is

a finitely generated free Z-module, since it is a submodule of M .

Let α ∈ ScalM (R) and β ∈ ScalM (E). Then αβRM ⊆ βM ⊆ M shows αβ ∈ ScalM (R).

Since α was arbitrary, this means β ScalM (R) ⊆ ScalM (R). Thus ScalM (R) can be viewed as

a ScalM (E)-module, which is finitely generated as it is already finitely generated over Z.

Assume ScalM (E) is a PID. Let 0 6= γ ∈ ScalM (R). Then 1
γ ScalM (R) ⊆ scalM (E), and

as it is a finitely generated ScalM (E)-module, it is a fractional ideal of ScalM (E). Since

ScalM (E) is a PID, there exits a β ∈ scalM (E) such that 1
γ ScalM (R) = β ScalM (E), i.e.,

ScalM (R) = α ScalM (E), where α = βγ. �

Let us consider our previous example M = Z[2
√
2] ⊕ iA ⊆ C again. Let R be the

counterclockwise rotation through π
2 , which is represented by R = i. Here, ScalM (i) = A is

an ideal of ScalM (E) = Z[2
√
2], but not a principal ideal of ScalM (E), which shows that in

general ScalM (R) cannot be written as α ScalM (E). In particular, ScalM (i) is not free over

ScalM (E). In fact, ScalM (R) is in general not an ideal (nor a fractional ideal) of ScalM (E).

Indeed, we can modify our example a little and consider M = Z[2
√
2]⊕ i

√
nA ⊆ C instead,

where n is some odd positive integer. Then ScalM (i) =
√
nA and ScalM (i)∩ ScalM (E) = ∅.

Theorem 2.1.10. Any α ∈ ScalM (R) is an algebraic integer. If M has rank k ≥ 2, then

α has degree at most k(k − 1).

Proof. As R is an orthogonal matrix, its eigenvalues are unimodular numbers eiϕ. Hence

the eigenvalues of αR are of the form αeiϕ, and thus it is sufficient to show that the eigenvalues

of αR are algebraic integers. As αR maps the module M of rank k into itself, there exists a

monic polynomial P of degree k with integral coefficients such that P (αR) = 0 (just take the

characteristic polynomial of its k-dimensional integral representation). Hence P (αeiϕ) = 0

and αeiϕ is indeed an algebraic integer. In fact, its degree is at most k, from which we infer

that α has degree at most k(k − 1). �
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As mentioned above, α ∈ ScalM (R) is a d-th root of an integer in case of a lattice, and

it is a d-th root of an element of S in case of S-lattices. For general modules M , however,

Theorem 2.1.10 is the best we can get. This is illustrated by the following example.

Example 2.1.1. Let η = e
iπ
3 3
√
τ − e−

iπ
3

1
3√τ

, where τ = 1+
√
5

2 is the golden mean. Then

M = Z[η] is a free Z-module of rank 3, as η satisfies η3 + 3η − 1 = 0. Here, ScalM (E) = Z.

Clearly, η = |η| η
|η| is a similarity transformation with ScalM ( η

|η|) = |η| ScalM (E) = |η|Z. Since
|η| =

√
τ2/3 + τ−2/3 + 1 has the minimal polynomial x6 − 3x4 − 1, it is not an n-th root of

a rational integer. In particular, |η| has degree 6 = 3 · 2, which shows that the upper bound

on the degree of α in Theorem 2.1.10 is optimal. Finally, we mention that η is a symmetry

operation of M as ηM =M .

As OS(M) is a group, we expect that there should be some multiplication law for the

set of scaling factors as well. Indeed, using the fact that commensurateness is an equivalence

relation once again, we obtain

Lemma 2.1.11. For any R,S ∈ OS(M)

scalM (R) scalM (S) = scalM (RS).(2.8)

For further reference we also mention the special case S = R−1.

Lemma 2.1.12. For any R ∈ OS(M)

scalM (R−1) scalM (R) = scalM (E)(2.9)

The previous lemmas together with scalM (R) scalM (E) = scalM (R) show that {scalM (R) |
R ∈ OS(M)} carries a natural group structure. In addition, these lemmas show that there

exists a natural group homomorphism from OS(M) onto {scalM (R) | R ∈ OS(M)}. Moreover,

Theorem 2.1.8 shows that there is a isomorphism from {scalM (R) | R ∈ OS(M)} to a subgroup
of R+/(scalM (E) ∩R+), hence {scalM (R) | R ∈ OS(M)} is Abelian. Let us summarise this:

Theorem 2.1.13. Let M ⊆ Rd be a free Z-module of finite rank.

(1) {scalM (R) | R ∈ OS(M)} is an Abelian group, where the product scalM (R) scalM (S)

is defined as the set {αβ | α ∈ scalM (R), β ∈ scalM (S)}. Its neutral element is

scalM (E) and the inverse element of scalM (R) is scalM (R−1).

(2) {scalM (R) | R ∈ OS(M)} is isomorphic to a subgroup of R+/(scalM (E) ∩R+).

(3) There exists a natural homomorphism φ : OS(M) → {scalM (R) | R ∈ OS(M)} via

R 7→ scalM (R).

The corresponding statements for ScalM (R) are weaker.

Theorem 2.1.14. For any R,S ∈ OS(M), one has

ScalM (R) ScalM (S) ⊆ ScalM (RS).(2.10)
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Proof. Let α ∈ ScalM (R), β ∈ ScalM (S). Then

αβM = (αR)(βS)M ⊆ αR−1M ⊆M

shows αβ ∈ ScalM (RS). �

As the connection between the scaling factors of R and R−1 will be important later, we

mention for further reference the special case S = R−1.

Lemma 2.1.15. For any R ∈ OS(M)

ScalM (R−1) ScalM (R) ⊆ ScalM (E).(2.11)

In addition we have

Lemma 2.1.16. Let α ∈ ScalM (R) \ {0} and let m = [M : αRM ] be the index of αRM in

M . Then
m

α
∈ ScalM (R−1).(2.12)

Proof. From mM ⊆ αRM we infer m
αR

−1M ⊆M , which proves the lemma. �

For a lattice Γ ∈ Rd we immediately get the following corollary, since [Γ : αRΓ ] = αd.

Corollary 2.1.17. Let Γ ∈ R

d be a lattice and α ∈ ScalΓ (R) \ {0}. Then αd−1 ∈
ScalΓ (R

−1).

If ScalM (E) is a PID we know that ScalM (R) has the form ScalM (R) = α ScalM (R)

for some suitable α. Here, α characterises ScalM (R) completely and thus it makes sense to

introduce the following definition.

Definition 2.1.2. Let ScalM (E) be a PID and R ∈ OS(M). Then

DenM (R) := {α ∈ ScalM (R) | α ScalM (E) = ScalM (R)}(2.13)

is called the set of denominators of R.

An immediate consequence of this definition is the following lemma.

Lemma 2.1.18. Let ScalM (E) be a PID and R ∈ OS(M), and let Scal∗M (E) be the set of

units of ScalM (E). Then

DenM (R) Scal∗M (E) = DenM (R).(2.14)

Moreover, if α, β ∈ DenM (R), then α
β ∈ Scal∗M (E).

Lemma 2.1.15 can be reformulated in terms of DenM (R).

Theorem 2.1.19. Let ScalM (E) be a PID and R ∈ OS(M), and let Scal∗M (E) be the set

of units of ScalM (E). Then there exists an α ∈ ScalM (E) such that

DenM (R)DenM (R−1) = α Scal∗M (E).(2.15)

Moreover, α is a divisor of [M : βRM ] for all β ∈ DenM (R).
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Proof. Lemma 2.1.15 tells us DenM (R)DenM (R−1) ⊆ ScalM (E) and Lemma 2.1.18

guarantees that the denominators are unique up to a unit, whence there exists an α as

claimed. The divisibility property follows from Lemma 2.1.16. �

A very important case is ScalM (E) = Z, in which Scal∗M (E) = {1,−1} is particularly

simple. Here, it is convenient to introduce a special notation for the unique positive element

of DenM (R).

Definition 2.1.3. Let ScalM (E) = Z. The unique positive element of DenM (R) is called

the denominator of R ∈ OS(M) and is denoted by denM (R).

We can reformulate Lemmas 2.1.15 and 2.1.16 in terms of the denominator.

Theorem 2.1.20. Let ScalM (E) = Z and R ∈ OS(M). Then

denM (R) denM (R−1) ∈ N(2.16)

and with m = [M : denM (R)RM ]

m

denM (R) denM (R−1)
∈ N(2.17)

If Γ ⊆ Rd is a lattice, then

denΓ (R)
d−1

denΓ (R
−1)

∈ N.(2.18)

The last formula gives an upper bound for denΓ (R
−1) ≤ denΓ (R)

d−1. In fact, this upper

bound may be assumed. As an example, we consider the Z-span of the vectors ξi−1ei, where ξ

is the d-th root of a positive integer and {e1, . . . , ed} is an orthonormal basis of Rd. Let R be

the rotation that maps ei onto ei+1 for i ∈ {1, . . . , d− 1} and ed onto e1. Then denΓ (R) = ξ

and denΓ (R
−1) = ξd−1.

We stress that denM (R) and denM (R−1) are in general not equal, not even if M = Γ is

a lattice. However, we have the following remarkable result in 2 dimensions.

Corollary 2.1.21. Let Γ ⊆ R2 be a lattice. Then denΓ (R
−1) = denΓ (R).

Proof. From Theorem 2.1.20 we infer

denΓ (R)

denΓ (R
−1)

∈ N,(2.19)

and by symmetry

denΓ (R
−1)

denΓ (R)
∈ N,(2.20)

which together imply denΓ (R
−1) = denΓ (R). �

Let us finally mention that we can reformulate Theorem 2.1.14 in terms of the denominator

as well. It reads as follows:
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Lemma 2.1.22. Let ScalM (E) = Z and R,S ∈ OS(M). Then

denM (R) denM (S)

denM (RS)
∈ N.

2.2. Similar submodules of related modules

We have already seen that similar modules have conjugated OS-groups. We want to

go a step further and have a look on commensurate modules. As commensurateness is an

equivalence relation, we get

Lemma 2.2.1. Let M and N be commensurate. Then OS(M) = OS(N).

Proof. Let αRM be a similar submodule of M . Thus αRM and M are commensurate.

AsM and N are commensurate, so are αRM and αRN , from which we infer that αRN and N

are commensurate, hence by Lemma 2.1.1 there exists an integer m such that (mα)RN ⊆ N .

Hence OS(M) ⊆ OS(N), and by symmetry, OS(M) = OS(N). �

Actually, we have proved even more:

Lemma 2.2.2. Let M and N be commensurate. Then

scalN (R) = scalM (R)(2.21)

for any R ∈ OS(M) = OS(N).

However, the sets ScalM (R) and ScalN (R) are different in general. By virtue of

Lemma 2.1.1, it is sufficient to consider the more special case that N is a submodule of

M .

Theorem 2.2.3. Let N be a submodule of M with index m. Then

mScalM (R) ⊆ ScalN (R) ⊆ 1

m
ScalM (R).(2.22)

Proof. From αRM ⊆ M we infer αRN ⊆ αRM ⊆ M ⊆ 1
mN . On the other hand,

αRN ⊆ N implies mαRM ⊆ αRN ⊆ N ⊆M . �

One can reformulate this in terms of denominators, but, in general, this is not very useful

since ScalN (E) need not be a PID if ScalM (E) is. But even if both ScalN (E) and ScalM (E)

are PIDs they need not be equal. However, as ScalN (E) and ScalM (E) are commensurate, we

have ScalN (E) = ScalM (E) whenever ScalM (E) = Z. In this case, which includes the lattice

case, we have

Theorem 2.2.4. Let ScalM (E) = Z and let N be a submodule of M with index m. Then

mdenM (R)

denN (R)
∈ N and

mdenN (R)

denM (R)
∈ N.(2.23)

If Γ ⊆ Rd is a lattice, its dual lattice is defined as

Γ ∗ := {x ∈ Rd | ∀y ∈ Γ : 〈x, y〉 ∈ Z},(2.24)

where 〈·, ·〉 denotes the usual inner product in Rd.
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Lemma 2.2.5. Let Γ ⊆ Rd be a lattice. Then OS(Γ ) = OS(Γ ∗) and

ScalΓ ∗(R) = ScalΓ (R
−1).(2.25)

In particular, denΓ (R)∗ = denΓ (R
−1).

Proof. α〈Rx, y〉 = α〈x,R−1y〉 shows αRΓ ∗ ⊆ Γ ∗ if and only if αR−1Γ ⊆ Γ , from which

all claims follow immediately. �

2.3. Counting similar sublattices and submodules

It is one of our goals to count the number of similar submodules of a given module M .

As we consider only free Z-modules of finite rank, the number of submodules with a given

index is finite. As any similar submodule is generated by some similarity transformation, we

may count the number of similarity transformation instead. However, this number may be

infinite, so we have to be careful here and find a useful subset of similarity transformations.

Let O(M) be the symmetry group of M , i.e. the subgroup of O(d,R) that leaves M

invariant. In addition, let S(M) be the group of all similarity transformations in Rd that

leave M invariant. Clearly, O(M) is a normal subgroup of S(M). If M is some lattice Γ ,

then the discreteness guarantees O(Γ ) = S(Γ ), which can be also inferred from the fact that

the index of a SSL is given by [Γ : αRΓ ] = αd.

However, S(M) is much larger than O(M) in general. In fact, S(M)/O(M) may be

infinite. This is easily seen if we consider any ring M ⊂ R of algebraic integers that has an

infinite group of units. Here, M is a module in R with ScalM (E) = Z and S(M) is exactly

the group of units of M , whereas the symmetry group O(M) is given by O(M) = {1,−1}.
Clearly, both O(M) and the group of scaling operations corresponding to Scal∗M (E) are both

subgroups of S(M), but in general they do not generate S(M). We refer to Example 2.1.1

here. Recall that η = e
iπ
3 3
√
τ − e−

iπ
3

1
3√τ

is a similarity transformation leaving M fixed. But

neither is |η| an element of Scal∗M (E) = Z∗ = {1,−1} nor is η
|η| contained in O(M).

Note that two similar submodules αRM and βSM are equal if and only if (αR)−1βS ∈
S(M), i.e. if and only if αR and βS differ only by a similarity transformation contained

in S(M). Hence our task of counting similar submodules is reduced to count all similarity

transformations modulo S(M). The number of all similar submodules of a given index n shall

henceforward be called bM (n).

Often it is very useful to restrict considerations to a useful subclass of similar submodules.

Definition 2.3.1. A similar submodule αRM of a free Z-module M of finite rank is

called primitive, if α
βRM ⊆M implies β ∈ Scal∗M (E).

In other words, a primitive similar submodule αRM is the largest similar submodule in

the corresponding orientation. Hence any similar submodule of M is a primitive one scaled

by a factor β ∈ ScalM (E). The number of all primitive similar submodules of a given index

n shall be denoted by bprM (n).
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If ScalM (E) is a PID we can establish an easy connection between bM (n) and bprM (n). Here,

the primitive similar sublattices are precisely those sublattices of the form denM (R)RM . Let

bEM (n) be the number of similar sublattices ofM that are just a scaled version ofM , i.e. those

sublattices of the form αM with α ∈ ScalM (E). Then we have the following result.

Lemma 2.3.1. Let ScalM (E) be a PID. The arithmetic functions bM (n) and bprM (n) that

count the number of similar and primitive similar submodules ofM , respectively, are connected

via the formula

bM (n) =
∑

m|n
bprM

( n
m

)
bEM (m),(2.26)

where bEM (n) is the number of sublattices of M of the form αM .

Proof. As ScalM (E) is a PID, any α ∈ ScalM (R) can be written as denM (R)β with

β ∈ ScalM (E). Hence any similar submodule of M is of the form β denM (R)RM , whose

index in M is given by [M : denM (R)M ][M : βM ]. Since the representation β denM (R)RM

is essentially unique – β and denM (R) are unique up to units – the index of any similar

submodule factors uniquely into the factor [M : denM (R)M ] originating from a primitive

similar submodule and a second factor [M : βM ] due to scaling. A standard combinatorial

argument finishes the proof. �

Lemma 2.3.2. Let M ⊆ R

d be a free Z-module of rank k and let ScalM (E) be a PID,

whose rank as a Z-module is ℓ. Then bEM (n) = 0 unless n is of the form n = mk/ℓ with

m ∈ N, in which case

bEM (n) = a(nℓ/k),(2.27)

where a(m) is the number of ideals of ScalM (E) of index m.

Proof. This result follows immediately from the fact that M is a free ScalM (E)-module

of rank k
ℓ . �

In case of a lattice Γ we have k = d and ℓ = 1 since ScalΓ (E) = Z. Thus we have

Corollary 2.3.3. Let Γ ⊆ Rd be a lattice. Then

bEΓ (n) =

{
1, if d

√
n ∈ Z

0, otherwise.
(2.28)

Corollary 2.3.4. Let Γ ⊆ R

d be a lattice. The arithmetic functions bΓ (n) and bprΓ (n)

that count the number of similar and primitive similar sublattices of Γ , respectively, are

connected via the formula

bΓ (n) =
∑

m:md|n
bprM

( n

md

)
.(2.29)
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In many interesting examples the arithmetic functions bM (n) and bprM (n) are multiplicative.

It is thus natural to consider generating functions of a Dirichlet series type. An advantage of

this approach is that their analytic properties determine the asymptotic growth behaviour of

bM (n) and bprM (n). Lemma 2.3.2 can be easily reformulated in terms of the Dirichlet series

ΦM (s) =
∑

n∈N

bM (n)

ns
(2.30)

and

Φpr
M (s) =

∑

n∈N

bprM (n)

ns
.(2.31)

They are connected via the zeta-function of S = ScalM (E), which is given by

ζS(s) =
∑

A

1

[S : A]s
,(2.32)

where the summation runs over all ideals A of S. In particular, we have

Theorem 2.3.5. Let M ⊆ R

d be a free Z-module of rank k and let S = ScalM (E) be a

PID, whose rank as a Z-module is ℓ. Then we have

ΦM (s) = Φpr
M (s)ζS

(
k
ℓ s
)
,(2.33)

where ζS(s) is the ζ-function of S = ScalM (E).

In the special case of a lattice Γ , we have the well-known result [10]

Corollary 2.3.6. Let Γ ⊆ Rd be a lattice. Then we have

ΦΓ (s) = Φpr
Γ (s)ζ(ds),(2.34)

where ζ(s) is Riemann’s ζ-function.

The situation is particularly nice if bM (n) is multiplicative. However, in general bM (n) is

not multiplicative, see [12] for several examples. Nevertheless, bM (n) has a weaker property

called supermultiplicativity. An arithmetic function f(n) is called supermultiplicative, if

f(nm) ≥ f(n)f(m) whenever m,n are coprime.

Theorem 2.3.7. bM (n) is supermultiplicative.

Proof. Let αRM and βSM be similar submodules of M of index m and n, respectively.

Then αβRSM is a similar submodule of αRM with index n and hence it is a similar submodule

of M of index mn. Obviously M1 = αRM has exactly bM (n) similar submodules M1j of

index n, and so has any similar submodule Mi of index m. Calling these submodules Mij ,

we see that it suffices to show that the submodules Mij are all different. Assume that two

of them are equal, say N = M1i = M2j . Then the second isomorphism theorem implies

[M1 +M2 : M1] = [M2 : M1 ∩M2] =: ℓ, which in turn gives ℓ = 1 as ℓ divides the coprime

integers m and n, as is illustrated in Fig. 2.1. But this is a contradiction, as M1 and M2 are

different. �
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M

M1 +M2

m/ℓ

M1

m

✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂ ℓ

qqqqqqqqqqq
M2

m

❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁ℓ

▼▼▼▼▼▼▼▼▼▼▼

M1 ∩M2

n/ℓ

ℓ

▼▼▼▼▼▼▼▼▼▼▼

ℓ
qqqqqqqqqqq

N

n

❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁❁

n

✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂

Figure 2.1. Diagram of submodule relationships to illustrate the proof of

Theorem 2.3.7. The letters beside the lines indicate the corresponding index.

This theorem was initially proved for similar sublattices in [9]. We stress that this theorem

holds for all modules M and does not depend on whether ScalM (E) is a PID or not. The

corresponding question for bprM (n) is more difficult. The situation simplifies if ScalM (E) is a

PID.

Corollary 2.3.8. Let ScalM (E) be a PID. Then bprM (n) is supermultiplicative.

Proof. We can proceed in the same way as above. There is only one additional thing

to check: We must make sure that for two primitive similar submodules αRM and βSM

with index m and n, respectively, the similar submodule αβRSM is primitive, as long as

m and n are coprime. Assume αβ
γ RSM is still a submodule of M for some γ ∈ ScalM (E).

Then N(γ) divides mn. As ScalM (E) is a PID, γ can be written as a product γ = ξη with

ξ, η ∈ ScalM (E) such that N(ξ) divides m and N(η) divides n. In addition, αβ
η RSM is a

similar submodule of M of index mn′, where n′ divides n. Similarly, αβ
ξ RSM is a similar

submodule of M of index m′n, where m′ is a divisor of m. The diagrams of Fig. 2.2 show

that the indices ℓ and j both divide m and n, hence j = ℓ = 1, which implies β
ηSM ⊆M and

α
ξRM ⊆ M . As αRM and βSM are primitive by assumption, ξ and η and thus γ = ξη are

units, which proves that αβRSM is a primitive submodule. �

Moreover, as the Dirichlet convolution of an arithmetic function f(n) with a multiplicative

function g(n) is multiplicative if and only if f(n) is multiplicative, we get

Lemma 2.3.9. Let ScalM (E) be a PID. Then bM (n) is multiplicative if and only if bprM (n)

is multiplicative.

The condition that ScalM (E) is a PID is necessary in general. For if S is some ring of

algebraic integers with 1 ∈ S, thenM = S is a one-dimensional module, which has exactly one

primitive similar submodule, namely M itself. Hence bprM (n) = δn1 is multiplicative, whereas
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M
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Figure 2.2. Diagrams of submodule relationships to illustrate the proof of

Corollary 2.3.8. The letters beside the lines indicate the index.

bM (n) is the number of principal ideals of S with index n. However, this function is in general

not multiplicative, unless S is a PID.

Let us summarise these results for the special case of lattices.

Theorem 2.3.10. Let Γ ⊆ Rd be a lattice. Then bprΓ (n) and bΓ (n) are supermultiplicative

arithmetic functions. Moreover, bΓ (n) is multiplicative if and only if bprΓ (n) is multiplicative.

We conclude this section by a comparison of generating functions for closely related mod-

ules. It follows from the previous sections that modules in the same similarity class possess

the same number of (primitive) submodules and thus have the same generating function.

Moreover, if Γ is a lattice, then Γ and Γ ∗ have the same number of sublattices of a given

index – recall that [Γ : αRΓ ] = [Γ ∗ : αR−1Γ ∗]. Hence
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Lemma 2.3.11. For any lattice Γ ⊆ Rd

ΦΓ ∗(s) = ΦΓ (s) = Φpr
Γ (s)ζ(ds).(2.35)

More important is the connection between the generating functions of commensurate

modules.

Theorem 2.3.12. Let M be a module of rank k and let N be a submodule of M with index

m. Then ΦM (s) and ΦN (s) have the same abscissa of convergence σ ≤ k, and for all real

s > σ one has the inequalities

1

mks
ΦM (s) ≤ ΦN (s) ≤ mksΦM (s).(2.36)

Proof. From Theorem 2.2.3 we know mScalM (R) ⊆ ScalN (R) ⊆ 1
m ScalM (R). The

chain of inclusions mαRM ⊆ αRN ⊆ N ⊆ M tells us [N : αRN ] = m−k[M : mαRM ] for

any α ∈ ScalN (R) and similarly [M : βRM ] = m−k[N : mβRN ] for any β ∈ ScalM (R). Now

we make use of the fact that ΦM (s) can be expressed as a sum over all similar submodules of

M :

ΦM (s) =
∑

L SSM of M

1

[M : L]s
(2.37)

For sufficiently large Re(s)s the series converges and if, in addition, s is real, all terms are

positive. Hence

ΦN (s) =
∑

L SSM of N

1

[N : L]s
≤ mks

∑

L′ SSM of M

1

[M : L′]s
= mksΦM (s).(2.38)

A similar calculation gives the other inequality. Together they show that both functions have

the same abscissa of convergence σ. The bound on σ follows from the fact that the Dirichlet

series counting all sublattices of a free Z-module of rank k has abscissa of convergence k. �

For lattices, an analogous theorem holds for the generating function counting the primitive

sublattices.

Corollary 2.3.13. Let Γ ⊆ Rd be a lattice and let Λ be a sublattice of Γ with index m.

Then ΦΓ (s) and ΦΛ(s) have the same abscissa of convergence σ ≤ d and for all real s > σ

1

mds
ΦΓ (s) ≤ ΦΛ(s) ≤ mdsΦΓ (s).(2.39)



CHAPTER 3

Coincidence site lattices and modules

3.1. Basic notions and properties

In crystallography, the intersection Γ ∩ RΓ plays an important role in describing grain

boundaries. If Γ ∩RΓ is a lattice of full rank, it is called a coincidence site lattice (CSL). As

we have seen, the intersection Γ ∩RΓ has full rank if and only if Γ and RΓ are commensurate.

This motivates the following definition.

Definition 3.1.1. LetM ⊆ Rd be a free Z-module of finite rank, and let R ∈ O(d,R). If

M and RM are commensurate, M(R) :=M ∩RM is called a coincidence site module (CSM).

In this case, R is called a coincidence isometry. The corresponding index ΣM (R) := [M :

M(R)] is called its coincidence index.

Here, we follow closely the notation of [4] and adapt it to modules where appropriate. As

commensurateness is an equivalence relation, we find

Theorem 3.1.1. The set of all coincidence isometries

OC(M) := {R ∈ O(d,R) | M and RM are commensurate}(3.1)

forms a group, a subgroup of O(d,R).

Note that OC(M) contains the symmetry group O(M) ofM as a subgroup. In particular,

O(M) is exactly the group of all coincidence isometries of index ΣM (R) = 1. We will also

use the notation

SOC(M) := {R ∈ OC(M) | detR = 1}(3.2)

for the group of all orientation preserving coincidence isometries (coincidence rotations).

As commensurateness is an equivalence relation, we immediately get

Lemma 3.1.2. The OC-groups are equal for commensurate modules. In particular, all

sublattices of a lattice Γ have the same group of coincidence isometries.

We have seen that similar modules have conjugated OS-groups. An analogous result is

valid for coincidence isometries as well.

Lemma 3.1.3. Similar modules have conjugated OC-groups. In particular,

OC(αRM) = R OC(M)R−1.(3.3)

Moreover,

ΣαRM (S) = ΣM (R−1SR).(3.4)

27
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Unsurprisingly, there is also a close connection between a lattice and its dual lattice.

Lemma 3.1.4. Let Γ ∗ be the dual lattice of a lattice Γ ⊆ R

d. Then OC(Γ ∗) = OC(Γ )

and ΣΓ ∗(R) = ΣΓ (R) for all R ∈ OC(Γ ).

Proof. As two lattices are commensurate if and only if their duals are commensurate,

Γ ∗ and RΓ ∗ are commensurate if and only if Γ and RΓ are commensurate. Hence it follows

immediately from its definition that OC(Γ ∗) = OC(Γ ). The equality of indices follows from

[Γ ∗ : Γ ∗(R)] = [Γ ∗ : (Γ +RΓ )∗] = [Γ +RΓ : Γ ] = [Γ : Γ (R)].(3.5)

�

An interesting observation is that the coincidence indices of a coincidence isometry and

its inverse are the same. For lattices, this fact can be proved by geometric arguments [4],

which we will repeat here.

Lemma 3.1.5. Let Γ ⊆ Rd be a lattice. For any R ∈ OC(Γ )

ΣΓ (R) = ΣΓ (R
−1).(3.6)

Proof. Here, the key is the fact that [Γ : Γ (R)] can be interpreted geometrically, i.e. it

is the ratio of the volume of fundamental cells of Γ (R) and Γ . As isometries preserve the

volume, we have

ΣΓ (R) = [Γ : Γ (R)] = [RΓ : Γ (R)] = [RΓ : Γ ∩RΓ ] = [Γ : R−1Γ ∩ Γ ] = ΣΓ (R
−1).(3.7)

�

This idea does not work for the module case due to the lack of a suitable fundamental

domain. Hence we use a more algebraic way to prove the next result.

Theorem 3.1.6. Let M ⊆ Rd be a free Z-module of finite rank. For any R ∈ OC(M)

ΣM (R) = ΣM (R−1).(3.8)

Proof. Any module M ⊆ R

d of rank k is isomorphic to some lattice Γ ⊆ R

k, and R

induces a linear transformation A inRk. Clearly, ΣM (R) = [M :M∩RM ] = [Γ : Γ∩AΓ ], and
R−1 induces the linear map A−1, so ΣM (R−1) = [Γ : Γ ∩A−1Γ ] = [AΓ : Γ ∩AΓ ]. However, A
is in general not orthogonal, hence we cannot immediately infer [Γ : Γ ∩AΓ ] = [AΓ : Γ ∩AΓ ].
Nevertheless, this equation holds: Let P (A) be the characteristic polynomial of A. As Γ and

AΓ are commensurate, P (A) has rational coefficients. Our aim is to show that the constant

term is ±1, as this means detA = ±1 and hence [Γ : Γ ∩AΓ ] = [AΓ : Γ ∩AΓ ]. We do this by

proving that P is either a polynomial with symmetric coefficients, i.e. P (x) = xkP
((

1
x

))
, or

satisfies P (x) = −xkP
((

1
x

))
. Let λ be an eigenvalue of R. Then λ is a root of P , and hence

the minimal polynomial pλ of λ over Q divides P . As |λ| = 1 and pλ has real coefficients, λ̄

is a root of pλ and thus pλ is the minimal polynomial of λ̄ = 1
λ . Denoting the degree of pλ

by ℓ, we see that xℓpλ
(
1
x

)
= cpλ(x) for some c ∈ Q. But c = ±1, since ξ−1 is a root of pλ for

any root ξ of pλ. Let Q be the product of all different pλ, so Q(x) = ±xmQ
(
1
x

)
, where m is
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the degree of Q. Clearly, Q divides P . Moreover, Q(R) = 0, and hence Q(A) = 0. Thus P is

a product of powers of pλ, whence P (x) = ±xkP (
(
1
x

)
as claimed. �

We have seen that a moduleM and a submodule ofM have the same group of coincidence

isometries. However, we cannot expect their coincidence indices to be the same. Nevertheless,

their coincidence indices are closely related. In particular, there exist certain upper and lower

bounds. Our first result reads as follows

Lemma 3.1.7. Let N be a submodule of M of index m. Then ΣM (R) divides mΣN (R).

Proof. As N(R) ⊆M(R) ⊆M , the coincidence index ΣM (R) divides

[M : N(R)] = [M : N ][N : N(R)] = mΣN (R).

�

The reverse inequality is true as well. There is a particularly short proof for the case of

lattices, so we state this case first.

Lemma 3.1.8. Let Λ be a sublattice of Γ ⊆ Rd of index m. Then ΣΛ(R) divides mΣΓ (R)

and ΣΓ (R) divides mΣΛ(R).

Proof. It is a well-known property of dual lattices that Λ ⊆ Γ implies Γ ∗ ⊆ Λ∗. Since

ΣΓ (R) = ΣΓ ∗(R) for any lattice Γ , the result now follows immediately from Lemma 3.1.7. �

For general modules we have to find an alternative proof, since we lack a comparable

notion of dual module. The proof will be of an algebraic nature.

Theorem 3.1.9. Let N be a submodule of M of index m. Then ΣM (R) divides mΣN (R)

and ΣN (R) divides mΣM (R).

Proof. It remains to show that ΣN (R) divides mΣM (R). To this end we use the coset

decomposition

M =
m⋃

i=1

ti +N,

where t1, . . . , tm is a set of coset representatives with t1 = 0. Then

M(R) =
m⋃

i=1

m⋃

j=1

(ti +N) ∩R(tj +N).(3.9)

Now one can show that (ti + N) ∩ R(tj + N) is either empty or a coset of N(R), which we

write as vij + N(R), see [49, 50] for details. Clearly, the cosets vij + N(R) are pairwise

disjoint. Let I be the set of all pairs (i, j) such that (ti +N)∩R(tj +N) is non-empty. Now

let (i, j), (k, ℓ) ∈ I and let (p, q) be the index pair defined by

tp +N = ti + tk +N and tq +N = tj + tℓ +N.

Then (tp+N)∩R(tq+N) = vij+vkℓ+N(R) shows {p, q} ∈ I, and in particular, vpq+N(R) =

vij+vkℓ+N(R). This shows that J := {(ti+N, tj+N) | (i, j) ∈ I} forms a group, a subgroup
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of (M/N)×(M/N). This means that the order of J divides m2, i.e. |J | = m2

n for some integer

n. Now |J | = m2

n is also the number of nonempty intersections (ti+N)∩R(tj+N) in Eq. (3.9),

or in other words, [M(R) : N(R)] = |J | = m2

n . Now

ΣM (R) = [M :M(R)] =
[M : N ][N : N(R)]

[M(R) : N(R)]
=

m

|J |ΣN (R) =
n

m
ΣN (R)(3.10)

shows that ΣN (R) divides mΣM (R). �

An alternative proof of this theorem, which gives a more detailed expression for ΣM (R)

in terms of ΣN (R), can be found in [50]. This proof is closely related to the theory of

colour groups and thus allows an interpretation in terms of coincidences of coloured lattices,

see [50, 51] for more on this topic.

In the previous proof intersections of the form (ti+N)∩R(tj+N) have occurred. These are

special cases of expression occurring in connection with affine coincidences and coincidences

of multilattices, see [50, 49, 52] for more on these topics.

Theorem 3.1.9 gives us some bounds on the coincidence index of a submodule. In certain

cases we can even get sharper bounds.

Theorem 3.1.10. Let N be a submodule of M of index m. Let R ∈ OC(M) be such that

N ∩R(t+N) = ∅ for all t ∈M \N . Then ΣN (R) divides ΣM (R).

Proof. Let I and J be as above. Now I contains exactly one pair of the form (1, j),

namely (1, 1). The group properties guarantee that I contains at most one pair (i, j) for any

i. Hence J is isomorphic to a subgroup of M/N , which means that |J | divides m in this case,

and an application of Eq. (3.10) yields the result. �

For an interpretation of this result in terms of colourings we refer again to [50, 51]. In

fact, this result corresponds to the notion of “colour coincidence”.

This theorem is only useful in practice, if it is reasonably easy to check the condition

N ∩ R(t + N) = ∅ for all t ∈ M \ N . This is possible if the points of N and M \ N lie on

different shells, i.e. if the sets {|x|
∣∣x ∈ N} and {|x|

∣∣x ∈M \N} are disjoint. By this means,

it is possible to show that the three classes of cubic lattices have the same coincidence indices.

Indeed, let Γpc = Z

3, where the index pc indicates that this lattice is a primitive cubic

lattice, and let us consider the body-centred cubic lattice Γbcc = Z

3 + (u + Z3), where u =
1
2(1, 1, 1). Here, Γpc ⊂ Γbcc is a sublattice of index 2 and one easily verifies that |x|2 is an

integer for all x ∈ Γpc and 4|x|2 ≡ 3 (mod 4) for all x ∈ Γbcc \Γpc. Hence an application of the

theorem shows that Σpc(R) divides Σbcc(R). The reverse divisibility property can be obtained

by considering the dual lattice Γ ∗
bcc, which is a face centred cubic lattice. In particular, |x|2

is even for all x ∈ Γ ∗
bcc and odd for all x ∈ Γpc \ Γ ∗

bcc. Hence, we have proved the following

result.

Theorem 3.1.11. Let Γpc, Γbcc, ΓfccR
3 be primitive, body centred, and face centred cubic

lattices. Then

Σpc(R) = Σbcc(R) = Σfcc(R)(3.11)
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for all R ∈ OC(Γpc) = OC(Γbcc) = OC(Γfcc).

Note that this result was already proved in [39]. For more on cubic lattices see Section 3.5

and the references mentioned there.

3.2. Connection between similar submodules and coincidence site modules

We expect interesting relations between similar submodules and coincidence site submod-

ules, since the notion of commensurateness plays an important role in both cases. Indeed,

there is a close relationship between both types of submodules.

Lemma 3.2.1. Let M ⊆ Rd be a finitely generated free Z-module. Then

(1) R ∈ OC(M) if and only if 1 ∈ scalM (R).

(2) R ∈ O(M) if and only if 1 ∈ ScalM (R).

Proof. By definition, R ∈ OC(M) if and only if M and RM are commensurate, which

in turn is equivalent to 1 ∈ scalM (R). For the second statement, note that R ∈ O(M) is

equivalent to M = RM , which is equivalent to 1 ∈ ScalM (R). �

By virtue of Theorem 2.1.8, the condition 1 ∈ scalM (R) is equivalent to scalM (R) =

scalM (E). This means that OC(M) is the kernel of the homomorphism φ mentioned in

Theorem 2.1.13. Thus we have

Theorem 3.2.2. The kernel of the homomorphism

φ : OS(M) → R

+/(scalM (E) ∩R+),(3.12)

R 7→ scalM (R) ∩R+

is the group OC(M). Thus OC(M) is a normal subgroup of OS(M) and OS(M)/OC(M) is

Abelian.

This theorem was first proved for lattices in [34] and later generalised for S-lattices in [33].

If M ⊆ R

d is a lattice or an S-lattice, all elements of OS(M)/OC(M) have finite order.

In particular, their order is a divisor of d, see [34, 33]:

Theorem 3.2.3. Let M ⊆ R

d be a lattice or an S-lattice. Then the factor group

OS(M)/OC(M) is the direct sum of cyclic groups of prime power orders that divide d.

This does not hold in general – recall Example 2.1.1. There scalM (E) = Q∗, but |η|n /∈ Q
for all n ∈ N.

Example 3.2.1. OC(M) may be very small compared to OS(M). Let us consider Ex-

ample 2.1.1 further. Z[η] is the ring of integers of the number field Q(η). It is a Euclidean

domain and hence a PID [21, Table B.3]. Its discriminant is −135, and hence only 3 and 5

are ramifying primes. In particular, we have 3 = η−2(1 − η)3 and 5 = η−2(1 + η)(1 − 2η)2,

where η−1 = 3 + η2 is a fundamental unit. Hence SOS(Z[η]) is an infinite Abelian group

isomorphic to C2 × C3 × Z(ℵ0), where the factor C2 is due to the roots ±1 of unity and C3
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corresponds to the prime (−1 + η). Note that the primes over 5 do not give rise to a finite

factor but contribute a factor Z.

On the other hand, SOC(Z[η]) consists of all z ∈ Q(η) such that |z|2 = 1. But as Q(η)

is a cubic field, the only numbers that satisfy |z|2 = 1 must be rational, i.e. z = ±1. Thus,

SOC(Z[η]) = {±1}, i.e. SOC(Z[η]) contains only the symmetry rotations and there are no

further coincidence rotations. This shows that SOS(Z[η])/ SOC(Z[η]) ∼ C3 × Z(ℵ0). Hence

apart from a finite number of exceptions all elements of the factor group have infinite order.

Lemma 3.2.4. For any R ∈ OC(M)

ΣM (R) ∈ ScalM (R) ∩ ScalM (R−1).(3.13)

Moreover, ScalM (R) is an ideal of ScalM (E).

Proof. As ΣM (R) = [M :M(R)] = [RM :M(R)], we infer

ΣM (R)RM ⊆M(R) ⊆M,(3.14)

which proves ΣM (R) ∈ ScalM (R). As ΣM (R) = ΣM (R−1), we obtain ΣM (R) ∈ ScalM (R−1),

and Eq. (3.13) follows. �

If ScalM (E) = Z, we can characterise ScalM (R) by the denominator denM (R). In fact,

an immediate consequence of Lemma 3.2.4 is

Corollary 3.2.5. If ScalM (E) = Z, then denM (R) is a positive integer for any R ∈
OC(M).

On the other hand, to each R ∈ OC(M) there corresponds another positive integer,

namely ΣM (R). Hence we can expect that there are some connections between ΣM (R) and

denM (R). In order to explore this connection, we need a variant of Theorem 2.1.20.

Lemma 3.2.6. Let M ⊆ R

d be a free Z-module of rank k such that ScalM (E) = Z. For

any R ∈ OC(M), the denominator denM (R−1) divides denM (R)k−1. If Γ ⊆ R

d is a lattice,

then denΓ (R
−1) divides denΓ (R)

d−1.

Proof. Since R ∈ OC(M), we have [RM : M(R)] = [M : M(R)] by Theorem 3.1.6.

Thus

[M : denM (R)RM ] =
[M : denM (R)M(R)]

[denM (R)RM : denM (R)M(R)]
= denM (R)k,(3.15)

and now an application of Theorem 2.1.20 gives the result. �

Note that the requirement R ∈ OC(M) is essential, since Eq. (3.15) does not hold in

general. As a counterexample we recall Example 2.1.1, where [M : ηM ] = 1 6= |η|3.

Theorem 3.2.7. If M is a free Z-module of rank k with ScalM (E) = Z, then for any

R ∈ OC(M)

(1) lcm
(
denM (R), denM (R−1)

)
divides ΣM (R);

(2) ΣM (R) divides gcd
(
denM (R), denM (R−1)

)k
.
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Proof. Part 1 is an immediate consequence of Lemma 3.2.4. For part 2, we use

denM (R)RM ⊆M ∩RM =M(R),(3.16)

where denM (R)RM ⊆ RM is due to the fact that denM (R) is a positive integer. Calculating

the respective indices shows that ΣM (R) divides denM (R)k. Since ΣM (R) = ΣM (R−1),

ΣM (R) divides denM (R−1)k as well, which yields (2). �

Theorem 3.2.8. If M is a free Z-module of rank k with ScalM (E) = Z, then ΣM (R)2

divides lcm
(
denM (R), denM (R−1)

)k
for any R ∈ OC(M).

Proof. Let m := lcm
(
denM (R), denM (R−1)

)
. Then

mM +mRM ⊆M ∩RM ⊆M(3.17)

shows that ΣM (R) divides [M : mM +mRM ] = mk

Σ
M

(R) . �

Combining Theorem 3.2.7 and 3.2.8 we get

Theorem 3.2.9. Let Γ be a lattice in R2. Then

ΣΓ (R) = denΓ (R).(3.18)

3.3. Multiple coincidences

So far we only have considered intersections of two commensurate lattices, but there is no

reason to restrict the discussion to this case. In fact, intersections of more than two isometric

commensurate copies of a lattice or a module have been discussed already in [6, 75, 15].

There are various reasons to do so. On the one hand, they naturally occur in the discussion

of the counting functions for CSMs, see Section 3.4 and compare [76]. On the other hand,

they are important in crystallography in connection with multiple junctions [30, 29, 31].

Another interesting application arises in the theory of lattice quantizers where one usually

deals with rather complex lattices. There one hopes to simplify the problem by representing

a complex lattice as the intersection of simpler lattices [24, 65].

Definition 3.3.1. LetM ⊆ Rd be a free Z-module of finite rank and let Ri, i ∈ {1, . . .m}
be coincidence isometries of M . Then the module

M(R1, . . . , Rm) :=M ∩R1M ∩ . . . ∩RmM =M(R1) ∩ . . . ∩M(Rm)(3.19)

is called a multiple CSM (MCSM). Its index in M is denoted by Σ(R1, . . . , Rm).

In order to distinguish CSMs of the type M(R) =M ∩RM from multiple CSMs, we will

occasionally use the term simple or ordinary CSM for M(R).

Note that Σ(R1, . . . , Rm) is finite since M(R1, . . . , Rm) is a finite intersection of mu-

tually commensurate modules [4]. In particular, an immediate consequence of the second

isomorphism theorem is
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Lemma 3.3.1.

Σ(R1, R2) =
Σ(R1)Σ(R2)

Σ+(R1, R2)
,(3.20)

where Σ+(R1, R2) is the index of the direct sum M+(R1, R2) =M(R1) +M(R2) in M .

More generally, we have the following relation.

Lemma 3.3.2.

Σ(R1, . . . , Rm) =
Σ(R1, . . . , Rm−1)Σ(Rm)

Σ+(R1, . . . , Rm−1;Rm)
,(3.21)

where Σ+(R1, . . . , Rm−1;Rm) is the index of M+(R1, . . . , Rm−1;Rm) = M(R1, . . . , Rm−1) +

M(Rm) in M . In particular, Σ(R1, . . . , Rm) divides Σ(R1) · . . . ·Σ(Rm).

3.4. Counting coincidence site lattices and modules

We have already considered the problem of counting similar submodules. We have been

able to reduce this problem to the problem of determining a certain factor group of similarity

isometries. This was possible since there was a bijection between similarity isometries (up to

a certain group) and similar submodules. Unfortunately, the same approach does not work

in the case of CSMs, as different coincidence isometries may generate the same CSM.

We first observe that isometries related by a symmetry operation yield the same coinci-

dence site module:

Lemma 3.4.1. Let R ∈ OC(M), and let S be a symmetry operation, i.e. S ∈ O(M). Then

M(R) =M(RS).

The converse is not true. As an example, we consider the orthorhombic lattice Γ , which

is spanned by the vectors e1, 2e2, 2e3, where e1, . . . , e3 is an orthonormal basis of R3. Let

R be the isometry that interchanges e1 and e3 and leaves e2 fixed, whereas S shall be the

reflection that interchanges e1 and e2 and leaves e3 fixed. We find Γ (R) = Γ (S) = (2Z)3,

but R and S are not related by a symmetry operation, as RS−1 is a rotation that permutes

all three basis vectors. To make things even worse, consider the dual lattice Γ ∗, which is

the Z-span of the vectors e1,
1
2e2,

1
2e3. We know that it has the same OC-group as Γ , and

the coincidence indices are the same as well. However, in this case, the two CSLs differ. In

particular, Γ ∗(R) is the lattice spanned by e1,
1
2e2, e3, whereas Γ

∗(S) is a lattice that has the

basis vectors e1, e2,
1
2e3.

Nevertheless, there are several important lattices and modules for which there is a bijec-

tion between OC(M)/O(M) and the set of coincidence modules. This includes the square

and triangular lattice and several modules with N -fold symmetry in the plane, and the cubic

lattices in three-dimensional space.

Although we do not know, in general, whether two coincidence isometries generate the

same CSM, we can give some necessary conditions. Clearly, a necessary condition for equality

is that the coincidence indices are the same. In the case of lattices, we can formulate another

necessary condition.
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Lemma 3.4.2. Let Γ be a lattice. Assume that the two coincidence isometries R1 and

R2 generate the same CSL, i.e., Γ (R1) = Γ (R2). Then Σ(R1) = Σ(R2) and den(R−1
1 ) =

den(R−1
2 ).

Proof. The statement about Σ is trivial. For the denominator observe that

den(R−1
1 )Γ ⊆ Γ (R1) = Γ (R2) ⊆ R2Γ.(3.22)

Thus

den(R−1
1 )R−1

2 Γ ⊆ Γ,(3.23)

which shows that den(R−1
1 ) is a multiple of den(R−1

2 ). By symmetry, den(R−1
2 ) is a multiple

of den(R−1
1 ) as well, and the claim follows. �

We stress that the condition den(R−1
1 ) = den(R−1

2 ) involves the denominators of R−1
1 and

R−1
2 and not R1 and R2 themselves. In fact, the corresponding condition den(R1) = den(R2)

does not hold in general, as is shown by the following example.

Let us consider the lattice Γ spanned by the vectors e1, 2e2, 4e3, 4e4, where the ei form

an orthonormal basis. Then R1 : ei 7→ ei+1 (mod 4) and R2 : e1 7→ e3, e2 7→ e2, e3 7→ e1, e4 7→
e4 generate the same CSL of index 4, spanned by the vectors 4e1, 2e2, 4e3, 4e4, but their

denominators are different: den(R1) = 2 6= 4 = den(R2).

As we have seen, we have two distinct counting problems, so we have to introduce two

different counting functions. Let cM (n) be the number of coincidence site modules of index n,

and let cisoM (n) be the function counting the coincidence isometries up to symmetry operations,

i.e. the number of elements of OC(M)/O(M) that have index n. For lattices, O(Γ ) is finite,

so the number of coincidence isometries is given by |O(Γ )|cisoΓ (n) in this case. Likewise, we

use the notation crotM (n) if we want to count orientation preserving isometries only. Note that

cisoM (n) = crotM (n), whenever O(M) contains an orientation reversing isometry.

Correspondingly, we introduce the generating functions

ΨM (s) =
∑

n∈N

cM (n)

ns
(3.24)

and

Ψiso
M (s) =

∑

n∈N

cisoM (n)

ns
.(3.25)

Obviously, cisoM (n) is an upper bound for cM (n), in other words

cM (n) ≤ cisoM (n).(3.26)

We have seen that the counting functions for similar submodules are supermultiplicative,

so we might expect that cM (n) and cisoM (n) are supermultiplicative as well, which they are.

To prove this, we first need a theorem about the coincidence index of a product R1R2. We

start with a lemma on arbitrary products R1R2.

Lemma 3.4.3. ΣM (R1R2) divides ΣM (R1)ΣM (R2).
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Proof. The relations between the CSMs M(R1),M(R2) and M(R1R2) are shown in

Fig. 3.1, where we have set m := ΣM (R1) and n := ΣM (R2). Clearly, M(R1) + R1M(R2)

M R1M R1R2M

M(R1) +M(R1R2)
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tt
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Figure 3.1. Relations between CSMs and their indices

is a submodule of R1M with index p, say. Likewise, M(R1R2) ⊇ M ∩ R1M ∩ R1R2M ,

with index q, say. It follows immediately from the diagram that ΣM (R1R2) divides mn =

ΣM (R1)ΣM (R2). �

If ΣM (R1) and ΣM (R2) are coprime, the diagram simplifies and we get the stronger result

Theorem 3.4.4. If ΣM (R1) and ΣM (R2) are coprime, then

ΣM (R1R2) = ΣM (R1)ΣM (R2).(3.27)

Proof. It is clear from Fig. 3.1 that p and q divide both m and n. Since m and n are

coprime this implies p = q = 1, and Fig. 3.1 simplifies considerably, the result is shown in

Fig. 3.2. In particular, we read off M(R1R2) =M ∩R1M ∩R1R2M and ΣM (R1R2) = mn =

ΣM (R1)ΣM (R2). �

Note that the condition that ΣM (R1) and ΣM (R2) are coprime is essential. In general

we cannot expect equality. A simple counter example is given by R2 = R−1
1 , if ΣM (R1) > 1,

since ΣM (R) = ΣM (R−1) holds for any R by Theorem 3.1.6 and ΣM (E) = 1.

A byproduct of the previous proof is

M R1M =M(R1) +R1M(R2) R1R2M

M(R1)

m
♣♣♣♣♣♣♣♣♣♣♣

m
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mn
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mn

Figure 3.2. Relations between CSMs with ΣM (R1) and ΣM (R2) coprime
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Corollary 3.4.5. If ΣM (R1) and ΣM (R2) are coprime, then

M(R1R2) =M ∩R1M ∩R1R2M =M(R1) ∩R1M(R2).(3.28)

This result is rather technical but plays an important role in the following, since it relates

M(R1R2) with some kind of multiple CSMs and provides the basis for something like a “prime

decomposition” of CSMs. In fact, it is the analogue of the similar submodule αRβSM that

we have encountered in the proof of Theorem 2.3.7.

Since the proof of the supermultiplicativity of cisoM (n) is simpler than that of cM (n), we

start with the former.

Theorem 3.4.6. The arithmetic function cisoM (m) is supermultiplicative, i.e. cisoM (mn) ≥
cisoM (m)cisoM (n) if m and n are coprime.

Proof. Given isometries R,S with coprime indices m,n, respectively, we know that

ΣM (RS) = mn by Theorem 3.4.4. Thus, if Ri, i ∈ {1, . . . , cisoM (m)} and Sk, k ∈ {1, . . . , cisoM (n)}
are complete sets of not symmetry related coincidence isometries, it suffices to show that

RiSk and RjSℓ are not symmetry related unless both i = j and k = ℓ. I.e., we want to show

that RiSk = RjSℓQ for some Q ∈ O(M) if and only if both R−1
j Ri = E and S−1

k Sℓ = E

(which implies evenQ = E). Lemma 3.4.3 guarantees that the indices of R̃ := R−1
j Ri and

S̃ := SℓQS
−1
k are divisors of m2 and n2, respectively. Hence they are coprime. But this

implies 1 = ΣM (E) = ΣM (R̃S̃) = ΣM (R̃)ΣM (S̃), which can be only satisfied for ΣM (R̃) =

ΣM (S̃) = 1. Since Ri and Rj are not symmetry related unless i = j, we obtain Ri = Rj .

This in turn means Sk = SℓQ, proving that Sk and Sℓ are symmetry related, which implies

k = ℓ as claimed. �

To prepare for the more complicated case of cM (m), we need the following lemma.

Lemma 3.4.7. Assume that ΣM (R) =: m and ΣM (S) =: n are coprime. Then

nM ∩M(RS) = nM(R) and mRM ∩M(RS) = mRM(S).(3.29)

Proof. We start with the first equality. First note that nM ⊆ M(S). Hence using

Corollary 3.4.5, we see

nM ∩M(RS) = nM ∩M ∩RM ∩RSM = nM ∩RM(S) ⊇ nM ∩ nRM = nM(R).(3.30)

We assume that M is a module of rank k. Since [M : nM ] = nk and ΣM (RS) = [M :

M(RS)] = mn the index [M : nM ∩M(RS)] must be a multiple of nkm. On the other hand,

[M : nM(R)] = nkm must be a multiple of [M : nM∩M(RS)], which shows that both indices

are the same and we must have equality in Eq. (3.30).

The proof of the second equality is similar. First note that ΣM (R) = ΣM (R−1) = m

guarantees mRM ⊆M . Hence another application of Corollary 3.4.5 gives

mRM ∩M(RS) = mRM ∩RSM ⊇ mRM(S).

Again, index considerations show that equality must hold, which establishes our claim. �
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This lemma does not only tell us that we can recoverM(R) andM(S) fromM(RS) alone

but it also tells us how to do so: just by taking the intersection of M(RS) with a suitable

similar submodule of M . Now supermultiplicativity of cM (m) is almost immediate.

Theorem 3.4.8. The arithmetic function cM (m) is supermultiplicative, i.e. cM (mn) ≥
cM (m)cM (n) if m and n are coprime.

Proof. We proceed as in the proof of Theorem 3.4.6 and replace the considerations on

symmetry related isometries by an application of Lemma 3.4.7. Taking a complete set of

cM (m) isometries Ri that generate all different CSMs of index m and likewise a complete

set of cM (n) isometries Sk we only need to show that RiSk and RjSℓ generate different

CSMs unless i = j and k = ℓ. Assume M(RiSk) = M(RjSℓ). Now Lemma 3.4.7 tells us

M(Ri) = M(Rj) and hence Ri = Rj . Another application of it gives RiM(Sk) = RiM(Sℓ),

hence k = ℓ, which proves our claim. �

There are several mechanisms that could destroy multiplicativity. First, there may be

isometries Q of index ΣM (RS) = mn that cannot be written as a product Q = RS with

ΣM (R) = m and ΣM (S) = n. As an example, we mention Γ = 2Z × 3Z. Here cisoΓ (6) =

crotΓ (6) = cΓ (6) = 1, but cisoΓ (2) = crotΓ (2) = cΓ (2) = 0 = cisoΓ (3) = crotΓ (3) = cΓ (3). Further

examples can be found in [27].

Secondly, two isometries R,R′ that generate the same CSM M(R) =M(R′) may give rise

to different CSMsM(RS) andM(R′S). This is no problem as long as R and R′ are symmetry

related. In this case, the set {M(R′Sk)} is just a permutation of {M(RSk)}, if Sk runs over a

complete set of Sk. However, if R and R′ are not symmetry related, additional CSMs might

occur.

Given the close relationship of similar submodules and coincidence site modules, one might

be tempted to assume that the counting functions bprM (n) and bM (n) for similar submodules

are multiplicative if and only if the corresponding counting functions cM (n) and cisoM (n) are

multiplicative. However, this is not true, not even for the special case of lattices. In fact,

similar sublattices seem to be more sensitive to violation of multiplicativity than CSMs. E.g.,

for Γ = Z × 5Z, multiplicativity is violated for bprΓ (n) and bΓ (n) while cΓ (n) and cisoΓ (n) are

still multiplicative [12, 27].

We now know that cM (n) and cisoM (n) are in general supermultiplicative, and we have seen

examples, where they are not multiplicative. Nevertheless, cM (n) and cisoM (n) are multiplica-

tive for many important examples.

An interesting question is whether there exist some criteria for multiplicativity and the

answer is positive. A first hint is given by known examples in d ≤ 4. For root lattices in d ≤ 4,

the multiplicity functions f(m) and f iso(m) are usually multiplicative. The reason is that

these lattices are related to principal ideal domains (and thus unique factorisation domains)

of algebraic integers or quaternions. So we expect that some kind of unique factorisation

property is essential. In fact, we can prove the following criterion.

Theorem 3.4.9. The following statements are equivalent:
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(1) The arithmetic function cM (m) is multiplicative.

(2) Every (ordinary) CSM M(R) can be written (uniquely) as M(R) = M(R1) ∩ . . . ∩
M(Rn), where the indices ΣM (Ri) are powers of distinct primes.

(3) Every MCSM M(R1, . . . , Rn) of order n can be written (uniquely) as

M(R1, . . . , Rn) = M1 ∩ . . . ∩ Mk, where the Mk are MCSMs of order at most n

and whose indices Σk are powers of distinct primes.

Note that Lemma 3.4.7 guarantees the uniqueness of the decompositionM(R) =M(R1)∩
. . . ∩M(Rn), if it exists.

Proof. We prove the equivalence of (1) and (2) first and show the equivalence of (2)

and (3) afterwards.

(1)⇒(2) It is sufficient to show that every CSMM(Q) withΣM (Q) = mn form,n coprime can

be written as M(Q) = M(R) ∩M(S), where ΣM (R) = m and ΣM (S) = n. There

are cM (m) distinct CSMs M(Ri) of index m and correspondingly cM (n) distinct

CSMs M(Sj) of index n. We know from the proof of Theorem 3.4.8 that they give

rise to cM (m)cM (n) distinct CSMsM(RiSj). Multiplicativity guarantees thatM(Q)

is one of them, so there exist R,S′ such that M(Q) = M(RS′) with ΣM (R) = m

and ΣM (S′) = n. Correspondingly there exist S,R′ with M(Q) = M(SR′) and

ΣM (R′) = m, ΣM (S) = n. From Corollary3.4.5 we infer M(Q) = M(RS′) ⊂ M(R)

and M(Q) =M(SR′) ⊂M(S), which gives M(Q) ⊆M(R)∩M(S). Comparing the

indices shows that equality must hold.

(2)⇒(1) It is sufficient to prove (a version of) submultiplicativity. Let m = ps11 · · · psnn be the

prime decomposition of m. By assumption, every CSM of index m can be written

as intersection M(R) = M(R1) ∩ . . . ∩M(Rn) with ΣM (Ri) = psii . But there are

at most cM (ps11 ) · · · cM (psnn ) such intersections, hence cM (m) ≤ cM (ps11 ) · · · cM (psnn ).

Together with supermultiplicativity this gives multiplicativity.

(2)⇒(3) M(R1, . . . , Rn) is the intersection of n ordinary CSMs, which can be written as

M(Ri) =M(R
(1)
i )∩. . .∩M(R

(Ki)
i ), where the indices ΣM (R

(j)
i ) are powers of distinct

primes for every fixed i. Hence, M(R1, . . . , Rn) is an intersection of ordinary CSMs

of prime power index, and for every prime p there are at most n CSMs which have

an index a power of p. Thus combining them appropriately gives the result.

(3)⇒(2) This is trivial, since (2) is just a special case of (3). �

A corresponding criterion for the coincidence isometries exists as well. The formulation

of it is a bit more intricate, since isometries usually do not commute. For CSMs, the decom-

position into its prime power constituents is unique (up to permutation); for isometries, a

decomposition will depend strongly on how the factors are ordered.

First notice that if the coincidence isometry R with ΣM (R) = mn can be factored as

R = R1R2 with ΣM (R1) = m and ΣM (R2) = n coprime, then R1 and R2 are uniquely

determined up to elements of the symmetry group O(M), i.e. all other decompositions are

of the form R = (R1Q)(Q−1R2) with Q ∈ O(M). This can be proved by the same argument
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we used in the proof of Theorem 3.4.6. Note that R2 and Q−1R2 are usually not symmetry

related, whereas R1 and R1Q are.

At this point, it is not clear whether the existence of a decomposition R = R1R2 implies

a decomposition R = R′
2R

′
1, where ΣM (R1) = ΣM (R′

1) = m and ΣM (R2) = ΣM (R′
2) = n.

This motivates the following definitions.

We call a bijection π = {p1, p2 . . .} from the positive integers onto the prime numbers

an ordering of the prime numbers. We call a decomposition of a coincidence isometry R =

R1 · · ·Rn a π–decomposition of R if ΣM (Ri) is a power of pi for any i (we allow ΣM (Ri) =

p0i = 1). It is clear that any π–decomposition is unique up to point group elements.

Theorem 3.4.10. The following statements are equivalent:

(1) The arithmetic function cisoM (m) is multiplicative.

(2) There exists an ordering π of the prime numbers such that any coincidence isometry

R has a (unique) π–decomposition.

(3) For any ordering π of the prime numbers there exists a π–decomposition of every

coincidence isometry R.

Proof. It is sufficient to prove the following three implications.

(1)⇒(3) Let R be a coincidence isometry of index m = ps11 · · · psnn . By assumption, there are

cisoM (m) = cisoM (ps11 ) · · · cisoM (psnn ) inequivalent coincidence isometries of index m. Here,

we call two isometries R and S inequivalent, if there does not exist an isometry

Q ∈ O(M) such that R = SQ. But there are also cisoM (ps11 ) · · · cisoM (psnn ) inequivalent

products of the form R1 · · ·Rn with ΣM (Ri) = psii . Hence R must be one of them.

Since the order of the prime factors does not matter, our claim is proved.

(3)⇒(2) Statement (2) is a trivial logical implication of (3).

(2)⇒(1) We use again submultiplicativity. It is not difficult to check that there are at most

cisoM (ps11 ) · · · cisoM (psnn ) inequivalent products R1 · · ·Rn with ΣM (Ri) = psii for a given

ordering π, hence there are at most and hence exactly cisoM (ps11 ) · · · cisoM (psnn ) inequiva-

lent coincidence isometries of index m = ps11 · · · psnn . �

Given these two quite similar criteria we may expect that there is some connection between

the multiplicativity of cM (n) and cisoM (n). In fact, we can prove

Theorem 3.4.11. The arithmetic function cM (m) is multiplicative if cisoM (m) is.

Proof. The multiplicativity of cisoM (m) guarantees a π–decomposition of R for every π.

In particular, if m = qs11 · · · qsnn is the prime decomposition of m, we can find orderings

πi = {p(i)1 , p
(i)
2 , . . .} such that p

(i)
1 = qi. Now let Ri be the first factor of the πi–decomposition

of R. Then M(R) =M(R1) ∩ . . . ∩M(Rn) by familiar arguments. �

It is worth to comment on the various decompositions that occur here. For simplicity we

assume that only two prime powers are involved, say Σ(R) = pr11 p
r2
2 . Then the multiplicativity

of f iso(m) guarantees the existence of two decompositions R = R1S1 and R = R2S2 with

Σ(R1) = pr11 = Σ(S2) and Σ(R2) = pr22 = Σ(S1). In this case, the unique decomposition of
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M(R) reads M(R) = M(R1) ∩M(R2). So given the decompositions of R we immediately

get the decomposition of M(R). However, it does not work the other way round. So given

a decomposition of M(R) we do not get any information on the decompositions of R, even

if we would know that they exist. It is thus not surprising that it is still an open question

whether the converse of Theorem 3.4.11 is true or not.

Actually, our proofs on the criteria for multiplicativity show a bit more. Even if cM (m)

and cisoM (m) are not multiplicative, the multiplicativity property might be satisfied for some

integer combinations. In these situations the following results may be useful. The analogue

of Theorem 3.4.9 reads

Lemma 3.4.12. Let m and n be coprime. The following are equivalent:

(1) cM (mn) = cM (m)cM (n).

(2) Every CSM M(R) of index ΣM (R) = mn can be written as M(R) =M(R1)∩M(R2)

with ΣM (R1) = m, ΣM (R2) = n.

(3) Every MCSMM(R1, . . . , Rℓ) of order ℓ can be written (uniquely) asM(R1, . . . , Rℓ) =

M1 ∩M2, where the M1 and M2 are MCSMs of order at most ℓ and whose indices

are Σ1 = m and Σ2 = n, respectively.

Similarly, we can generalize Theorem 3.4.10.

Lemma 3.4.13. Let m and n be coprime. The following are equivalent:

(1) cisoM (mn) = cisoM (m)cisoM (n).

(2) Every coincidence rotation R of index ΣM (R) = mn can be written as R = R1R2

with ΣM (R1) = m, ΣM (R2) = n.

If multiplicativity is present for some integer combinations, it is quite common that it holds

true for certain primes and all its powers. Thus it makes sense to generalize Lemma 3.4.12

further. In fact, the following lemma is an immediate consequence of Lemma 3.4.12.

Lemma 3.4.14. Let µ and ν be coprime. Let 〈µ〉 be the set of all m that divide some power

of µ. Then the following are equivalent:

(1) cM (mn) = cM (m)cM (n) for all m ∈ 〈µ〉 and n ∈ 〈ν〉.
(2) Every (ordinary) CSM M(R) of index ΣM (R) = k with k ∈ 〈µν〉 can be written

(uniquely) as M(R) =M(R1)∩M(R2), such that ΣM (R1) ∈ 〈µ〉 and ΣM (R2) ∈ 〈ν〉.
(3) Every MCSM M(R1, . . . , Rℓ) of order ℓ and index k with k ∈ 〈µν〉 can be written

(uniquely) as M(R1, . . . , Rℓ) =M1 ∩M2, where M1 and M2 are MCSMs of order at

most ℓ and indices Σ1 ∈ 〈µ〉 and Σ2 ∈ 〈ν〉, respectively.
In a similar way we can generalize Lemma 3.4.13.

Lemma 3.4.15. Let µ and ν be coprime. Let 〈µ〉 be the set of all m that divide some power

of µ. The following are equivalent:

(1) cisoM (mn) = cisoM (m)cisoM (n) for all m ∈ 〈µ〉 and n ∈ 〈ν〉.
(2) Every coincidence rotation R of index ΣM (R) = k with k ∈ 〈µν〉 can be written as

R = R1R2, where ΣM (R1) ∈ 〈µ〉, ΣM (R2) ∈ 〈ν〉.
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3.5. Coincidences of the cubic lattices

The three-dimensional cubic lattices are among the most important lattices in crys-

tallography. Thus their coincidences have been studied for a long time by crystallogra-

phers [58, 36, 39, 17, 37]. Later, they have been studied in a mathematical context [4, 73].

Here, the key tool is the ring of Hurwitz quaternions, since it turns out that any coincidence

rotation of a three-dimensional cubic lattice can be parametrised by Hurwitz quaternions; see

also [10] and references therein for some background.

Traditionally, one starts with primitive cubic lattices, partly due to the fact that these

lattices allow the easiest treatment with elementary methods. We will deviate from this

tradition here, as the body centred lattice allows for the nicest description of its coincidence

site lattices.

We have introduced the cubic lattices at the end of Section 3.1 already. Let us recall

that we have defined Γpc = Z

3 and Γbcc = Z

3 + (u+ Z3), where u = 1
2(1, 1, 1). Furthermore,

Γfcc := Γ ∗
bcc is the root lattice A3.

As the quaternions are pivotal in the following, we want to sum up their most important

properties here. For details we refer to the literature [47, 23, 45, 41].

Let {e, i, j,k} be the standard basis of R4, where e = (1, 0, 0, 0)T , i = (0, 1, 0, 0)T ,

j = (0, 0, 1, 0)T , and k = (0, 0, 0, 1)T . The quaternion algebra over R is the associative divi-

sion algebra H := H(R) = Re+Ri+Rj+Rk ∼= R4, where multiplication is defined by the

relations

i2 = j2 = k2 = ijk = −e.

Elements of H are called quaternions, and a quaternion q is written as either q = q0e+ q1i+

q2j+ q3k or q = (q0, q1, q2, q3). Given two quaternions q and p, their inner product is defined

by the standard scalar product of q and p as vectors in R4.

The conjugate of a quaternion q = (q0, q1, q2, q3) is q = (q0,−q1,−q2,−q3), and its norm

is |q|2 = q q = q20 + q21 + q22 + q23 ∈ R. It is easy to verify that q p = p q and |q p|2 = |q|2|p|2 for

any q, p ∈ H. A quaternion whose components are all integers is called a Lipschitz quaternion.

The set L of Lipschitz quaternions shall be denoted by

L = {(q0, q1, q2, q3) ∈ H : q0, q1, q2, q3 ∈ Z} .(3.31)

A primitive Lipschitz quaternion q is a quaternion in L whose components are relatively

prime. On the other hand, a Hurwitz quaternion is a quaternion whose components are all

integers or all half-integers. The set J of Hurwitz quaternions is given by

J =
{
(q0, q1, q2, q3) ∈ H : q0, q1, q2, q3 ∈ Z or q0, q1, q2, q3 ∈ 1

2 + Z
}
= L ∪ [(12 ,

1
2 ,

1
2 ,

1
2) + L].

(3.32)

We call q ∈ J a primitive Hurwitz quaternion (or J-primitive or primitive for short), if 1
nq ∈ J

with n ∈ N implies n = 1. We note that the norm |q|2 of any Hurwitz quaternion is an integer.

If |q|2 is odd, we call q an odd quaternion, otherwise an even one.
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Given a quaternion q = (q0, q1, q2, q3), its real part and imaginary part are defined as

Re q = q0 and Im q = q1i + q2j + q3k, respectively. The imaginary space of H is the three-

dimensional subspace ImH = {Im q : q ∈ H} ∼= R

3 of H. For ease of notation, we will

identify ImH and R3 and, in addition, also the elements (q1, q2, q3) ∈ ImH with the elements

(0, q1, q2, q3) ∈ H.

Similarly, Γbcc
∼= ImJ and Γpc

∼= ImL, which indicates that Γbcc may be easier to deal

with, since J is a maximal order and a principal ideal ring, whereas L is not.

Any rotation in R3 can be parametrised by a quaternion q ∈ H with q = (κ, λ, µ, ν) via

R(q) =
1

|q|2



κ2 + λ2 − µ2 − ν2 −2κν + 2λµ 2κµ+ 2λν

2κν + 2λµ κ2 − λ2 + µ2 − ν2 −2κλ+ 2µν

−2κµ+ 2λν 2κλ+ 2µν κ2 − λ2 − µ2 + ν2


 .(3.33)

In particular, we have R(q)x = 1
|q|2 qxq̄ for any x ∈ R3. Clearly, this parametrisation – which

is called Cayley’s parametrisation – is not unique, but one can prove that it is unique up to

a scaling factor.

The first step in determining the CSLs of Γ is the determination of OC(Γ ). Since the

point reflection I : x 7→ −x is a symmetry operation of all three-dimensional lattices, it is

actually sufficient to determine SOC(Γ ).

Theorem 3.5.1. Let Γ be any of the three cubic lattices Γpc, Γbcc, Γfcc. Then

OC(Γ ) = OS(Γ ) = O(3,Q).(3.34)

Proof. It follows from Theorem 3.2.3 that all elements of OS(Γ )/OC(Γ ) have an order

that divides 3. On the other hand, the cubic lattices are rational lattices, which implies that all

elements of OS(Γ )/OC(Γ ) have an order at most 2. Thus we have indeed OC(Γ ) = OS(Γ ).

Moreover, as Γ is commensurate to Z3, the elements of OC(Γ ) are exactly the rational

orthogonal matrices. �

As any rotation in O(3,Q) can be parametrised by a rational quaternion, we can

parametrise the coincidence rotations by primitive Lipschitz or Hurwitz quaternions. Con-

trary to the traditional approach, we opt for primitive Hurwitz quaternions here; compare [4].

Using Eq. (3.33) we get

Lemma 3.5.2. For any cubic lattice Γ , we have denΓ (R(q)) =
|q|2
2ℓ

, where q is a primitive

Hurwitz quaternion and ℓ is the maximal exponent such that 2ℓ
∣∣|q|2.

Note that ℓ is either 0 or 1, depending on whether |q|2 is odd or even. If one chooses to

use primitive Lipschitz quaternions, one gets ℓ ∈ {0, 1, 2} instead.

Theorem 3.5.3. For any cubic lattice Γ , we have

ΣΓ (R(q)) = denΓ (R(q)) =
|q|2
2ℓ
,(3.35)

where q is a primitive Hurwitz quaternion and ℓ is the maximal exponent such that 2ℓ
∣∣|q|2.
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Proof. From Theorem 3.2.7, we know that ΣΓ (R(q)) is a multiple of denΓ (R(q)) =
|q|2
2ℓ

and a divisor of denΓ (R(q))
2. As the latter is odd, so is ΣΓ (R(q)), and it is therefore sufficient

to show that ΣΓ (R(q)) divides |q|2. By Theorem 3.1.11, the coincidence indices are the same

for all cubic lattices. Hence it suffices to prove Σbcc(R(q)) divides |q|2. Since R(q) Im(xq) =

Im(qx) it follows that Im(qJ) ⊆ Γbcc(R(q)). Hence Γbcc(R(q)) divides [ImJ : Im(qJ)]. The

index [J : qJ] = |q|4 can be easily calculated, as well as [J∩ReH : (qJ)∩ReH] = |q|2, where
ReH has to be understood as the real axis. Hence [ImJ : Im(qJ)] = [J:qJ]

[ReJ:Re(qJ)] = |q|2, and
thus Γbcc(R(q)) divides |q|2. �

If denΓ (R(q)) is square-free, then there exists a very simple alternative proof. As

denΓ (R) = denΓ (R
−1) for the cubic lattices, Theorem 3.2.8 tells us that ΣΓ (R)

2 divides

denΓ (R)
3, and as denΓ (R) is square-free, we infer ΣΓ (R) = denΓ (R).

The previous proof shows even more. If |q|2 is odd, then Γbcc(R(q)) = |q|2 = [ImJ :

Im(qJ)] and hence Im(qJ) = Γbcc(R(q)).

Theorem 3.5.4. If q is a primitive Hurwitz quaternion with |q|2 odd, then

Γbcc(R(q)) = Im(qJ).(3.36)

If |q|2 is not odd, then q can be written as q = rs with r, s ∈ J, where |r|2 is odd and

|s|2 = 2ℓ. As R(s) is a symmetry operation of Γbcc, we see Γbcc(R(q)) = Γbcc(R(r)) = Im(rJ).

An analogous result exists for the primitive cubic lattice Z3.

Theorem 3.5.5. If q is a primitive Lipschitz quaternion with |q|2 odd, then

Γpc(R(q)) = Im(qL).(3.37)

Again, we can find a quaternion r ∈ L such that Γpc(R(q)) = Im(rJ) if |q|2 is even.

This shows that any CSL of Z3 is the projection Im(qJ) of an ideal qJ of J. On the other

hand, whenever q is an odd primitive Lipschitz quaternion, Im(qJ) is a CSL of Z3. If we can

show that there is a bijection between the set of ideals {qJ | q is primitive and odd} and the

set of CSLs, then we can easily count the CSLs of a given index, as the number of ideals of a

fixed index is well-known [66]. The first step into this direction is the following result.

Lemma 3.5.6. Let q, r ∈ J such that |q|2 and |r|2 are odd. Then Im(qJ) ⊆ Im(rJ) if and

only if qJ ⊆ rJ.

Proof. Only the “only if” part is non-trivial. Im(qJ) ⊆ Im(rJ) implies that |r|2 divides

|q|2. Now
Im(rJ) = Im(rJ) + Im(qJ) = Im(rJ+ qJ) = Im(sJ),

shows that |r|2 = |s|2, where s is the greatest common left divisor of r and q. Hence s−1r ∈ J,
but as |s−1r| = 1, it must be a unit. Thus qJ ⊆ sJ = rJ. �

From this we infer

Corollary 3.5.7. Let q, r ∈ J such that |q|2 and |r|2 are odd. Then Im(qJ) = Im(rJ) if

and only if qJ = rJ.
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In other words, we have proved

Lemma 3.5.8. The map qJ 7→ Γbcc(R(q)), which maps the set of right ideals generated by

primitive quaternions with |q|2 odd onto the set of CSLs of Γbcc, is a bijection.

We can now write down the counting function for the number of CSLs explicitly. However,

before doing so let us mention that analogous results can be proved for the other cubic lattices

as well. In case of the primitive cubic lattice we observe that Im(qL) = Im(qJ) ∩ ImL for

any primitive Lipschitz quaternion q with |q|2 odd. Using Theorem 3.5.5 the following fact is

an immediate consequence of Lemma 3.5.8:

Lemma 3.5.9. The map qL 7→ Γpc(R(q)) = Im(qL), which maps the set of right ideals

generated by primitive Lipschitz quaternions with |q|2 odd onto the set of CSLs of Γbcc, is a

bijection.

Actually, we can reformulate these results to stress the common features of the three types

of cubic lattices:

Theorem 3.5.10. Let Γa be a cubic lattice, a ∈ {bcc, pc, fcc}. The map qJ 7→ Γa(R(q)) =

Im(qJ) ∩ Γa, which maps the set of right ideals generated by primitive quaternions with |q|2
odd onto the set of CSLs of Γa, is a bijection.

Proof. From Γa(R(q)) ⊆ Γa and Γa(R(q)) ⊆ Γbcc(R(q)) = Im(qJ) we see Γa(R(q)) ⊆
Im(qJ)∩Γa. Index considerations show that we have even Γa(R(q)) = Im(qJ)∩Γa. Now the

theorem is a consequence of the bijection in Lemma 3.5.8, where index considerations confirm

that Im(qJ) = Im(q′J) holds if and only if Im(qJ) ∩ Γa = Im(q′J) ∩ Γa. �

We return now to the arithmetic functions counting the number of CSLs and coincidence

isometries, where we use cbcc(n) := cΓbcc
(n) for sake of simplicity. Using the bijections from

above between ideals and CSLs we get the following results:

Corollary 3.5.11. cisobcc(n) = cbcc(n) = cisopc (n) = cpc(n) = cisofcc(n) = cfcc(n).

As J is a principal ideal ring and thus has an essentially unique prime factorisation, cΓ (n)

is multiplicative [66]. In particular, we have

cΓ (p
r) = (p+ 1)pr−1(3.38)

if p is prime. Hence, we obtain an explicit expression for the generating function; see also [4].

Theorem 3.5.12. For any cubic lattice Γ ⊆ R

3, we have ΨΓ (s) = Ψiso
Γ (s) = Ψcub(s),

which is given by the equation

Ψcub(s) =
∞∑

m=1

cΓ (n)

ms
=
∏

p 6=2

1 + p−s

1− p1−s
=

1

1 + 2−s
· ζJ(s/2)
ζ(2s)

=
1− 21−s

1 + 2−s

ζ(s)ζ(s− 1)

ζ(2s)
(3.39)

= 1 + 4
3s + 6

5s + 8
7s + 12

9s + 12
11s + 14

13s + 24
15s + 18

17s + 20
19s + 32

21s + 24
23s + · · ·
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Here, we have made use of

ζ
J

(s) =
∑

I⊆J

1

[J : I]s
= (1− 21−2s)ζ(2s)ζ(2s− 1),(3.40)

which is the ζ-function of the algebra J of Hurwitz quaternions [66, 60], which counts the

right ideals of J. As two-sided ideals only generate the trivial CSL Γ (R) = Γ , they do not

contribute to ΨΓ (s). This is reflected by the factors 1
1+2−s and 1

ζ(2s) , which correspond to the

two-sided ideals generated by (1, 1, 0, 0) and (n, 0, 0, 0), respectively.

It follows from the properties of the Riemann ζ-function that ΨΓ (s) is a meromorphic

function of s. In particular, ΨΓ is analytic in the half plane Re(s) ≥ 2, and its right-most

pole is located at s = 2. Using the theorem of Delange (see Theorem 7.A.1), we get the

asymptotic growth behaviour

∑

n≤x

cΓ (n) =
3x2

π2
+ O(x2).(3.41)

In contrast to the CSLs of the square and triangular lattice in the plane, the CSLs of the

cubic lattice usually are no similar sublattices, and usually have lower symmetries, see [73]

for details.

We finally mention that our discussion of the cubic lattices can be generalised to certain

modules related to cubic lattices [11].



CHAPTER 4

Coincidences of the 4-dimensional hypercubic lattices

So far, we have discussed examples in dimensions 2 and 3 only. In the next chapters we

want to discuss some examples in dimension 4 explicitly, in particular, we want to focus on

the hypercubic lattices, the A4-lattice and some modules including the icosian ring.

The key tool are again quaternions. In contrast to the 3-dimensional case, where a sin-

gle quaternion is sufficient to parametrise a rotation, we need a pair of quaternions in 4

dimensions [47, 25]. Again, we identify vectors in R4 and quaternions. Now,

R(p, q) : R4 → R

4, x 7→ R(p, q)x =
1

|pq|pxq̄(4.1)

defines a rotation in R4, whose matrix representation – in abuse of notation it is also noted

as R(p, q) = 1
|pq|M(p, q) – is explicitly given by

M(p, q) =




〈p, q〉 〈pi, q〉 〈pj, q〉 〈pk, q〉
〈p, iq〉 〈pi, iq〉 〈pj, iq〉 〈pk, iq〉
〈p, jq〉 〈pi, jq〉 〈pj, jq〉 〈pk, jq〉
〈p, iq〉 〈pi,kq〉 〈pj,kq〉 〈pk,kq〉




(4.2)

=




ak + bℓ+ cm+ dn −aℓ+ bk + cn− dm −am− bn+ ck + dℓ −an+ bm− cℓ+ dk

aℓ− bk + cn− dm ak + bℓ− cm− dn −an+ bm+ cℓ− dk am+ bn+ ck + dℓ

am− bn− ck + dℓ an+ bm+ cℓ+ dk ak − bℓ+ cm− dn −aℓ− bk + cn+ dm

an+ bm− cℓ− dk −am+ bn− ck + dℓ aℓ+ bk + cn+ dm ak − bℓ− cm+ dn


,

where e = (1, 0, 0, 0)T , i = (0, 1, 0, 0)T , j = (0, 0, 1, 0)T , k = (0, 0, 0, 1)T are the unit quater-

nions introduced in Section 3.5 and, furthermore, p = (k, ℓ,m, n)T and q = (a, b, c, d)T . Here,

〈·, ·〉 denotes the standard inner product in R4.

4.1. Centred hypercubic lattice

In 4 dimensions there are only two types of hypercubic lattices, namely Z4, the primitive

hypercubic lattice, and D4 the centred hypercubic lattice [22]. Note that the dual lattice D∗
4

is similar to D4, which is a special feature of d = 4 — in all other dimensions D∗
n and Dn are

not similar and hence there are three types of hypercubic lattices.

We start with the centred hypercubic lattice D4, which we can identify with the Hurwitz

ring J of integer quaternions. The coincidence isometries of hypercubic lattices have already

been discussed in [74] by some explicit calculations with quaternions. Here, we want to use

47
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a different approach. The main idea is to express the CSLs as a sum of certain ideals of J.

This has two advantages: on the one hand, it gives us an explicit expression for the CSLs,

which makes it easier to determine the number of CSLs, a goal that has not been achieved

in [74], and on the other hand, it yields a method that can be easily adapted for the case of

the A4 lattice and the icosian ring.

As the symmetry group of D4 contains a reflection, the number of coincidence isometries

is twice the number of coincidence rotations of a given index, and all CSLs are generated by

rotations. Hence, we can restrict our discussion to coincidence rotations.

We first observe that R = R(p, q) is a coincidence rotation of J if and only if R ∈ SO(4,Q).

Taking the trace of R(p, q) yields ak
|pq| ∈ Q and similar sums give aℓ

|pq| ,
am
|pq| ,

an
|pq| ∈ Q, which

proves that p is a multiple of an integral quaternion. As R(p, q) is independent of any scaling

factor of p, we may assume w.l.o.g. that p ∈ J. Similarly, it follows that q may be chosen

as q ∈ J. However, not every pair (p, q) ∈ J × J yields a matrix R(p, q) ∈ SO(4,Q). In

fact, R(p, q) ∈ SO(4,Q) if and only if |pq| ∈ N. A pair (p, q) ∈ J × J with |pq| ∈ N is

called admissible. Thus R(p, q) is a coincidence rotation of J if and only if R(p, q) can be

parametrised by an admissible pair of primitive integral quaternions.

However, it turns out that primitive quaternions are not the optimal choice in this case,

and we prefer a suitably scaled pair. First note that |pq|2 is a square in N for an admissible

pair, and so is |pq|2
gcd(|p|2,|q|2)2 . As the two factors |q|2

gcd(|p|2,|q|2) and |p|2
gcd(|p|2,|q|2) are coprime, they

must be squares as well. Hence, we can define the (coprime) integers

αp :=

√
|q|2

gcd(|p|2, |q|2) and αq :=

√
|p|2

gcd(|p|2, |q|2) .(4.3)

Of course (x, y) = (αpp, αqq) defines the same rotation as (p, q). However, we can deal more

easily with (x, y) since |x|2 = |y|2. Moreover, the octuple (x, y) = (αpp, αqq) is primitive

for primitive p and q, in the sense that 1
n(αpp, αqq) ∈ J × J if and only if n ∈ {±1}. This

guarantees that there exist quaternions v, w ∈ J such that 〈x, v〉 + 〈y, w〉 = 1. We shall call

a pair of quaternions with these two properties an extended admissible pair, and denote it by

(pα, qα) = (αpp, αqq).

Clearly, scaling quaternions does not change the rotation R(p, q). On the other hand,

there are a lot of rotations that yield the same CSL, namely all rotations that differ by a

symmetry operation of J only. Let us denote the corresponding group by SO(J) := {R ∈
SO(4,R) | RJ = J}, which is of order 242 = 576. Recall that we call two coincidence rotations

R,R′ symmetry related, if there exists an S ∈ SO(J) such that R′ = RS.

Let us have a closer look on which rotations are symmetry related. It follows from

R(p, q)J = 1
|pq|pJq̄ that R(p, q)J = R(p′, q′)J if and only if

1

|pp′| p̄p
′
J =

1

|qq′|Jq̄q
′.

This means that (p, q) and (pr, qr) are symmetry related if and only if r is a quaternion such

that rJ is a two-sided ideal. Apart from scaling factors and units, the only such non-trivial
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quaternion is r = (1, 1, 0, 0), see [66, 47, 25, 45]. Thus R(p, q)J = R(pr, qr)J, and as

r = (1, 1, 0, 0) is the only prime quaternion of norm |r|2 = 2, we can find for any rotation

R ∈ SOC(J) a pair of quaternions (p, q) with |p|2 and |q|2 odd such that R is symmetry

related to R(p, q). Thus we can confine our considerations to latter rotations and we will call

an extended admissible pair (p, q) with |p|2 and |q|2 odd an odd extended admissible pair. In

addition, we will call a quaternion q ∈ J with odd norm |q|2 an odd quaternion; compare [45].

In fact, we can express all coincidence cite lattices in terms of odd extended admissible

pairs. Our first step in this direction is the following lemma.

Lemma 4.1.1. Let (p, q) be an odd extended admissible pair. Then

pJ+ Jq̄ ⊆ J ∩ pJq̄

|pq| .(4.4)

Proof. Clearly pJ ⊆ J and Jq̄ ⊆ J, thus giving pJ+ Jq̄ ⊆ J. On the other hand (recall

|p|2 = |q|2)

pJ =
pJqq̄

|q|2 ⊆ pJq̄

|q|2 =
pJq̄

|pq| ,(4.5)

and a similar argument for Jq̄ yields pJ+ Jq̄ ⊆ pJq̄
|pq| . �

The first step for the converse inclusion is the following result, where we return to the

more general case of extended admissible pairs for a moment.

Lemma 4.1.2. Let (p, q) be an extended admissible pair. Then

2

(
J ∩ pJq̄

|pq|

)
⊆ pJ+ Jq̄.(4.6)

Proof. Let x ∈ J ∩ pJq̄
|pq| . Then there exists a y ∈ J such that x = pyq̄

|pq| . Since (p, q) is an

extended admissible pair there exist quaternions v, w ∈ J such that 〈p, v〉+ 〈q, w〉 = 1. Hence

2x = 2(〈p, v〉+ 〈q, w〉)x = 2〈p, v〉x+ 2x〈q, w〉 = pv̄x+ vp̄x+ xqw̄ + xwq̄

= pv̄x+ vyq̄ + pyw̄ + xwq̄ ∈ pJ+ Jq̄,

where we have made use of the identity 〈a, b〉 = 1
2(ab̄+ bā). �

Trivially,

|p|2
(
J ∩ pJq̄

|pq|

)
= |p|2J ∩ pJq̄ ⊆ pJ+ Jq̄.(4.7)

If we restrict again to odd extended admissible pairs, we get

J ∩ pJq̄

|pq| = 2

(
J ∩ pJq̄

|pq|

)
+ |p|2

(
J ∩ pJq̄

|pq|

)
⊆ pJ+ Jq̄,(4.8)

since |p|2 is odd. Hence we have proved
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Theorem 4.1.3. Let (p, q) be an odd extended admissible pair. Then

J ∩ pJq̄

|pq| = pJ+ Jq̄,(4.9)

i.e. each CSL of the centred hypercubic lattice is of the form pJ + Jq̄ for a suitable odd

extended admissible pair.

As we have an explicit expression for our CSLs now, we can explicitly calculate their

indices. So our task is to find the index of pJ + Jq̄ for any odd extended admissible pair

(p, q).

We start with the following observation.

Lemma 4.1.4. Let (p, q) be an odd extended admissible pair. Then Σ(R(p̄, q))Σ(R(p, q)) =

|p|4.

Proof. First note

pJ ⊆ pJ+ Jq̄ = J ∩ pJq̄

|pq| ⊆ J.(4.10)

pJ is a similar sublattice of J with index [J : pJ] = |p|4. On the other hand [J : J ∩ pJq̄
|pq| ] =

Σ(R(p, q)) is the coincidence index of R(p, q). Moreover

[pJ+ Jq̄ : pJ] =

[
J+

p̄Jq̄

|pq| : J
]
=

[
J : J ∩ p̄Jq̄

|pq|

]
= Σ(R(p̄, q)),(4.11)

where we have used the well known trick of applying the second isomorphism theorem. Thus

Σ(R(p̄, q))Σ(R(p, q)) = |p|4.(4.12)

�

Our next aim is to prove Σ(R(p̄, q)) = Σ(R(p, q)), which gives us the explicit value of

Σ(R(p, q)). Note that it is sufficient to prove that Σ(R(p, q)) divides |p|2, as the result then

follows from the lemma.

Lemma 4.1.5. Let (p, q) be a primitive admissible pair of odd quaternions and (pα, qα) its

extension. Then [J : pαJ+ Jq̄α] divides |pα|2.

Proof. We start with the case αp = αq = 1, i.e., |pα|2 = |p|2 = |q|2 = |qα|2. As the

result is trivial if p and q are units, we may assume |p|2 = |q|2 > 1.

Since [J : pJ] = [J : Jq̄] we cannot have pJ ⊇ Jq̄ unless pJ = Jq̄. But the latter

would imply that pJ is a two-sided ideal, which is ruled out by the requirement that p is

primitive and odd (and not a unit). Thus there exists a minimal integer 1 < m ∈ N such

that mJq̄ ⊆ pJ. As |p|2Jq̄ = p(p̄Jq̄) ⊆ pJ, the integer m must divide |p|2. Our aim is to show

m = |p|2. Let g = gcld(m, p) be the greatest common left divisor of m and p. Clearly, gcld

is defined only up to units, but this does not matter. We can write p = gh, where h ∈ J is

primitive since p is primitive. Note that m = |g|2 and hence h is a unit if and only if m = |p|2.
Now, mJq̄ ⊆ pJ implies ḡJq̄ ⊆ hJ and hence ḡJq̄ + hJq̄ ⊆ hJ. As h and ḡ have no common
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left divisor – otherwise p would not be primitive – we infer hJ ⊇ ḡJq̄ + hJq̄ = Jq̄. Right

multiplication by J yields hJ ⊇ Jq̄J. Since the latter is a two-sided ideal, and q is primitive

and odd, we must have Jq̄J = J. But this implies J ⊆ hJ, form which we infer that h must

be a unit and hence m = |p|2 as claimed.

Now, m = |p|2 is the smallest integer such that mJq̄ ⊆ pJ. This means that there exists

a quaternion x ∈ Jq̄ such that kx /∈ pJ for any 0 < k < m. Hence the index [pJ+ Jq̄ : pJ] is

a multiple of m = |p|2, which in turn yields that [J : pJ+ Jq̄] must be a divisor of |p|2. This
settles the case αp = αq = 1.

Let us turn to the general case. The idea is to reduce the problem to the case αp = αq = 1.

First we define the greatest common left divisor gp = gcld(p, αq) = gcld(pα, αq), where the

last equation holds because αp and αq are coprime. Similarly, we define the greatest common

left divisor gq = gcld(q, αp) = gcld(qα, αp) and use the decompositions p = gphp and q = gqhq.

As p and q are primitive, so are gp and gq. Together with αq being a divisor of |p|2 this implies

|gp|2 = αq, and analogously we get |gq|2 = αp. Hence

pαJ+ Jq̄α = pαJ+ pαJq̄ + pJq̄α + Jq̄α = p(Jαp + Jq̄α) + (αqJ+ pαJ)q̄(4.13)

= pJḡq + gpJq̄ = gp(hpJ+ Jh̄q)ḡq.

Thus

[J : (pαJ+ Jq̄α)] = α2
pα

2
q [J : (hpJ+ Jh̄q)].(4.14)

Note that |hp|2 = |p|2
αq

6= |hq|2 = |q|2
αp

, so we cannot apply our known result yet. To

circumvent this problem, we define the greatest common divisors kp := gcld(hp, |hq|2) =

gcld(hp, |hp|2, |hq|2) = gcld(hp, gcd(|p|2, |q|2) and kq := gcld(hq, |hp|2). Now we can write

hpJ+ Jh̄q = hpJ+ |hp|2J+ J|hq|2 + Jh̄q =(4.15)

= (hpJ+ |hq|2J) + (Jh̄q + J|hp|2) = kpJ+ Jk̄q,

Note that both kp and kq have the same norm, in particular,

|kp|2 = |kq|2 = gcd(|hp|2, |hq|2) =
|p|2
α2
q

=
|q|2
α2
p

= gcd(|p|2, |q|2).(4.16)

Thus we can apply the results of part 1 and obtain that

[J : (pαJ+ Jq̄α)] = α2
qα

2
p[J : (kpJ+ Jk̄q)]

is a divisor of α2
qα

2
p
|p|2
α2
q
= |pα|2, which proves the theorem also for the general case. �

Combining the last two lemmas we have proved:

Theorem 4.1.6. Let (p, q) be an odd extended admissible pair. Then Σ(R(p, q)) = |p|2.

Remark 4.1.1. It may be useful to formulate the index in terms of primitive admissible

pairs. Let p, q be primitive odd quaternions with extended pair (pα, qα) = (αpp, αqq). Then

Σ(R(p, q)) = α2
p|p|2 = α2

q |q|2 = αpαq|pq| = lcm(|p|2, |q|2) = α2
pα

2
q gcd(|p|2, |q|2).(4.17)
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Note that |pq| is the denominator of R(p, q). This shows that in general den(R) and Σ(R) do

not coincide for the lattice D4, which is in contrast to the three-dimensional cubic latices. In

fact, den(R) = Σ(R) holds if and only if αp = αq = 1.

Our next task is to count the number of coincidence isometries of D4. Since the point

group of D4 contains 24
2 = 576 rotations, the number of coincidence rotations of a given index

n can be written as 576 crotD4
(n). As mentioned above, the number of coincidence isometries is

twice this number, i.e. 1152 crotD4
(n).

By the previous theorem, counting the number of coincidence rotations is equivalent to

counting the number of odd extended admissible pairs. We first observe that crotD4
(n) is a

multiplicative function, which follows from the essentially unique prime decomposition in J.

Indeed, if (p, q) and (r, s) are odd extended admissible pairs with |p|2 = m and |r|2 = n and

m,n coprime, then (pr, qs) is an odd extended admissible pair with |pr|2 = mn. On the other

hand, any odd extended admissible pair (p, q) with |p|2 = mn can be decomposed into odd

extended admissible pairs with index m and n, respectively. As this decomposition is unique

up to units, multiplicativity follows.

Thus we need to compute crotD4
(n) only for prime powers πr. As odd extended admissible

pairs consist of odd quaternions only, crotD4
(2r) = 0. It is now a purely combinatorial task

to determine crotD4
(πr). The number of primitive quaternions p with norm |p|2 = πr is given

by 24f(πr) with f(πr) = (π + 1)πr−1 for r ≥ 1, compare Eq.(3.38). Any odd extended

admissible pair (p, q) with |p|2 = πr can be obtained from a primitive admissible pair (p1, q1)

with |p1|2 = πr
′
, |q1|2 = πr

′′
, r = max(r′, r′′), r′ − r′′ even. Hence

crotD4
(πr) = f(πr)2 + 2

[r/2]∑

s=1

f(πr)f(πr−2s) =
π + 1

π − 1
πr−1(πr+1 + πr−1 − 2).(4.18)

We can summarise this as follows:

Theorem 4.1.7. The number of coincidence rotations of D4 of a given index n is given

by 576 crotD4
(n), where crotD4

(n) is a multiplicative arithmetic function, which is completely de-

termined by crotD4
(2r) = 0 for r ≥ 1 and

crotD4
(pr) =

p+ 1

p− 1
pr−1(pr+1 + pr−1 − 2) if p is an odd prime, r ≥ 1.(4.19)

The multiplicativity of crotD4
(n) guarantees that the corresponding Dirichlet series generat-

ing function can be written as an Euler product:

Ψrot
D4

(s) =
∞∑

n=1

crotD4
(n)

ns
=
∏

p 6=2

(1 + p−s)(1 + p1−s)

(1− p1−s)(1− p2−s)
(4.20)

= 1 +
16

3s
+

36

5s
+

64

7s
+

168

9s
+

144

11s
+

196

13s
+

576

15s
+

324

17s
+

400

19s
+

1024

21s
+ · · · .
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It is remarkable that Ψrot
D4

(s) can be expressed in terms of the cubic generating function ΨΓ (s)

from Eq.(3.39) and thus in terms of Riemann ζ-functions:

Ψrot
D4

(s) = Ψcub(s)Ψcub(s− 1) =
1− 21−s

1 + 2−s

1− 22−s

1 + 21−s

ζ(s)ζ(s− 1)2ζ(s− 2)

ζ(2s)ζ(2s− 2)
(4.21)

This explicit expression shows that Ψrot
D4

(s) is a meromorphic function in the complex plane.

Its rightmost pole is at s = 3 with residue 630
π6 ζ(3). Using the theorem of Delange 7.A.1 we

obtain the asymptotic behaviour

∑

n≤x

crotD4
(n) ∼ 210

π6
ζ(3)x3 ≈ 0.26257x3(4.22)

as x goes to infinity.

Next, we want to calculate the number cD4
(n) of different CSLs of a given index n.

In contrast to the three-dimensional cubic lattices, where we have found ciso(n) = c(n), it

turns out that cD4
(n) and cisoD4

(n) are in general different. Clearly, we have the upper bound

cD4
(n) ≤ crotD4

(n). To determine cD4
(n) we must find out which coincidence rotations generate

the same CSL.

We start with finding necessary conditions. We know from Lemma 3.4.2 that two CSLs

can be the same only if the corresponding coincidence indices are the same. In addition, the

denominators of the inverses must be equal, but as den(R) = den(R−1), we infer that the

denominators must be the same as well. We want to formulate these conditions in terms of

quaternions. Recall from Eq. (4.17) that Σ(R(p, q)) = lcm(|p|2, |q|2) and den(R(p, q)) = |pq|,
if (p, q) is a primitive admissible pair of odd quaternions. Thus, we have the following result.

Lemma 4.1.8. Let (q1, p1) and (q2, p2) be two primitive admissible pairs of odd quaternions.

Then,

J ∩ p1Jq̄1
|p1q1|

= J ∩ p2Jq̄2
|p2q2|

(4.23)

holds only if |p1q1| = |p2q2| and lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2).

Although equal coincidence indices and denominators are necessary for two CSLs to be

equal, these conditions are not sufficient. In fact, we have additional necessary conditions,

which are a bit technical. We have seen above that |pq|J ⊆ J ∩ pJq̄
|pq| , which implies

J ∩ pJq̄

|pq| = pαJ+ Jq̄α + |pq|J = prJ+ Jq̄r ,(4.24)

where

pr := gcld(pα, |pq|) = αp gcld

(
p,

|pq|
αp

)
= αp gcld(p, |pq|)(4.25)

qr := gcld(qα, |pq|) = αq gcld

(
q,

|pq|
αq

)
= αq gcld(q, |pq|).(4.26)
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Note that | gcld(p, |pq|αp
)|2 = |pq|

αp
= |p|2

αq
, which means that |p|2

| gcld(p, |pq|
αp

)|2
= αq is coprime to αp.

This explains the last equation in Eq. (4.25). A simple consequence is

| gcld(p, |pq|)|2 = |pq|
αp

=
|p|2
αq

and |pr|2 = αp|pq| =
α2
p|p|2
αq

,(4.27)

which we mention for later reference here.

Using the notation we have introduced in the proof of lemma 4.1.5 this means

gcld(p, |pq|) = gpkp. These equations suggest that gcld(p, |pq|) and gcld(q, |pq|) play an im-

portant role in deciding whether two CSLs are equal. In fact we have the following result:

Lemma 4.1.9. Let (q1, p1) and (q2, p2) be two primitive admissible pairs of odd quaternions

with |p1q1| = |p2q2| and lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2). Then,

J ∩ p1Jq̄1
|p1q1|

= J ∩ p2Jq̄2
|p2q2|

(4.28)

holds only if gcld(p1, |p1q1|) = gcld(p2, |p2q2|) and gcld(q1, |p1q1|) = gcld(q2, |p2q2|) (up to

units).

The idea of the proof is to show that p1rJ+Jq̄1r = p2rJ+Jq̄2r is only possible if p1r = p2r
and q1r = q2r (up to units). This involves sets of the form rJ + Js̄, with r = gcld(p1r, p2r)

and s = gcld(q1r, q2r). This requires some knowledge on the index of rJ+ Js̄. As we cannot

guarantee that r and s form an odd extended admissible pair, we cannot apply Lemma 4.1.5.

Instead, we need some generalisations of it. For simplicity, we start with two primitive odd

quaternions r and s.

Lemma 4.1.10. If r, s ∈ J are primitive and odd, then [J : (rJ+Js̄)] divides gcd(|r|2, |s|2).

Proof. The proof is similar to the first part of the proof of Lemma 4.1.5, so we can keep

the proof short and omit the details, which can be looked up above. First note that the index

[J : (rJ+Js̄)] certainly divides |r|4, since (rJ+Js̄) ⊇ rJ. Next we determine the minimal m

such that rJ ⊇ mJs̄ is satisfied. As above, we find that this minimal m is given by m = |r|2.
Note that in this step it is crucial that r and s are primitive and odd. Hence there is an

element x ∈ Js̄ of order |r|2 in Js̄/(rJ ∩ Js̄). This implies that [(rJ + Js̄) : rJ] is at least

m = |r|2, i.e. [J : (rJ + Js̄)] must divide [J:rJ]
|r|2 = |r|2. Similarly, [J : (rJ + Js̄)] must divide

|s|2, and hence [J : (rI+ Js̄)] divides gcd(|r|2, |s|2), as claimed. �

As gcld(p1r, p2r) and gcld(q1r, q2r) are not primitive in general, we need the following more

general lemma.

Lemma 4.1.11. Let r, s ∈ J be primitive and odd. Furthermore, let β, γ ∈ Z be coprime.

Then [J : (βrJ + Jγs̄)] divides β2sγ
2
r gcd

(
|r|2
γr
, |s|

2

βs

)
, where βs := | gcld(β, s)|2 and γr :=

| gcld(γ, r)|2.
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Proof. Let us define gr := gcld(γ, r) = gcld(γ, βr) and gs := gcld(β, s) = gcld(β, γs)

and decompose r = grkr, s = gsks. Then

βrJ+ Jγs̄ = rJ(β + γs̄) + (γ + βr)Is̄ = rJḡs + grJs̄ = gr(krI+ Ik̄s)ḡs.(4.29)

Hence

[J : (βrJ+ Jγs̄)] = |gr|4|gs|4[J : (krJ+ Jk̄s)] = β2sγ
2
r [J : (krJ+ Jk̄s)](4.30)

divides β2sγ
2
r gcd(|kr|2, |ks|2) by the previous lemma, as K − r and ks are primitive and odd.

Observing |kr|2 = |r|2
γr

and |ks|2 = |s|2
βs

) proves the claim. �

We are ready to prove Lemma 4.1.9 now.

Proof of Lemma 4.1.9. As mentioned above, the idea is to show p1r = p2r and q1r =

q2r (up to units), where pir = αpi gcld(pi, |p1q1|) and qir := αqi gcld(qi, |p1q1|). This proves

even more, as this yields αp1 = αp2 and αq1 = αq2 in addition.

By assumption, we have

p1rJ+ Jq̄1r = p2rJ+ Jq̄2r = p′J+ Jq̄′,(4.31)

where p′ = gcld(p1r, p2r) and q
′ = gcld(q1r, q2r). As p

′ and q′ are in general not primitive, we

write them as p′ = βr and q′ = γs, where r and s are primitive. This fixes r and s up to a sign,

which can be chosen such that β, γ ∈ N. Note that β = gcd(αp1 , αp2) and γ = gcd(αq1 , αq2)

are coprime, as αp1 and αq1 are. Thus we can apply Lemma 4.1.11 to see that the index

[J : (p′J + Jq̄′)] divides β2sγ
2
r gcd

(
|r|2
γr
, |s|

2

βs

)
and hence divides β2sγ

2
r gcd

(
|r|2, |s|2

)
. Actually,

we know the index [J : (p′J+Jq̄′)] explicitly, as this is the coincidence index Σ(p1, p2), a fact

that we will exploit later. For the moment, we just use the upper bound given above.

By Eq. (4.27), |pir|2 = αpi |piqi| = αpi |p1q1|, hence |p′|2 divides gcd(αp1 |p1q1|, αp2 |p1q1|) =
β|p1q1|, which in turn shows that |r|2 divides |p1q1|

β . Similarly, we see that |s|2 divides |p1q1|
γ .

Thus gcd
(
|r|2, |s|2

)
divides gcd

(
|p1q1|
β , |p1q1|γ

)
= |p1q1|

βγ since β and γ are coprime. As βs

divides β and γr divides γ, this shows that [J : (p′J+ Jq̄′)] divides βsγr|p1q1|.
On the other hand, [J : (p′J+Jq̄′)] is just the the coincidence index Σ(R(p1, q1)), which,

according to Eq (4.17), is given by

Σ(R(p1, q1)) = αp1αq1 |p1q1| = αp2αq2 |p1q1|
– note that gcd(|p1|2, |q1|2) = gcd(|p2|2, |q2|2) follows from |p1q1| = |p2q2| and

lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2). Hence αpiαqi |p1q1| must divide βsγr|p1q1|. But βs di-

vides β = gcd(αp1 , αp2) and γr divides γ = gcd(αq1 , αq2). Hence we infer βs = β = αp1 = αp2

and γr = γ = αq1 = αq2 .

Inserting these equations into the arguments above, we see that |p1q1|
αpi

αqi
must divide

gcd
(
|r|2
αqi
, |s|

2

αpi

)
and hence |r|2

αqi
. As |r|2 divides |p1q1|

αpi
this yields |r|2 = |p1q1|

αpi
= | gcld(pi, |p1q1|)|2

by Eq. (4.27). As αp1 = αp2 we see r = gcld (gcld(p1, |p1q1|), gcld(p2, |p1q1|)) and as the norms

are equal we must have r = gcld(p1, |p1q1|) = gcld(p2, |p2q2|) (up to units), as claimed. An

analogous argument for s = gcld(q1, |p1q1|) = gcld(q2, |p2q2|) finishes the proof. �
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Remark 4.1.2. The previous proof shows that αp1 = αp2 and αq1 = αq2 are necessary

conditions for the equality of CSLs as well. We have not included these conditions in the

lemma as they follow from the other conditions. We will prove this claim in the proof of

Theorem 4.1.12 below.

In fact, the necessary conditions we have found so far are also sufficient. We summarise

this as follows; compare [16].

Theorem 4.1.12. Let (q1, p1) and (q2, p2) be two primitive admissible pairs of odd quater-

nions. Then,

J ∩ p1Jq̄1
|p1q1|

= J ∩ p2Jq̄2
|p2q2|

(4.32)

holds if and only if |p1q1| = |p2q2|, lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2), gcld(p1, |p1q1|) =

gcld(p2, |p2q2|) and gcld(q1, |p1q1|) = gcld(q2, |p2q2|) (up to units) hold.

Proof. Of course, the greatest common left divisors are only defined up to multiplication

by a unit from the right. W.l.o.g. we will assume throughout the proof that we have chosen

the units appropriately so that all equations hold exactly.

We know from Theorem 4.1.3 and the proof of Lemma 4.1.5 that the CSLs can be written

as

J ∩ pJq̄

|pq| = pαJ+ Jq̄α = gp(kpJ+ Jk̄q)ḡq,(4.33)

where we have used the notation from Lemma 4.1.5.

As we have shown that the conditions are necessary in Lemma 4.1.8 and Lemma 4.1.9,

it remains to show that the conditions are sufficient. We will do this by checking that they

imply gp1 = gp2 , gq1 = gq2 and kp1 = kp2 , kq1 = kq2 , which will prove our claim via Eq. (4.33).

By definition, we have gp = gcld(p, αq) and kp = gcld(hp, gcd(|p|2, |q|2), which can be

used to verify gcld(p, |pq|) = gcld(p, αpαq gcd(|p|2, |q|2)) = gpkp, and likewise gcld(q, |pq|) =

gqkq. By assumption, gcld(p1, |p1q1|) = gcld(p2, |p2q2|), which yields gp1kp1 = gp2kp2 , and

similarly gcld(q1, |p1q1|) = gcld(q2, |p2q2|) gives gq1kq1 = gq2kq2 . These equations will give

gp1 = gp2 , gq1 = gq2 and kp1 = kp2 , kq1 = kq2 via the unique prime factorisation in J, if we can

prove |kp1 |2 = |kp2 |2 and |kq1 |2 = |kq2 |2 (recall that we have the freedom to choose the units

appropriately).

So it remains to prove |kp1 |2 = |kp2 |2 and |kq1 |2 = |kq2 |2. We know |kpi |2 =

|kqi |2 = gcd(|pi|2, |qi|2) from Eq. (4.16). Hence it is sufficient to show gcd(|p1|2, |q1|2) =

gcd(|p2|2, |q2|2). By assumption, lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2) and |p1q1| = |p2q2|. By

Eq. (4.17) we have lcm(|pi|2, |qi|2) = αpiαqi |piqi|, which gives αp1αq1 = αp2αq2 . Now, we

can invoke lcm(|pi|2, |qi|2) = α2
piα

2
qi gcd(|pi|2, |qi|2) to prove gcd(|p1|2, |q1|2) = gcd(|p2|2, |q2|2),

which concludes this part of the proof.

Let us remark here that gp1 = gp2 , gq1 = gq2 implies αp1 = αp2 and αq1 = αq2 , which gives

|p1|2 = |p2|2 and |q1|2 = |q2|2 in addition. �
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Remark 4.1.3. A more technical but equivalent set of conditions for two CSLs to be

equal is |p1|2 = |p2|2, |q1|2 = |q2|2, gcld(p1, |p1q1|) = gcld(p2, |p2q2|) and gcld(q1, |p1q1|) =

gcld(q2, |p2q2|). It is obvious that the two conditions |p1|2 = |p2|2 and |q1|2 = |q2|2 imply that

the denominators |p1q1| = |p2q2| and coincidence indices lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2)
are the same. The reverse direction is more complicated as the two conditions |p1q1| =

|p2q2| and lcm(|p1|2, |q1|2) = lcm(|p2|2, |q2|2) alone only yield gcd(|p1|2, |q1|2) = gcd(|p2|2, |q2|2)
but not |p1|2 = |p2|2 and |q1|2 = |q2|2 directly. In fact we need the other two conditions

gcld(p1, |p1q1|) = gcld(p2, |p2q2|) and gcld(q1, |p1q1|) = gcld(q2, |p2q2|) to establish |p1|2 = |p2|2
and |q1|2 = |q2|2 as well, as we have seen in the proof above.

We are ready to count the number cD4
(n) of CSLs now. It follows from Theorem 3.4.11

that cD4
(n) is multiplicative, since cisoD4

(n) is multiplicative. As there are no CSLs of even

index, cD4
(n) is completely determined by cD4

(πr) for rational primes π. The latter can be

calculated by counting the number of odd primitive admissible pairs satisfying the conditions

in Theorem 4.1.12 or in Remark 4.1.3. Thus

cD4
(πr) = f(πr)2 + 2

[r/2]∑

s=1

f(πr−s)f(πr−2s),(4.34)

where f(πr) = (π + 1)πr−1 for r ≥ 1, as above. Note that this expression is very similar to

Eq. (4.18), the only difference is that a factor f(πr) is replaced by f(πr−s), where the latter

counts the number of different gcld(p, |pq|) with |p|2 = πr and |q|2 = πr−2s.

Evaluating the sum yields the following result:

Theorem 4.1.13. The number of different CSLs of D4 of a given index n is given by

cD4
(n), where cD4

(n) is a multiplicative arithmetic function, which is completely determined

by cD4
(2r) = 0 for r ≥ 1 and

cD4
(pr) =

{
(p+1)2

p3−1

(
p2r+1 + p2r−2 − 2p(r−1)/2

)
, if r ≥ 1 is odd,

(p+1)2

p3−1
(p2r+1 + p2r−2 − 2pr/2−1 1+p2

1+p ), if r ≥ 2 is even,
(4.35)

for odd primes p. The corresponding Dirichlet series reads

ΨD4(s) =
∞∑

n=1

cD4
(n)

ns
=
∏

p 6=2

1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s

(1− p2−s)(1− p1−2s)
(4.36)

= 1 +
16

3s
+

36

5s
+

64

7s
+

152

9s
+

144

11s
+

196

13s
+

576

15s
+

324

17s
+

400

19s
+

1024

21s
+ · · · .

Unfortunately, there is no nice representation of ΨD4(s) as a product of Riemann ζ-

functions. Nevertheless, we can use Delange’s theorem 7.A.1 to calculate the asymptotic

behaviour.

Note that ΨD4
(s) is quite similar to Ψrot

D4
(s), see Eq. (4.21). In fact, differences between

them occur only for those integers that are divisible by the square of an odd prime. Thus

the rightmost pole of ΨD4
(s) is at s = 3, which is the same as for Ψrot

D4
(s). This implies the
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asymptotic behaviour
∑

n≤x cD4
(n) ∼ cx3 as x goes to infinity for some positive constant c.

To be more specific, we consider the ratio

ΨD4
(s)

Ψrot
D4

(s)
=
∏

p 6=2

(
1− 2

(p2 − 1)p−2s

(1 + p−s)(1 + p1−s)(1− p1−2s)

)
,(4.37)

where the right hand side is an analytic function in the half plane {Re(s) > 3
2} with

γ := lim
s→3

ΨD4
(s)

Ψrot
D4

(s)
=
∏

p 6=2

(
1− 2

(p2 − 1)p−6

(1 + p−2)(1 + p−3)(1− p−5)

)
≈ 0.976966 < 1.(4.38)

Hence
∑

n≤x cD4
(n) grows by a factor γ slower than

∑
n≤x c

rot
D4

(n). In particular, we obtain

∑

n≤x

cD4
(n) ∼ 210

π6
ζ(3)γ x3 ≈ 0.25652x3,(4.39)

as x goes to infinity. This shows that
∑

n≤x c
rot
D4

(n) and
∑

n≤x cD4
(n) differ by less than 2.5%

asymptotically, which means that it is quite rare that two coincidence rotations that are not

symmetry related generate the same CSL.

As we have determined the number of different CSLs, we might ask the question how

many non-equivalent CSLs there are, where we call two CSLs Λ1 and Λ2 equivalent if there

is an R ∈ O(J) such that Λ2 = RΛ1. This question is not completely answered yet, but some

partial answers can be found in [74].

4.2. Primitive hypercubic lattice

Let us consider the primitive hypercubic lattice now, which we will identify with Z4, or

in terms of quaternions, with the ring of Lipschitz quaternions L. As Z4 and D4 are com-

mensurate, they have the same group of coincidence rotations, i.e. SOC(Z4) = SOC(D4) =

SO(4,Q).

Moreover, we have D∗
4 ⊂ Z

4 ⊂ D4, where Z
4 is a sublattice of D4 of index 2. Thus the

coincidence indices of the two lattices can differ at most by a factor 2 by Theorem 3.1.9. This

means that we have either Σ
Z

4 = ΣD4(R) or ΣZ4 = 2ΣD4(R) for a given coincidence rotation

R. Actually, both cases do occur.

This becomes clear immediately, if we recall that the primitive hypercubic lattice Z4, has a

smaller symmetry group than D4, containing only 192 rotations, so that [SO(D4) : SO(Z4)] =

[O(D4) : O(Z4)] = 3. As a consequence, every class of symmetry related coincidence rotations

of D4 splits into three classes of Z4. In particular, all rotations in SO(D4) \ SO(Z4) are

coincidence rotations of Z4 of index 2, so we have one class with coincidence index 1 and two

classes with index 2.

The same pattern emerges for all the other coincidence rotations – and more generally,

for coincidence isometries as well. In particular, every class of symmetry related coincidence

rotations of D4 splits into three classes, one of which has the same coincidence index as before,

Σ
Z

4(R) = ΣD4(R), while the other two classes have index Σ
Z

4(R) = 2ΣD4(R). To see this,



4.2. PRIMITIVE HYPERCUBIC LATTICE 59

we recall that den
Z

4(R) divides Σ
Z

4(R) and Σ
Z

4(R) divides den
Z

4(R)4 by Theorem 3.2.7. So

Σ
Z

4(R) is even if and only if den
Z

4(R) is, or in other words,

Σ
Z

4(R) = lcm (ΣD4(R), denZ4(R)) ,(4.40)

compare [4]. If (p, q) is an odd primitive admissible pair, then we have

den
Z

4(R(p, q)) =

{
|pq| if 〈p, q〉 ∈ Z
2|pq| if 〈p, q〉 /∈ Z,

(4.41)

and if (p, q) is an even primitive admissible pair, then

den
Z

4(R(p, q)) =

{ |pq|
2 if 〈p, q〉 is even

|pq| if 〈p, q〉 is odd.
(4.42)

Checking for all possible combinations of units, we see that indeed every class of symmetry

related coincidence rotations of D4 splits into three classes, one of which has odd denominator

and coincidence index Σ
Z

4(R) = ΣD4(R), while the other two classes have even denominator

and coincidence index Σ
Z

4(R) = 2ΣD4(R).

In order to get an explicit expression for the CSLs we consider the following chain of

inclusions

D∗
4 ∩RD∗

4 ⊆ Z4 ∩RZ4 ⊆ D4 ∩RD4 ∩ Z4 ⊂ D4 ∩RD4(4.43)

for any R ∈ SOC(D4). As ΣD∗
4
(R) = ΣD4(R) by Lemma 3.1.4 and [D4 : D∗

4] = 4, we

conclude that [(D4 ∩ RD4) : (D∗
4 ∩ RD∗

4)] = 4. Moreover, as [D4 : Z4] = 2, this shows

[(D4 ∩ RD4 ∩ Z4) : (D∗
4 ∩ RD∗

4)] = 2, as ΣD4(R) is always odd. Thus, we are left with two

possibilities, Z4∩RZ4 = D4∩RD4∩Z4 = Z4∩RD4, in which case we have Σ
Z

4(R) = ΣD4(R),

or Z4 ∩RZ4 = D∗
4 ∩RD∗

4, where we have Σ
Z

4(R) = 2ΣD4(R) instead.

Let us summarise these results as follows:

Proposition 4.2.1. For any coincidence rotation R ∈ SOC(Z4) the coincidence index is

given by

Σ
Z

4(R) = lcm (ΣD4(R), denZ4(R)) ,(4.44)

which is even if and only if den
Z

4(R) is even. The corresponding CSL is given by

Z

4 ∩RZ4 =

{
(D4 ∩RD4) ∩ Z4 = Z4 ∩RD4 if Σ

Z

4(R) is even,

D∗
4 ∩RD∗

4 if Σ
Z

4(R) is odd.
(4.45)

This allows us to determine the number of coincidence rotations, which is given by

192crot
Z

4 (n), as the symmetry group SO(Z4) has order 192. By the considerations above, each

class of symmetry related coincidence rotations splits into three classes, one with coincidence

index Σ
Z

4(R) = ΣD4(R), and two with index Σ
Z

4(R) = 2ΣD4(R). This gives

crot
Z

4 (n) =

{
crotD4

(n) if n is odd,

2crotD4

(
n
2

)
if n is even.

(4.46)
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As crotD4
(n) is multiplicative, so is crot

Z

4 (n), and the corresponding Dirichlet series admits again

an Euler product. In particular, we have the following result (compare also [4, 74]):

Theorem 4.2.2. The generating function for the number crot
Z

4 (n) of coincidence rotations

of Z4 is given by

Ψrot
Z

4 (s) =
∞∑

n=1

crot
Z

4 (n)

ns
= (1 + 21−s)Ψrot

D4
(s) = (1 + 21−s)

∏

p 6=2

(1 + p−s)(1 + p1−s)

(1− p1−s)(1− p2−s)

= 1 +
2

2s
+

16

3s
+

36

5s
+

32

6s
+

64

7s
+

168

9s
+

72

10s
+

144

11s
+

196

13s
+

128

14s
+

576

15s
+

324

17s
+ · · ·

It is a meromorphic function in the complex plane, whose rightmost pole is located at s = 3

with residue 1575
2π6 ζ(3). Consequently, we have the asymptotic behaviour

∑

n≤x

crot
Z

4 (n) ∼
525

2π6
ζ(3)x3 ≈ 0.32821x3,(4.47)

as x goes to infinity.

Proof. It follows from Eq. (4.46) that Ψrot
Z

4 (s) is obtained from Ψrot
D4

(s) by adding a

factor 1 + 21−s. As the latter is analytic, the analytic behaviour of Ψrot
Z

4 (s) is the same as

that of Ψrot
D4

(s) (see Theorem 4.1.7 and the comments thereafter), except for some poles on

the line Re(s) = 1 which are cancelled by the factor 1 + 21−s. An application of Delange’s

theorem 7.A.1 finally yields the asymptotic behaviour. �

In a similar way we can determine the number of CSLs. It follows from Proposition 4.2.1

that each CSL of D4 corresponds to exactly one pair of CSLs of Z4, one of which has odd

index and the other one has even index. Note that the explicit expressions for the CSLs in

Proposition 4.2.1 guarantee that two CSLs of Z4 are only equal if the corresponding CSLs of

D4 are equal. This implies that the number of CSLs is given by

c
Z

4(n) =

{
cD4

(n) if n is odd,

cD4

(
n
2

)
if n is even.

(4.48)

This yields the following result:

Theorem 4.2.3. The generating function for the number c
Z

4(n) of CSLs of Z4 is given

by

Ψ
Z

4(s) = (1 + 2−s)ΨD4(s) = (1 + 2−s)
∏

p 6=2

1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s

(1− p2−s)(1− p1−2s)

= 1 +
1

2s
+

16

3s
+

36

5s
+

16

6s
+

64

7s
+

152

9s
+

36

10s
+

144

11s
+

196

13s
+

64

14s
+

576

15s
+

324

17s
+ · · · .

It is a meromorphic function in the half plane {Re(s) > 3
2 , whose rightmost pole is located at

s = 3 with residue 2835
4π6 ζ(3)γ, where γ is the constant given in Eq. (4.38). Consequently, we
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have the asymptotic behaviour
∑

n≤x

c
Z

4(n) ∼
945

4π6
ζ(3)γ x3 ≈ 0.28859x3,(4.49)

as x goes to infinity.





CHAPTER 5

Coincidences of the lattice A4 and the icosian ring

Our next aim is to discuss the coincidence problem of the A4-lattice, which is another

root lattice in R4. It plays an important role in the theory of quasicrystals, as it is used to

construct the well-known Penrose patterns [7]. Throughout this chapter, we shall denote it

by L. As the A4-lattice is closely related to the icosian ring I, we will discuss I as well. In

fact, as I is a ring but L is not, some results are more easily obtained for I than for L. Thus

it makes sense to derive some results for the CSLs of L from the corresponding results for

I. Nevertheless, we will treat the A4-lattice first and defer some proofs to the discussion of I

wherever it is appropriate.

Usually, the A4 lattice – we will denote it by L in the following – is embedded in R5 as a

lattice plane. However, this is inconvenient for our purposes and we prefer to look at it in R4,

since we want to exploit the useful parametrisation by quaternions, which we do not have at

hand in 5 dimensions. A possible basis for L consists of the 4 vectors (compare [9])

(1, 0, 0, 0),
1

2
(−1, 1, 1, 1), (0,−1, 0, 0),

1

2
(0, 1, τ − 1,−τ),(5.1)

where τ = 1+
√
5

2 is the golden mean whose algebraic conjugate τ ′ can be written as τ ′ = − 1
τ =

1− τ . The lattice L cannot be identified with a ring of quaternions. However, if we interpret

the basis vectors as quaternions, they relate to the icosian ring I, which is the Z[τ ]-span of

the 4 quaternions

(1, 0, 0, 0), (0, 1, 0, 0),
1

2
(1, 1, 1, 1),

1

2
(1− τ, τ, 0, 1).(5.2)

In addition to I, we will frequently use the Z[τ ]-span of the vectors in (5.1), which we call

L[τ ]. Algebraically, it is the tensor product Z[τ ] ⊗
Z

L and can be written as the direct sum

L+ τL, compare [9]. We have L[τ ] ⊂ I with index [I : L[τ ]] = 5.

We know from Section 3.2 that there are close connections between the SSLs and CSLs.

In particular, OC(L) is a normal subgroup of OS(L). Thus, it is useful to recall the basic

results for the SSLs of A4, which have been discussed in [9] by M. Baake and M. Heuer. We

will closely follow their notation here.

5.1. Similar sublattices of A4

Let us discuss some properties of the A4 lattice first. Both L and I are invariant under

conjugation, i.e., L = L̄ and I = Ī, but neither of them is invariant under algebraic conjugation

τ 7→ τ ′. Combining the algebraic conjugation with a permutation of the last two components

yields an involution of the second kind x̃ := (x′0, x
′
1, x

′
3, x

′
2), which was called twist map

63
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in [9, 8]. Note that L = L̃ is invariant under the twist map, which, in addition, is an

antiautomorphism of I. It is worth to recall the following properties [9, Lemma 1] for any

x, y ∈ I and α ∈ Q(τ)

(1) x̃+ y = x̃+ ỹ and α̃x = α′x̃,
(2) x̃y = ỹx̃ and ˜̃x = x,

(3) ˜̄x = ¯̃x and, for x 6= 0, (x̃)−1 = x̃−1.

The twist map is the key to our analysis as it gives us a convenient parametrisation of the

similarity rotations – and thus the coincidence rotations. Furthermore, it provides us with

the following characterisation of the lattice L (see [9, Proposition 1])

L = {x ∈ I | x = x̃}.(5.3)

By Cayley’s parametrisation (4.1), we know that any rotation in 4 dimensions can be written

as R(p, q)x = 1
|pq|pxq. Using the properties of the twist map and the characterisation of L

from above, we immediately see that qLq̃ ⊆ L is a similar sublattice of L for any q ∈ I. In

fact, any SSL of L is of the form αqLq̃ ⊆ L, with q ∈ I and α ∈ Q(τ)∗, see [9, Corollary 1]).

In order to fully characterise the SSLs, it is convenient to introduce the notion of an

I-primitive quaternion, which is the complete analogue of primitive quaternions we have used

in the discussion of the 3-dimensional cubic and 4-dimensional hypercubic lattices. We call a

quaternion q ∈ I I-primitive (or primitive for short) if αq ∈ I with α ∈ Q(τ) implies α ∈ Z[τ ].
Equivalently, q ∈ I is I-primitive if the I-content of q,

cont
I

(q) := lcm{α ∈ Z[τ ] \ {0} | q ∈ αI}(5.4)

is a unit in Z[τ ]. Note that the definition of lcm makes sense as Z[τ ] is a Euclidean domain.

Of course, cont
I

(q) is defined only up to a unit in Z[τ ]. We can now fully characterise the

SSLs [9, Corollary 2].

Lemma 5.1.1. The primitive SSLs of L are precisely the the sublattices of the form qLq̃,

where q ∈ I is I-primitive.

More generally, the SSLs of L are precisely those lattices of the form nqLq̃ with n ∈ N
and q ∈ I primitive.

As we want to determine the number of different SSLs, we must make sure that we do not

count the same SSL twice. In general, different quaternions may generate the same SSL, so

we need a criterion, when two SSLs qLq̃ and pLp̃ are equal. One first observes that L = qLq̃

for an I-primitive quaternion q if and only if q ∈ I×, where I× is the group of unit quaternions

in I. From this, one can infer the following result [9, Lemma 5].

Lemma 5.1.2. For I-primitive quaternions p, q ∈ I one has qLq̃ = pLp̃ if and only if

qI = pI.

This lemma reduces the problem of counting SSLs of L to the problem of counting prim-

itive right ideals of I. Here, we call a right ideal qI primitive, if q is I-primitive.
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The index of a primitive SSL can be determined by explicit calculations. We mention

that |q̃|2 = (|q|2)′ holds for any q ∈ I. Recall that the norm in Q(τ) is defined as

Nr(α) = αα′(5.5)

for any α ∈ Q(τ). Therefore, the index of a primitive SSL qLq̃ is given by [L : qLq̃] = Nr(|q|4).
As qI has index Nr(|q|4) in I as well, we have established the following result [9, Proposition 4].

Lemma 5.1.3. There is a bijective correspondence between the primitive right ideals of I

and the primitive SSLs of L, defined by qI 7→ qLq̃. This bijection preserves the indices, i.e.,

we have

[I : qI] = Nr(|q|4) = [L : qLq̃].(5.6)

As a consequence, all possible indices are squares of integers of the form k2 + kℓ − ℓ2 =

Nr(k+ ℓτ). In fact, all of those indices are realised, compare [9, 46]. As the numbers of right

ideals I of a given index are well known, we can deduce the numbers bA4
(m) and bprA4

(m) of

SSLs and primitive SSLs of index m, respectively. This can be done most efficiently by using

the corresponding Dirichlet series generating functions. To explicitly state them, we need to

introduce some notation. We first define the Dirichlet character

χ5(n) =





0, if n ≡ 0 (mod 5)

1, if n ≡ ±1 (mod 5)

−1, if n ≡ ±2 (mod 5).

(5.7)

Its corresponding L-series L(s, χ5) =
∑∞

n=1 χ5(n)n
−s can be analytically continued to the

complete complex plane and thus defines an entire function. The Dedekind zeta function of

K = Q(τ) is given by ζK(s) = ζ(s)L(s, χ5), which is a meromorphic function. Likewise, the

zeta function ζ
I

of the icosian ring counting the right (or left) ideals of I is meromorphic in

the entire complex plane and reads

ζ
I

(s) = ζK(2s)ζK(2s− 1).(5.8)

As the Dirichlet series of the two-sided ideals is given by ζK(4s), we obtain the zeta function

ζpr
I

of the primitive ideals as

ζpr
I

(s) =
ζK(2s)ζK(2s− 1)

ζK(4s)
.(5.9)

This leads to the following result [9, Theorem 1].

Theorem 5.1.4. The Dirichlet series generating functions for the numbers bA4
(n) and

bprA4
(n) of SSLs and primitive SSLs of the A4-lattice read as follows

ΦA4
(s) =

∑

n∈N

bA4
(n)

ns
= ζ(4s)

ζ
I

(s)

ζK(4s)
=
ζK(2s)ζK(2s− 1)

L(4s, χ5)
(5.10)
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and

Φpr
A4

(s) =
∑

n∈N

bprA4
(n)

ns
= ζpr

I

(s) =
ζK(2s)ζK(2s− 1)

ζK(4s)
.(5.11)

As the Euler products of these functions are known, we get the following Euler products

for ΦA4
and Φpr

A4
, compare [9]

ΦA4
(s) =

1

(1− 5−2s)(1− 51−2s)

∏

p≡±1(5)

1 + p−2s

(1− p−2s)(1− p1−2s)2

∏

p≡±2(5)

1 + p−4s

(1− p−4s)(1− p2−4s)

(5.12)

and

Φpr
A4

(s) =
1 + 5−2s

1− 51−2s

∏

p≡±1(5)

(1 + p−2s)2

(1− p1−2s)2

∏

p≡±2(5)

1 + p−4s

1− p2−4s
(5.13)

From these formulas we get the following explicit values for bA4
(n) and bprA4

(n), which are both

multiplicative functions. Thus they are both determined by there values for prime powers.

As bA4
(p2r+1) = bprA4

(p2r+1) = 0, we only need to state their values for even prime powers

2r ≥ 2. They read [9]

bA4
(p2r) =





5r+1−1
4 , if p = 5,

2(1−pr+1)−(r+1)(1−p2)pr

(1−p)2
, if p ≡ ±1 (mod 5),

2−pr−pr+2

1−p2
if p ≡ ±2 (mod 5) and r even,

0, if p ≡ ±2 (mod 5) and r odd,

(5.14)

and

bprA4
(p2r) =





6 · 5r−1, if p = 5,

(r + 1)pr + 2rpr−1 + (r − 1)pr−2, if p ≡ ±1 (mod 5),

pr + pr−2, if p ≡ ±2 (mod 5) and r even,

0, if p ≡ ±2 (mod 5) and r odd.

(5.15)

It follows from these formulas that all possible indices are not only realised for some SSL, but

even realised for some primitive SSL. In fact, most SSLs of a given index are primitive. This

can be illustrated by mentioning the first few terms of ΦA4
and Φpr

A4
, respectively

ΦA4
(s) = 1 +

6

42s
+

6

52s
+

11

92s
+

24

112s
+

26

162s
+

40

192s
+

36

202s
+

31

252s
+

60

292s
+ · · · ,(5.16)

and

Φpr
A4

(s) = 1 +
5

42s
+

6

52s
+

10

92s
+

24

112s
+

20

162s
+

40

192s
+

30

202s
+

30

252s
+

60

292s
+ · · · .(5.17)

As all these Dirichlet series are meromorphic functions, we can apply Delange’s theorem 7.A.1

to obtain the asymptotic behaviour of bA4
(n) and bprA4

(n). In particular, we get the following

result [9].
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Corollary 5.1.5. The asymptotic behaviour of the summatory functions of bA4
(n) is as

follows
∑

m≤x

bA4
(m) ∼ ρx, as x→ ∞,(5.18)

where ρ is given by

ρ =
ζK(2)L(1, χ5)

L(4, χ5)
=

1

2

√
5 log(τ) ≈ 0.538011.(5.19)

The asymptotic behaviour for bprA4
(n) is analogous with

ρpr =
ζK(2)L(1, χ5)

ζ(4)L(4, χ5)
=

45

π4

√
5 log(τ) ≈ 0.497089.(5.20)

5.2. Coincidence site lattices of A4

Let us discuss the CSLs of the A4-lattice now. We first recall that L = L̄, i.e., L is

invariant under conjugation, which is an orientation reversing symmetry operation. Hence, it

is sufficient to restrict our analysis to coincidence rotations, as they generate all CSLs already.

We know from Section 3.2 that any coincidence rotation is a similarity rotation as well. In

fact, a similarity rotation is a coincidence rotation of a lattice if and only if its denominator

is an integer.

Now, it follows from the previous section that every similarity rotation can be

parametrised by a primitive quaternion q ∈ I. In particular, every similarity rotation is

of the form x 7→ 1
|qq̃|qxq̃. From Lemma 5.1.1 we infer that its denominator is |qq̃|. Hence,

x 7→ 1
|qq̃|qxq̃ is a coincidence rotation if and only if |qq̃| ∈ N. Therefore, we are only interested

in those primitive quaternions q ∈ I which satisfy |qq̃| ∈ N or, equivalently, |qq̃|2 = Nr(|q|2)
is a square in N. Paralleling our approach to the discussion of the hypercubic lattices in the

previous chapter, we call such a quaternion a primitive admissible quaternion. More gener-

ally, we call a (not necessarily primitive) quaternion q ∈ I admissible, if |qq̃|2 = Nr(|q|2) is a
square in N.

In the case of the hypercubic lattices it turned out that it is useful to deal with an extended

pair of primitive quaternions instead of primitive ones. The same is valid here as well, and

we first define the notion of an extended primitive admissible quaternion.

To this end, let q ∈ I be primitive and admissible. Then |qq̃|2
gcd(|q|2,|q̃|2)2 is a square in Z[τ ].

Here, gcd means the greatest common divisor in Z[τ ], which is well defined up to a unit as

Z[τ ] is a Euclidean domain. Now |q|2
gcd(|q|2,|q̃|2) ∈ Z[τ ] and |q̃|2

gcd(|q|2,|q̃|2) ∈ Z[τ ] are relatively

prime in Z[τ ]. Since their product is a square, they must be squares (up to units) in Z[τ ],

too (we have unique prime factorisation). Hence, if the units have been chosen appropriately,

we may assume that |q|2
gcd(|q|2,|q̃|2) ∈ Z[τ ] and

|q̃|2
gcd(|q|2,|q̃|2) ∈ Z[τ ] are squares in Z[τ ]. Hence we

may take the root (we may choose the positive one) and define

αq :=

√
|q̃|2

gcd(|q|2, |q̃|2) , αq̃ := α′
q =

√
|q|2

gcd(|q|2, |q̃|2) ,(5.21)
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which are unique up to a unit. Note that the last equation only holds up to a unit.

Definition 5.2.1. Let q ∈ I be a primitive admissible quaternion. Then αqq is called

extended admissible quaternion (corresponding to q).

Of course, this definition is unique only up to a unit in Z[τ ], but this does not matter as

units of Z[τ ] cancel out in the definition of the coincidence rotations.

Clearly, we have α̃qq = αq̃ q̃ and |αqq|2 = |αq̃ q̃|2 ∈ N, i.e. αqq and α̃qq have the same

norm, which makes calculations easier. Although αqq is not primitive in general, the pair

(αqq, αq̃ q̃) is primitive in the following sense: Let (x, y) ∈ I× I and define its content

cont
I

(x, y) := lcm{α ∈ Z[τ ] \ {0} | (x, y) ∈ (αI)× (αI)}.(5.22)

Now (x, y) is called primitive if its content cont
I

(x, y) is a unit in Z[τ ].

Recall that the twist map provided us with the characterisation of L in terms of I as

L = {x ∈ I | x = x̃}, which was very useful in the determination of the SSLs. Here, we need

another formula.

Lemma 5.2.1. L = {x+ x̃|x ∈ I} = {x+ x̃|x ∈ L[τ ]}

Proof. Clearly, for any x ∈ I we have x+ x̃ ∈ L. On the other hand, for any x ∈ L we

have τx+ τ̃x = τx+ τ ′x̃ = (τ + τ ′)x = x. �

The key for characterising the CSLs will be the lattice Lq := {qx + x̃q̃|x ∈ I} for q ∈ I.
Clearly, Lq is a sublattice of L and it is invariant under the twist map Lq = L̃q. Our aim is

to prove that each CSL is of the form Lq for a suitable quaternion q. The first step in this

direction is the following result.

Lemma 5.2.2. Let q ∈ I be a primitive admissible quaternion and qα its extension. Then

Lqα ⊆ L ∩ qLq̃

|qq̃| .(5.23)

Proof. As mentioned above, Lqα ⊆ L. On the other hand, if x ∈ Lqα there is a y ∈ I
such that x = qαy + ỹq̃α. Recall |qα|2 = |q̃α|2 = |qαq̃α| we obtain

x = qαy + ỹq̃α = qαy
˜̄qαq̃α
|q̃α|2

+
qαq̄α
|qα|2

ỹq̃α =
1

|qαq̃α|
qα(y ˜̄qα + q̄αỹ)q̃α ∈ qαLq̄α q̃α

|qαq̃α|
⊆ qαLq̃α

|qαq̃α|
=
qLq̃

|qq̃| ,

which finishes the proof. �

The converse statement requires some preparation. Although we will be mostly interested

in Lq for extended admissible quaternions, we start with some properties for arbitrary quater-

nions in I. Let 〈x, y〉 denote the standard inner product in R4 or H. This can be expressed

as 2〈x, y〉 = tr(xȳ), where tr(x) = x+ x̄ is the reduced trace.

Note that I is a 4-dimensional Z[τ ]-lattice. Thus, it is possible to define its dual. To

expand on that, we need to introduce the quaternion algebra H(K) := Ke+Ki+Kj+Kk,



5.2. COINCIDENCE SITE LATTICES OF A4 69

where K = Q(τ). This is a 4-dimensional K-vector space. We define the dual of a Z[τ ]-lattice

Λ as

Λ∗ := {y ∈ H(K) | 2〈x, y〉 ∈ Z[τ ] for all x ∈ Λ}.(5.24)

Clearly, Λ∗ is again a 4-dimensional Z[τ ]-lattice. For us, the important fact is that I is

self-dual, i.e., I = I∗, compare [63, 54, 20].

Lemma 5.2.3. Let q ∈ I. Then {2〈q, x〉 | x ∈ I} is an ideal of Z[τ ]. It is generated by

cont
I

(q).

Proof. Let A = {2〈q, x〉 | x ∈ I}. As 2〈y, x〉 ∈ Z[τ ] for all x, y ∈ I, A is a subset of Z[τ ].

As I is a Z[τ ]-lattice and 〈y, x〉 is Z[τ ]-linear, A is closed under addition and multiplication

by elements of Z[τ ], hence it is an ideal. Let a be a generator of A. As cont
I

(q) divides

2〈q, x〉 for all x ∈ I, cont
I

(q) divides a. Conversely, a dividing 2〈q, x〉 for all x ∈ I implies

q ∈ ( 1aI)
∗ = aI∗ = aI because of self-duality, whence a divides cont

I

(q). �

An immediate consequence is the following criterion.

Corollary 5.2.4. Let q ∈ I. Then q is primitive if and only if {2〈q, x〉 | x ∈ I} = Z[τ ].

Equivalently, q is primitive, if and only if there exists an x ∈ I such that 2〈q, x〉 = tr(qx̄) = 1.

For our purposes, the existence of an x ∈ I with 2〈q, x〉 = tr(qx̄) = 1 is the important

result. For primitive admissible quaternions there exists the following generalisation.

Lemma 5.2.5. Let q ∈ I be primitive and admissible and let qα be the corresponding

extended quaternion. Then there exists a quaternion z ∈ I such that 2〈qα, z〉+ 2〈q̃α, z̃〉 = 1.

Proof. By the previous corollary there exists a z ∈ I such that 2〈q, z〉 = 1, hence

2〈qα, z〉 = αq. As 〈ũ, ṽ〉 = 〈u, v〉′ for all u, v ∈ I (or, more generally, for all u, v ∈ H(K)) we

conclude 2〈q̃α, z̃〉 = α′
q.

But since αq and α′
q are relatively prime, there exist β, γ ∈ Z[τ ] such that αqβ+α

′
qγ = 1,

hence 2〈qα, βz〉 + 2〈q̃α, γz̃〉 = 1, i.e. to each extended primitive pair (qα, q̃α) there exists a

pair (x, y) ∈ I× I such that 2〈qα, x〉+ 2〈q̃α, ỹ〉 = 1.

Finally, we define z = τx + (1 − τ)y = τx + τ ′. Making use of 〈ũ, ṽ〉 = 〈u, v〉′ again, we
get by recalling 2〈qα, x〉+ 2〈q̃α, ỹ〉 = 1

2〈qα, z〉+ 2〈q̃α, z̃〉 = 2τ(〈qα, x〉+ 〈q̃α, ỹ〉) + 2(1− τ)(〈qα, y〉+ 〈q̃α, x̃〉) = τ + (1− τ) = 1.

�

We are now prepared to prove that every CSL of L is of the form Lq.

Theorem 5.2.6. Let q ∈ I be a primitive admissible quaternion and qα its extension.

Then

L ∩ qLq̃

|qq̃| = Lqα = (qαI+ Iq̃α) ∩ L.(5.25)
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Proof. The inclusion Lqα ⊆ L ∩ qLq̃
|qq̃| was proved in Lemma 5.2.2. To prove the converse

inclusion, we assume x ∈ L ∩ qLq̃
|qq̃| . As mentioned above there exists a quaternion z ∈ I such

that 2〈qα, z〉+ 2〈q̃α, z̃〉 = 1. Thus

x = 2(〈qα, z〉+ 〈q̃α, z̃〉)x = 2〈qα, z〉x+ 2x̃〈q̃α, z̃〉
= (qαz̄ + zq̄α)x+ x̃(¯̃zq̃α + ˜̄qαz̃)

Since x ∈ L ∩ qαLq̃α
|qαq̃α| there is a y ∈ L such that x = qαyq̃α

|qαq̃α| . Hence

x = qαz̄x+ zyq̃α + x̃˜̄zq̃α + qαỹz̃ = qα(z̄x+ ỹz̃) + (x̃˜̄z + zy)q̃α ∈ Lqα .

It remains to prove the second equality. Clearly Lqα ⊆ qαI + Iq̃α and Lqα ⊆ L, i.e.

Lqα ⊆ (qαI+ Iq̃α)∩L. On the other hand, if qαx+ yq̃α ∈ L, then qαx+ yq̃α = τ(qαx+ yq̃α)+

(1− τ)(qαỹ + x̃q̃α) = qαz + z̃q̃α ∈ Lqα , where z = τx+ (1− τ)ỹ. �

The next step is to calculate the coincidence indices. As one can infer them from the

corresponding coincidence indices for the Z[τ ]-lattices L[τ ] and I, we state just the result

here and defer the proof to later sections – it follows from Lemma 5.3.6 and Theorem 5.4.4.

Theorem 5.2.7. Let q ∈ I be a primitive admissible quaternion and qα its extension.

Then the coincidence index ΣA4
(q) of the corresponding coincidence rotation is given by

ΣA4
(q) = |qα|2 = |q̃α|2 =

|qq̃|2
gcd(|q|2, |q̃|2) = |qq̃|αqαq̃ = lcm(|q|2, |q̃|2).(5.26)

Our main goal is the counting of the CSLs. It follows from Lemma 5.1.2 that two primitive

admissible quaternions r, s ∈ I generate the same CSL, compare [8, Lemma 5]. However, the

converse is not true, and additional properties are needed to characterise those r, s ∈ I that

generate the same CSLs. We will deal with this problem in later sections.

For the moment, we just count the number of coincidence rotations. This amounts to

counting the right ideals generated by primitive admissible quaternions. Observe that two

primitive admissible quaternions r, s ∈ I generate the same rotation if and only if they differ

only by a unit in Z[τ ], whereas r, s ∈ I with r = sε generate different coincidence rotations,

whenever ε is a unit in I that is not in Z[τ ].

Recall that the rotation symmetry group of A4 has 120 elements [22]. Hence the number

of coincidence rotations of a given index m is given by 120crotA4
(m), and crotA4

(m) is the number

of right ideals generated by primitive admissible quaternions q with m = ΣA4
(q). The (essen-

tially) unique prime factorisation in I guarantees that crotA4
(m) is a multiplicative arithmetic

function. Hence, it is sufficient to calculate crotA4
(m) for prime powers.

The values of crotA4
(m) are related to the values bprA4

(m) counting the number of primitive

sublattices, but they are not identical for two reasons. First, we do not count all primitive

right ideals, but only admissible ones, and secondly, the indices of the respective sublattices

differ.

Let us start with p = 5, which is a ramifying prime in Z[τ ], i.e. p = 5 = (
√
5)2. Primitive

quaternions q with |q|2 =
√
5
s
ε, with ε a unit in Z[τ ], are admissible if and only if s = 2r
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is even. In this case, ΣA4
(q) = 5r, and we get crotA4

(5r) = bprA4
(54r). As the primes p ≡ ±2

(mod 5) are inert in Z[τ ], similar arguments show crotA4
(pr) = bprA4

(p4r).

The case p ≡ ±1 (mod 5) is more difficult as p splits in Z[τ ] as p = ππ′, with π a prime

in Z[τ ]. Here, a primitive quaternion q with |q|2 = πr(π′)sε is admissible if and only if r+s is

even. In this case ΣA4
(q) = p(r+s)/2. This situation reminds us of the hypercubic case, where

we have had a similar condition. The unique factorisation guarantees that q can be written

as q = q1q2 with |q1|2 = πrε1 and |q2|2 = (π′)sε2. The number of primitive ideals qI with

|q|2 = πrε is given by f(p) = (p+1)pr−1, which can be read off from the corresponding Euler

factor

1 + p−2s

1− p1−2s
= 1 +

∑

r∈N
(p+ 1)pr−1p−2rs(5.27)

of ζpr
I

(s), see Eqs. 5.11 and 5.13 and compare [8]. In analogy with Eq. 4.18 we can calculate

(see [42] for a detailed calculation)

crotA4
(pr) = f(pr)2 + 2

[r/2]∑

s=1

f(pr)f(pr−2s) =
p+ 1

p− 1
pr−1(pr+1 + pr−1 − 2).(5.28)

Hence, crotA4
(pr) is given by

crotA4
(pr) =





6 · 52r−1, if p = 5,
p+1
p−1p

r−1(pr+1 + pr−1 − 2), if p ≡ ±1 (mod 5),

p2r + p2r−2, if p ≡ ±2 (mod 5).

(5.29)

This allows us to write down the generating function for the number of coincidence rota-

tions.

Theorem 5.2.8. Let 120crotA4
(m) be the number of coincidence rotations of the lattice A4.

Then the Dirichlet series generating function for crotA4
(m) reads a follows

Ψrot
A4

(s) =
∑

n∈N

crotA4
(n)

ns
=
ζK(s− 1)

1 + 5−s

ζ(s)ζ(s− 2)

ζ(2s)ζ(2s− 2)

=
1 + 51−s

1− 52−s

∏

p≡±1(5)

(1 + p−s)(1 + p1−s)

(1− p1−s)(1− p2−s)

∏

p≡±2(5)

1 + p−s

1− p2−s

= 1 +
5

2s
+

10

3s
+

20

4s
+

30

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

150

10s
+

144

11s
+

200

12s
+

170

13s
+ · · · .

This shows that any positive integer occurs as a coincidence index. In other words, the

coincidence spectrum, i.e., the set of all possible coincidence indices, is N.

Ψrot
A4

is a meromorphic function in the entire complex plane, and its rightmost pole is a

simple pole located at s = 3, with residue

ρrotA4
= Ress=3Ψ

rot
A4

(s) =
125

126

ζK(2)ζ(3)

ζ(6)ζ(4)
=

450
√
5

π6
ζ(3) ≈ 1.258124,(5.30)
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where the last equation follows from inserting the special values

ζ(4) =
π4

90
, ζ(6) =

π6

945
, ζK(2) =

2π4

75
√
5
, L(1, χ5) =

2 log(τ)√
5

(5.31)

and Apéry’s constant ζ(3) = 1.2020569; compare [10, 8] and references therein. A familiar

argument based on Delange’s theorem 7.A.1 gives us the asymptotic growth rate of crotA4
(m).

Corollary 5.2.9. With the residue ρrotA4
from above, the asymptotic behaviour of crotA4

(m)

is given by

∑

m≤x

crotA4
(m) ∼ ρrotA4

x3

3
≈ 0.419375x3, as x→ ∞.(5.32)

Note that the number of coincidence rotations and the number of CSLs (as we shall see

later in Corollary 5.5.7) grows much faster than the number of SSLs. This is due to the fact

that the index of a primitive SSL is denA4(q)
4, whereas the coincidence index ΣA4

(q) is much

smaller and satisfies the condition denA4(q) ≤ ΣA4
(q) ≤ denA4(q)

2.

5.3. Some coincidences of L[τ ] and I

We have mentioned the formula for the coincidence index in the previous section, but we

still have to prove it. The aim of this section is to find a relationship between the coincidence

indices of L and the corresponding coincidence indices of L[τ ] and I. In this way, we will

be able to express ΣA4
(q) in terms of the corresponding coincidence index for I. The final

calculation of this coincidence index will then be left to yet another section.

Clearly, the coincidence rotations of L are also coincidence rotations of L[τ ] and I. The

group of coincidence rotations for these groups is, of course, much bigger, but we restrict

our discussion to these special coincidence rotations for the moment. Since these coincidence

rotations do not mix vectors of L and τL we immediately get the following result.

Lemma 5.3.1. Let q ∈ I be a primitive admissible quaternion and qα its extension. Then

we have

L[τ ] ∩ qL[τ ]q̃

|qq̃| = Lqα + τLqα .(5.33)

Thus the index for L[τ ] is just the square of the corresponding index for L, in other words
[
L[τ ] : L[τ ] ∩ qL[τ ]q̃

|qq̃|

]
= ΣA4

(q)2.(5.34)

Lemma 5.3.2. Let q ∈ I be a primitive admissible quaternion and qα its extension. Then

I ∩ qIq̃

|qq̃| = qαI+ Iq̃α.(5.35)

Proof. Clearly, qαI+ Iq̃α ⊆ I. Similarly, q̄αI+ I˜̄qα ⊆ I and hence, we have

qαI+ Iq̃α =
qα(q̄αI+ I˜̄qα)q̃α

|qαq̃α|
⊆ qαIq̃α

|qαq̃α|
=
qIq̃

|qq̃| .
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Thus we obtain the first inclusion

I ∩ qIq̃

|qq̃| ⊇ qαI+ Iq̃α.(5.36)

To prove the converse inclusion, we make again use of the existence of a z ∈ I such that

2〈qα, z〉 + 2〈q̃α, z̃〉 = 1, compare 5.2.5. Now, for any x ∈ I ∩ qIq̃
|qq̃| there is a y ∈ I such that

x = qyq̃
|qq̃| =

qαyq̃α
|qαq̃α| and hence, we see

x = (qαz̄ + zq̄α)x+ x(¯̃zq̃α + ˜̄qαz̃) = qα(z̄x+ yz̃) + (zy + x¯̃z)q̃α ∈ qαI+ Iq̃α.(5.37)

Thus,

I ∩ qIq̃

|qq̃| ⊆ qαI+ Iq̃α(5.38)

and the result follows. �

The next aim is to compare the indices. Denote the coincidence indices of L[τ ] and I by

ΣL[τ ] and ΣI, respectively. Since [I : L[τ ]] = 5 Lemma 3.1.9 tells us that there are only finitely

many possibilities for Σ
I

, namely Σ
I

∈ {Σ
L[τ ]

5 , ΣL[τ ], 5ΣL[τ ]}. We want to show Σ
I

= ΣL[τ ].

First, we want to characterise L[τ ] in a similar way we have characterised L in

Lemma 5.2.1.

Lemma 5.3.3. L[τ ] = {x ∈ I
∣∣x− x̃ ∈ (2τ − 1)I}.

Proof. Recall L[τ ] = L+τL, i.e. every quaternion q ∈ L[τ ] can be written as q = x+τy

with x, y ∈ L. Hence, using x = x̃, y = ỹ we see that

q − q̃ = τy − (1− τ)ỹ = (2τ − 1)y =
√
5y ∈ (2τ − 1)L ⊆ (2τ − 1)I(5.39)

for all q ∈ L[τ ]. On the other hand, any quaternion r ∈ I can be written as r = q+ku, where

q ∈ L[τ ], u = 1
2(1− τ, τ, 0, 1) and k ∈ {0, . . . , 4}. Now

u− ũ =
1

2
(1− 2τ, 2τ − 1, 1, 1) 6∈ (2τ − 1)I,(5.40)

which gives the result. �

A simple consequence of this characterisation is the following well-known result (see [9]),

which will prove useful throughout the next sections.

Corollary 5.3.4.
√
5I = (2τ − 1)I ⊆ L[τ ].

Since 2〈x, y〉 ∈ Z[τ ] for all x, y ∈ I and |u − ũ|2 = 3 is not divisible by 5, an alternative

characterisation is the following

Lemma 5.3.5. L[τ ] = {x ∈ I such that 5
∣∣|x− x̃|2}.

Since any rotation leaves the norm unchanged, this implies that qL[τ ]q̃
|qq̃| ∩ I = qL[τ ]q̃

|qq̃| ∩L[τ ],
i.e., the conditions of lemma 3.1.9 are satisfied and hence the case Σ

I

=
Σ

L[τ ]

5 is ruled out,

i.e., there remain only two possible values for Σ
I

, namely Σ
I

∈ {ΣL[τ ], 5ΣL[τ ]}.
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Now assume Σ
I

= 5ΣL[τ ]. This is equivalent to

L[τ ] ∩ qL[τ ]q̃

|qq̃| = I ∩ qIq̃

|qq̃| = qαI+ Iq̃α.(5.41)

Hence L[τ ] ⊇ qαI. Furthermore L[τ ] ⊇
√
5I = (2τ − 1)I (recall Corollary 5.3.4). Hence

L[τ ] ⊇ gI, where g is the greatest common left divisor of qα and 2τ − 1 =
√
5. Since qα is

the extension of a primitive admissible quaternion, qα cannot be contained in (2τ − 1)I, as

(2τ − 1) = −(2τ − 1)′ cannot be a divisor of αq. This implies g 6= 2τ − 1. Obviously, g = 1 is

absurd, since this would imply L[τ ] ⊇ I. Thus, we have |g|2Z[τ ] = (2τ−1)Z[τ ], which implies

that g is a prime quaternion and, hence, g is not a central element of I. Now, L[τ ] ⊇ gI

implies gr − r̃g̃ ∈ (2τ − 1)I by Lemma 5.3.3. From this we infer that g divides r̃g̃ for all r,

or in other words, gI ⊇ Ig̃. As both ideals have the same index in I, they must be equal.

Hence, gI = Ig̃ is a two-sided ideal, which implies that g is a central element; compare [10].

But this gives a contradiction, which rules out the case Σ
I

= 5ΣL[τ ] as well. Hence we have

proved the following result.

Lemma 5.3.6. For all R ∈ SOC(L) we have Σ
I

(R) = ΣL[τ ](R) = ΣA4
(R)2.

Now, it remains to calculate Σ
I

to prove Theorem 5.2.7. This will be done in the next

section.

5.4. Coincidences of I

There are at least two reasons to consider the CSMs of the icosian ring I. First, they will

provide us with a formula for the coincidence index of the A4-lattice and they will give us

the necessary tools to decide under which conditions two CSLs of the A4-lattice are equal.

Secondly, the CSMs of I are also interesting in their own right, as we can exploit the algebraic

properties of I to completely solve the coincidence problems. It is one of the few examples of

a Z-module in 4 dimensions where this is possible.

The methods we use are generalisations of the tools we have used for the A4-lattice and

for the hypercubic lattices in Chapter 4, so we will keep the presentation short and skip some

details.

It follows from [10] that every similarity rotation of I can be parametrised by a pair of

I-primitive quaternions (p, q) ∈ I × I as R(q, p)x = qxp/|pq|. Moreover, we have scal
I

(E) =

Q(τ)∗, which means that R(q, p) is a coincidence rotation if and only if scal
I

(R(p, q)) = Q(τ)∗

by Lemma 3.2.1. Thus, R(p, q)) is a coincidence rotation if and only if |pq| ∈ Z[τ ].
This motivates us to call a pair (p, q) ∈ I× I primitive admissible if p, q are primitive and

|pq| ∈ Z[τ ]. Along the same lines as before we can define

αq :=

√
|p|2

gcd(|q|2, |p|2) , αp :=

√
|q|2

gcd(|q|2, |p|2)(5.42)

for any primitive admissible pair (q, p), where αq and αp are again defined up to a unit.

Similarly, we can define the extension of a primitive admissible pair (qα, pα) = (αqq, αpp).
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This guarantees

|qα|2 = |pα|2 = |qαpα|.(5.43)

It is straightforward to generalise Lemma 5.2.5.

Lemma 5.4.1. Let (qα, pα) be an extension of a primitive admissible pair. Then there exist

quaternions u, v ∈ I such that 2〈qα, u〉+ 2〈pα, v〉 = 1.

We apply this result to obtain the following representation of the CSMs of I.

Theorem 5.4.2. Let (qα, pα) be an extension of a primitive admissible pair. Then

I ∩ qIp

|qp| = qαI+ Ipα.(5.44)

Proof. Clearly, qαI+ Ipα ⊆ I. Similarly, q̄αI+ Ip̄α ⊆ I and, hence, applying Eq. (5.43)

we get

qαI+ Ipα =
qα(q̄αI+ Ip̄α)pα

|qαpα|
⊆ qαIpα

|qαpα|
=
qIp

|qp| ,

which gives us the first inclusion

I ∩ qIp

|qp| ⊇ qαI+ Ipα.(5.45)

To prove the converse inclusion, we make use of Lemma 5.4.1 and choose u, v such that

2〈qα, u〉 + 2〈pα, v〉 = 1. Now, for any x ∈ I ∩ qIp
|qp| there is a y ∈ I such that x = qyp

|qp| =
qαypα
|qαpα|

and hence

x = (qαū+ uq̄α)x+ x(v̄pα + p̄αv) = qα(ūx+ yv) + (uy + xv̄)pα ∈ qαI+ Ipα.(5.46)

Thus

I ∩ qIp

|qp| ⊆ qαI+ Ipα(5.47)

and the claim follows. �

Our next aim is the calculation of the coincidence index. The first step in this direction

is the following lemma, which gives us the product of two coincidence indices.

Lemma 5.4.3. Let (q, p) be a primitive admissible pair and (qα, pα) its extension. Then

Σ
I

(R(q, p))Σ
I

(R(q̄, p)) = Nr(|qα|4).(5.48)

Proof. From the inclusions

qαI ⊆ qαI+ Ipα = I ∩ qIp

|qp| ⊆ I.(5.49)

we infer

[(qαI+ Ipα) : qαI] = [(I+
q̄α
|qα|2

Ipα) : I] = [I : (I ∩ q̄α
|qαpα|

Ipα)] = Σ
I

(R(q̄, p))(5.50)

and the assertion follows. �
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If we can prove Σ
I

(R(q, p)) = Σ
I

(R(q̄, p)), taking the square root of Eq. 5.48 will give us

a formula for the coincidence index. This is possible, indeed.

Theorem 5.4.4. Let (q, p) be a primitive admissible pair and (qα, pα) its extension. Then

Σ
I

(R(q, p)) = Nr(lcm(|q|2, |p|2)) = Nr(|qα|2) = Nr(|pα|2).(5.51)

Proof. We have to show [I : (qαI + Ipα)] = Nr(|qα|2). Due to the previous lemma it is

sufficient to show that [I : (qαI + Ipα)] divides Nr(|qα|2). If p and q are units, the result is

trivial. So assume that at least one of p, q is not a unit.

Assume, first, that αp = αq = 1, i.e., pα = p and qα = q, which implies |q|2 = |p|2. Thus,
neither p nor q is a unit. Clearly, [I : qI] = Nr(|q|4). Of course, qI 6⊇ Ip, since, otherwise,

qI = Ip would be a two-sided ideal, which is impossible, because q is not a unit and primitive

by assumption. We consider the set {µ ∈ Z[τ ] | qI ⊇ µIp}, which is an ideal in Z[τ ]. Let m

be a generator of it. Clearly, m divides |q|2. We want to show m = |q|2 (up to a unit).

Assume, on the contrary, that m were a proper divisor of |q|2. Then g = gcld(m, q) is a

proper left divisor of q = gh, where h is not a unit. Hence, hI ⊇ ḡIp, and hI ⊇ (hIp+ ḡIp) =

Ip, since h and ḡ have common divisor 1 (otherwise q would not be primitive). Multiplying

by I from the right gives hI ⊇ IpI. The latter is a two-sided ideal containing the primitive

icosian p, hence we have IpI = I. This gives the contradiction hI ⊇ I. This proves m = |q|2
(up to a unit).

This means that there is an icosian x ∈ Ip of Z[τ ]-order |q|2 in I/qI. The latter is a

generalisation of the usual notion of the order of an element in a group. It is defined as

follows: Let A be a Z[τ ]-submodule of I and x ∈ I. Any element that generates the ideal

{µ ∈ Z[τ ] | µx ∈ A} is called a Z[τ ]-order of x in I/A. Now, x having Z[τ ]-order |q|2 in

I/qI means that there are Nr(|q|2) different cosets of qI of the form λx + qI, λ ∈ Z[τ ] in

qI + Ip. Hence, [I : (qI + Ip)] is a divisor of [I : qI]/Nr(|q|2) = Nr(|q|2). But this implies

[I : (qI+ Ip)] = Nr(|q|2), as mentioned above.

For the general case the idea is to reduce the problem to the case αq = αp = 1. First,

define the greatest left and common right divisors gq = gcld(q, αp) = gcld(qα, αp) and gp =

gcrd(p, αq) = gcrd(pα, αq) with decompositions q = gqhq and p = hpgp. Note that |gq|2 = αp

and |gp|2 = αq. Hence, we have

qαI+ Ipα = qαI+ qIpα + qαIp+ Ipα = qI(αq + pα) + (αp + qα)Ip

= qIgp + gqIp = gq(hqI+ Ihp)gp.

This gives us the following formula for the index

[I : (qαI+ Ipα)] = Nr(α2
pα

2
q)[I : (hqI+ Ihp)].(5.52)

Note that |hq|2 = |q|2
αp

6= |hp|2 = |p|2
αq

, so we cannot apply our known result yet. To circumvent

this problem, we rewrite hqI+ Ihp as follows

hqI+ Ihp = hqI+ |hq|2I+ I|hp|2 + Ihp =
= (hq + |hp|2)I+ I(hp + |hq|2) = kqI+ Ikp,(5.53)
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where we have introduced the greatest common divisors kq := gcld(hq, |hp|2) and kp :=

gcrd(hp, |hq|2), respectively. Both have the norm

|kq|2 = |kp|2 = gcd(|hq|2, |hp|2) =
|q|2
α2
p

=
|p|2
α2
q

= gcd(|p|2, |q|2).(5.54)

Now, we can apply the results of part 1 and obtain

[I : (qαI+ Ipα)] = Nr(α2
pα

2
q)[I : (kqI+ Ikp)] = Nr(α2

pα
2
q

|q|2
α2
p

) = Nr(|qα|2).(5.55)

This finishes the proof. �

We are ready now to calculate the number of coincidence rotations. Note that the order

of the rotation symmetry group of I is 7200, whence the number of coincidence rotations is

given by 7200crot
I

(m), where crot
I

(m) is an integral arithmetic function. To determine crot
I

(m)

we need the number of primitive icosians q of a given norm |q|2 = µ ∈ Z[τ ] (up to a unit),

which is given by 240f(µ), where 240 is the number of unit icosians and f(µ) is a multiplicative

function, which is determined by its values for prime powers r ≥ 1 in Z[τ ]

f(πr) =





6 · 5r−1 if π =
√
5,

(p+ 1)pr−1 if ππ′ = p ≡ ±1 (mod 5),

(p2 + 1)p2r−2 if π = p ≡ ±2 (mod 5).

(5.56)

The multiplicativity of f(µ) is inherited by cpr
I

(m), so it is sufficient to calculate cpr
I

(m) for

prime powers.

We start with π =
√
5. A primitive pair (q, p) with |q|2 =

√
5
r
ε1, |p|2 =

√
5
s
ε2 is

admissible if and only if r + s is even. From this, we infer that cpr
I

(5r) is given by

crot
I

(5r) = f(5r)2 + 2

[r/2]∑

s=1

f(5r)f(5r−2s) = 3 · 5r−1(13 · 5r−1 − 1).(5.57)

Similarly, if p ≡ ±2 (mod 5), a primitive pair (q1, q2) with |q1|2 = prε1, |q2|2 = psε2 is

admissible, if and only if, r + s is even. The corresponding coincidence index is given by

p2max(r,s). Thus crot
I

(p2r−1) = 0. For even powers a similar calculation as above gives

crot
I

(p2r) = f(pr)2 + 2

[r/2]∑

s=1

f(pr)f(pr−2s) =
p2 + 1

p2 − 1
p2r−2

(
p2r+2 + p2r−2 − 2

)
.(5.58)

The case p ≡ ±1 (mod 5) is again more complicated, as p splits as p = ππ′. Just as

before, a primitive pair (q1, q2) with |q1|2 = πrε1, |q2|2 = πsε2 is admissible, if and only if,

r + s even. Thus, there are

grot(πr) = f(πr)2 + 2

[r/2]∑

s=1

f(πr)f(πr−2s) =
p+ 1

p− 1
pr−1(pr+1 + pr−1 − 2)(5.59)
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primitive admissible pairs to be considered. In addition, we get a contribution of those

primitive admissible pairs with |q1|2 = (π′)rε1, |q2|2 = (π′)sε2. In total, this leads to

crot
I

(pr) =
r∑

s=0

grot(πr−s)grot((π′)s)

(5.60)

= (p+ 1)pr−2

(
2pr(p+ 1)− 2

pr−1 − 1

p− 1

(
6 +

12

p− 1
+

8

(p− 1)2

)

+(r − 1)pr−2

(
p3 + 3p2 + 7p+ 13 +

20

p− 1
+

8

(p− 1)2

)
+ (r − 1)

4(p+ 1)

(p− 1)2

)
.

Actually, we do not need this explicit expression for crot
I

(pr). Since crot
I

(pr) is a Dirichlet

convolution of grot(πr) with itself, its corresponding Euler product is just the square of the

Euler product corresponding to grot(πr).

Putting everything together we get the following result.

Theorem 5.4.5. Let 7200crot
I

(m) be the number of coincidence rotations of the icosian

ring I. Then the Dirichlet series generating function for crot
I

(m) reads a follows

Ψrot
I

(s) =
∑

n∈N

crot
I

(n)

ns
=
ζK(s)ζK(s− 1)

ζK(2s)

ζK(s− 1)ζK(s− 2)

ζK(2s− 2)
= ζpr

I

(s)ζpr
I

(s− 1)

=
(1 + 5−s)(1 + 51−s)

(1− 51−s)(1− 52−s)

∏

p≡±1(5)

(
(1 + p−s)(1 + p1−s)

(1− p1−s)(1− p2−s)

)2 ∏

p≡±2(5)

(1 + p−2s)(1 + p2−2s)

(1− p2−2s)(1− p4−2s)

= 1 +
25

4s
+

36

5s
+

100

9s
+

288

11s
+

440

16s
+

400

19s
+

900

20s
+

960

25s
+

1800

29s
+

2048

31s
+ · · · .

This shows that the possible coincidence indices are exactly those numbers that can be

represented as k2 + kℓ− ℓ2 = Nr(k + ℓτ).

Ψrot
I

(s) is a meromorphic function in the entire complex plane, whose rightmost pole is a

simple pole at s = 3 with residue

ρrot
I

:= Ress=3Ψ
rot
I

(s) =
ζK(2)2ζK(3)

ζK(4)ζK(6)
L(1, χ5) =

35 · 57 · 7
√
5

268π12
log(τ)ζK(3) ≈ 0.593177.

(5.61)

Here, we have inserted the explicit formulas for ζK(2) and L(1, χ5) as given in Eq. 5.31. In

addition, we have used the numerical value ζK(3) ≈ 1.027548 as well as the formulas

ζK(4) =
4π8

16875
√
5

and ζK(6) =
536π12

34 · 58 · 7
√
5
,(5.62)

which can be derived from [70, Proposition 1, Theorem 4.2] as outlined in the appendix

of [10].

Using Delange’s theorem 7.A.1 we get the asymptotic behaviour of crot
I

(n).
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Corollary 5.4.6. The asymptotic behaviour of the summatory functions of crot
I

(n) reads

as follows

∑

m≤x

crot
I

(m) ∼ ρrot
I

x3

3
≈ 0.197726x3, as x→ ∞,(5.63)

with ρrot
I

as given above.

The proof of Theorem 5.4.4 provides us with the tools to determine which CSMs are

equal. In particular, Eq. (5.53) shows that

qαI+ Ipα = gq(kqI+ Ikp)gp(5.64)

depends only on gq, gp, kq and kp. Recalling the definitions of gq and kq we see immediately

that gqkq divides q and gq|hp|2. Since gq divides αp we infer that gqkq divides αp|hp|2 =
αp

αq
|p|2 = |pq|. Thus gqkq divides gcld(q, |pq|). We claim that even gqkq = gcld(q, |pq|).

Indeed, | gcld(q, |pq|)|2 = | gcld(q, αpαq gcd(|p|2, |q|2)|2 = αq gcd(|p|2, |q|2) = |gq|2|kq|2, which
is only possible if gqkq = gcld(q, |pq|) up to units. Thus, we get the following alternative

representation of the CSMs of I.

Theorem 5.4.7. Let (q, p) be a primitive admissible pair. Decompose q = gqkqrq and

p = rpkpqp such that |gq|2 = |rq|2 = αp, |gp|2 = |rp|2 = αq, and |kq|2 = |kp|2 = gcd(|q|2, |p|2).
Then

I ∩ qIp

|qp| = gq(kqI+ Ikp)gp.(5.65)

An immediate consequence is a sufficient condition for two CSMs to be equal.

Corollary 5.4.8. Let (q1, p1) and (q2, p2) be two primitive admissible pairs such that

|q1p1| = |q2p2| and αq1 = αq2 and αp1 = αp2. Then

I ∩ q1Ip1
|q1p1|

= I ∩ q2Ip2
|q2p2|

(5.66)

holds if gcld(q1, |p1q1|) = gcld(q2, |p2q2|) and gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|).

Proof. Since αp1 = αp2 divides |q1p1| = |q2p2|, the condition gcld(q1, |p1q1|) =

gcld(q2, |p2q2|) gives gq1 = gcld(q1, αp1) = gcld(q2, αp2) = gq2 , where we can guaran-

tee by an appropriate choice of units that the equation holds exactly. Together with

gcld(q1, |p1q1|) = gcld(q2, |p2q2|) this implies kq1 = kq2 (up to units). Similarly, we can show

gp1 = gp2 and kp1 = kp2 , and an application of the theorem gives the result. �

If two coincidence rotations have the same denominator and the same coincidence in-

dex, their α’s need not be the same, only their product is fixed. However, the conditions

gcld(q1, |p1q1|) = gcld(q2, |p2q2|) and gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|) guarantee that we

have indeed αp1 = αp2 and αq1 = αq2 . Thus, we can reformulate the corollary as follows.
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Corollary 5.4.9. Let (q1, p1) and (q2, p2) be two primitive admissible pairs such that

|q1p1| = |q2p2| and lcm(|q1|2, |p1|2) = lcm(|q2|2, |p2|2). Suppose that gcld(q1, |p1q1|) =

gcld(q2, |p2q2|) and gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|) hold. Then

I ∩ q1Ip1
|q1p1|

= I ∩ q2Ip2
|q2p2|

.(5.67)

Our aim is to prove the converse statement. To achieve this, we need some further lemmas.

But first, we want to understand the theorem and its corollaries a bit better. In fact, it is

not really necessary, but it improves the understanding of what is going on. Note that the

denominator of our rotation is just |pq|, as well as for the inverse rotation. Hence, we have

|pq|I ⊆ qIp
|qp| and thus, |pq|I ⊆ I ∩ qIp

|qp| . In particular,

I ∩ qIp

|qp| = I ∩
qIp

|qp| + |pq|I = qαI+ Ipα + |pq|I = qrI+ Ipr,(5.68)

where qr = gcld(qα, |pq|) = αq gcld(q, |pq|) and pr = gcrd(pα, |pq|) = αp gcld(p, |pq|). Ob-

serving gq = gcld(qr, αp) and gp = gcrd(pr, αq) we could extend these considerations to an

alternative proof of theorem 5.4.7.

As a first step in proving the converse of Corollary 5.4.9 we note that there is an analogue

of Lemma 3.4.2 for I.

Lemma 5.4.10. If

I ∩ q1Ip1
|q1p1|

= I ∩ q2Ip2
|q2p2|

.(5.69)

then |q1p1| = |q2p2| and lcm(|q1|2, |p1|2) = lcm(|q2|2, |p2|2) (up to Z[τ ]-units), i.e. denomina-

tor and coincidence index must be the same.

Here, lcm(|q1|2, |p1|2) can be interpreted as the Q(τ)-index of I ∩ q1Ip1
|q1p1| in I. Without

going into details, we mention that one can define a so-called Q(τ)-index for a Z[τ ]-sublattice

L in a Z[τ ]-lattice G, compare [11, 42]. Just as the ordinary index [Γ : Λ] equals | det(φ)|,
where φ is a linear mapping which maps a basis of Γ onto a basis of Λ, one can define the

Q(τ)-index [G : L]
Q(τ) as the determinant of a linear mapping φ which maps a Z[τ ]-basis of

G onto a Z[τ ]-basis of L. This index is well-defined up to a unit in Z[τ ]. The connection

between the ordinary index [G : L] and [G : L]
Q(τ) is given by [G : L] = |Nr([G : L]

Q(τ))|. In

fact, one can prove that lcm(|q1|2, |p1|2) is the Q(τ)-index of I ∩ q1Ip1
|q1p1| in I by adapting the

proof of Theorem 5.4.4 to the Q(τ)-index.

Proof of Lemma 5.4.10. The statement lcm(|q1|2, |p1|2) = lcm(|q2|2, |p2|2) just says

that the Q(τ)-indices of I ∩ q1Ip1
|q1p1| and I ∩

q2Ip2
|q2p2| in I must be the same, which is trivial.

So it remains to show the claim for the denominator. We proceed as in the case of lattices.

First, we see

|q1p1|I ⊆ I ∩
q2Ip2
|q2p2|

,(5.70)
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i.e. |q1p1| is a Z[τ ]-multiple of the denominator of the rotation R(q̄2, p̄2), i.e. |q1p1| is a

Z[τ ]–multiple of |q2p2| and vice versa, so |q1p1|
|q2p2| is a Z[τ ]-unit. �

We need some additional information on the index [I : (rI + Is)]. Theorem 5.4.4 only

covers the case that (r, s) is the extension of an admissible pair, which is too restrictive here.

We first consider the case that r and s are both primitive.

Lemma 5.4.11. If r, s ∈ I are primitive, then [I : (rI+ Is)] divides Nr(gcd(|r|2, |s|2)).

Proof. The proof is similar to the first part of the proof of Theorem 5.4.4, so we just

mention the main steps here. The details can be looked up above. First, note that the

Q(τ)-index [I : (rI+ Is)]
Q(τ) certainly divides |r|4, since (rI+ Is) ⊇ rI. Next we determine

a generator m of the ideal {µ ∈ Z[τ ] | rI ⊇ µIs}. It turns out that m = |r|2 (up to

units). Hence, we have an element x ∈ Is of Z[τ ]-order |r|2. But this implies that the

Q(τ)-index [(rI + Is) : rI]
Q(τ) is a multiple of m = |r|2, i.e. [I : (rI + Is)]

Q(τ) must divide

[I : rI]
Q(τ)/|r|2 = |r|2. Similarly, [I : (rI+Is)]

Q(τ) must divide |s|2, and hence [I : (rI+Is)]
Q(τ)

divides gcd(|r|2, |s|2). Taking the norm finishes the proof. �

Primitive quaternions are not enough, since qα and pα are in general not primitive. How-

ever, αq and αp are relatively prime, so the following lemma is sufficient.

Lemma 5.4.12. If r, s ∈ I are primitive quaternions and β, γ ∈ Z[τ ] are relatively prime,

then [I : (βrI+ Iγs)] divides Nr(β2sγ
2
r gcd(

|r|2
γr
, |s|

2

βs
)), where βs := | gcrd(β, s)|2 and γr :=

| gcld(γ, r)|2.

In case of an admissible extension pair βr = qα = αqq, γs = pα = αpp, we have βs = β =

αq, γr = γ = αp and hence, [I : (qαI+ Ipα)] divides

Nr

(
α2
qα

2
p gcd

( |q|2
αp

,
|p|2
αq

))
= Nr

(
α2
qα

2
p gcd(|q|2, |p|2)

)
= Nr(α2

q |q|2) = Nr(|qα|2)

in agreement with theorem 5.4.4.

Proof. We define gr := gcld(γ, r) and gs := gcrd(β, s) and use the decompositions

r = grkr, s = ksgs. This gives

βrI+ Iγs = rI(β + s) + (γ + r)Is = rIgs + grIs = gr(krI+ Iks)gs.(5.71)

Hence, we see that

[I : (βrI+ Iγs)] = Nr(|gr|4)Nr(|gs|4)[I : (krI+ Iks)] = Nr(β2sγ
2
r )[I : (krI+ Iks)](5.72)

divides Nr(β2sγ
2
r )Nr(gcd(|kr|2, |ks|2)) by the previous lemma. Observing |kr|2 = |r|2

γr
and

|ks|2 = |s|2
βs

proves the assertion. �

Now we have everything at hand to prove the following criterion for two CSMs to be

equal.
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Theorem 5.4.13. Let (q1, p1) and (q2, p2) be two primitive admissible pairs. Then

I ∩ q1Ip1
|q1p1|

= I ∩ q2Ip2
|q2p2|

(5.73)

holds if and only if |q1p1| = |q2p2|, lcm(|q1|2, |p1|2) = lcm(|q2|2, |p2|2), gcld(q1, |p1q1|) =

gcld(q2, |p2q2|) and gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|) hold (up to units).

Proof. Corollary 5.4.9 proves the if-statement, Lemma 5.4.10 guarantees that the de-

nominator and the coincidence index (and its Q(τ)-variant) are equal. Hence it remains to

show that two CSMs are only equal if gcld(q1, |p1q1|) = gcld(q2, |p2q2|) and gcrd(p1, |p1q1|) =
gcrd(p2, |p2q2|) hold. That means, we have to show that

q1αI+ Ip1α = q2αI+ Ip2α(5.74)

implies gcld(q1, |p1q1|) = gcld(q2, |p2q2|) and gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|). We make use

of Eq. (5.68) and assume that

q1rI+ Ip1r = q2rI+ Ip2r(5.75)

holds, where qir = gcld(qiα, |p1q1|) = αqi gcld(qi, |p1q1|) and pir = gcrd(piα, |p1q1|) =

αpi gcld(pi, |p1q1|). This equation can be used to rewrite q1rI+ Ip1r as

q1rI+ Ip1r = (q1r + q2r)I+ I(p1r + p2r) = βrI+ Iγs(5.76)

where βr := gcld(q1r, q2r) and γs := gcrd(p1r, p2r), with r and s primitive. Note that β =

gcd(αq1 , αq2) and γ = gcd(αp1 , αp2) are relatively prime, since αq1 and αp1 are relatively prime.

By definition, |r|2 divides |p1q1|
β and |s|2 divides |p1q1|

γ . Since β and γ are relatively prime,

gcd(|r|2, |s|2) divides gcd( |p1q1|β , |p1q1|γ ) = |p1q1|
βγ . Applying Lemma 5.4.12 and noting that βs

and γr divide β and γ, respectively, we infer that [I : (βrI+ Iγs)] must divide Nr(βsγr|p1q1|).
From [I : (βrI + Iγs)] = [I : (q1αI + Ip1α)] = Nr(αq1αp1 |p1q1|) we infer that Nr(αq1αp1)

divides Nr(βsγr) and hence βs = β = αq1 = αq2 and γr = γ = αp1 = αp2 . Using this new

information we can apply Lemma 5.4.12 again and we infer that |p1q1|
αq1αp1

= gcd(|q1|2, |p1|2)
must divide gcd( |r|

2

αp1
, |s|

2

αq1
). But since |r|2 divides |p1q1|

β = |p1q1|
αq1

as stated above, we must have

|r|2 = |p1q1|
αq1

= | gcld(q1, |p1q1|)|2 and hence r = gcld(q1, |p1q1|) = gcld(q2, |p2q2|). Analogously
s = gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|), which finishes the proof. �

Remark 5.4.1. As in the case of the centred hypercubic lattice we may reformulate the

conditions for equivalence, compare 4.1.3. In particular, (q1, p1) and (q2, p2) generate the

same CSM, if and only if |q1|2 = |q2|2, |p1|2 = |p2|2, gcld(q1, |p1q1|) = gcld(q2, |p2q2|) and

gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|) (up to units) are satisfied.

It is now a purely combinatorial task to calculate c
I

(m) and the corresponding Dirichlet

series. Again, we can restrict our calculations to the cases that m is a prime power. As an
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example, we consider the case p ≡ ±2 (mod 5). Here, we have to evaluate the sum

c
I

(π2r) = f(πr)2 + 2

[r/2]∑

s=1

f(πr−s)f(πr−2s).(5.77)

Note that the only difference between this sum and Eq. (5.58) is that a factor f(πr) has been

replaced by a factor f(πr−s), which reflects the condition gcld(q1, |p1q1|) = gcld(q2, |p2q2|) or
gcrd(p1, |p1q1|) = gcrd(p2, |p2q2|), respectively.

For prime powers m = pr, the multiplicative function c
I

(m) can be expressed in terms of

the function

h(x, r) =





1 if r = 0,
(x+1)2

x3−1

(
x2r+1 + x2r−2 − 2x(r−1)/2

)
, if r ≥ 1 is odd,

(x+1)2

x3−1
(x2r+1 + x2r−2 − 2xr/2−1 1+x2

1+x ), if r ≥ 2 is even.

(5.78)

c
I

(pr) for r ≥ 1 reads explicitly

c
I

(pr) =





h(5, r) if p = 5,
r∑

s=0
h(p, r − s)h(p, s) if p ≡ ±1 (mod 5).

h(p2, r2) if p ≡ ±2 (mod 5) and r even,

0 if p ≡ ±2 (mod 5) and r odd,

(5.79)

Finally, by constructing the corresponding Euler factors we get the generating function

for c
I

(m).

Theorem 5.4.14. Let c
I

(m) be the number of CSMs of the icosian ring I. Then the

Dirichlet series generating function for c
I

(m) reads as follows

Ψ
I

(s) =
∑

n∈N

c
I

(n)

ns

=
1 + 11 · 5−s + 7 · 5−2s + 51−3s

(1− 52−s)(1− 51−2s)

×
∏

p≡±1(5)

(
1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s

(1− p2−s)(1− p1−2s)

)2

×
∏

p≡±2(5)

1 + p−2s + 2p2−2s + 2p−4s + p2−4s + p2−6s

(1− p4−2s)(1− p2−4s)

= 1 +
25

4s
+

36

5s
+

100

9s
+

288

11s
+

410

16s
+

400

19s
+

900

20s
+

912

25s
+

1800

29s
+

2048

31s
+ · · · .
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We are not aware of a representation of Ψ
I

(s) in terms of ζ-functions. Nevertheless, we

can specify its analytic properties. We note that the Euler product

ψ
I

(s) :=
Ψ
I

(s)

Ψrot
I

(s)
=

(
1− 48 · 5−2s

(1 + 5−s)(1 + 51−s)(1− 51−2s)

)
(5.80)

×
∏

p≡±1(5)

(
1− 2(p2 − 1)p−2s

(1 + p−s)(1 + p1−s)(1− p1−2s)

)2

×
∏

p≡±2(5)

(
1− 2(p4 − 1)p−4s

(1 + p−2s)(1 + p2−2s)(1− p2−4s)

)

converges for Re(s) > 3
2 , which implies that Ψ

I

(s) is meromorphic in the half plane

{Re(s) > 3
2}. Moreover, the rightmost pole of Ψ

I

(s) is a simple pole located at s = 3 with

residue

ρ
I

:= Ress=3Ψ
I

(s) = ψ
I

(3)ρrot
I

≈ 0.587063,(5.81)

Here, ψ
I

(3) ≈ 0.9896918 < 1 had to be calculated numerically. Finally, we apply Delange’s

theorem 7.A.1 to obtain the asymptotic behaviour of c
I

(n).

Corollary 5.4.15. The asymptotic behaviour of the summatory functions of c
I

(n) reads

as follows

∑

m≤x

c
I

(m) ∼ ρ
I

x3

3
≈ 0.195688x3, as x→ ∞,(5.82)

with ρ
I

as given above.

Note that ρ
I

and ρrot
I

differ by just about 1%. Thus, in most cases, two coincidence

rotations that are not symmetry related generate different CSMs.

5.5. Equal CSLs for L

It remains to discuss when two CSLs of L are equal. We first reformulate Lemma 3.4.2

for L, which reads as follows, since denA4(R) = denA4(R
−1).

Lemma 5.5.1. Let L be the A4–lattice. Then L(R1) = L(R2) implies Σ(R1) = Σ(R2) and

den(R1) = den(R2).

For the following, it is convenient to introduce the Q-linear maps φ± : H(K) →
H(K), φ±(q) = q ± q̃, compare [9]. They map H(K) onto two disjoint 4-dimensional Q-

subspaces V± = φ±(H(K)). In particular, we have H(K) = V+ ⊕ V−, if we view H(K) as an

8-dimensional vector space over Q.

In this setting, L and Lqα can be viewed as images of ideals of I. In particular, we have

L = φ+(I) and

L(R(q)) = Lqα = φ+(qαI) = φ+(qαI+ Iq̃α) = (qαI+ Iq̃α) ∩ L,(5.83)
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compare Theorem 5.2.6. Thus two CSLs are certainly equal, if the corresponding CSMs

of I are equal. Applying Theorem 5.4.13 to our situation and observing gcrd(q̃1, |q1q̃1|) =
˜gcld(q1, |q1q̃1|) gives the following result.

Lemma 5.5.2. Assume that q1 and q2 are admissible. Assume that |q1|2 = |q2|2 and

gcld(q1, |q1q̃1|) = gcld(q2, |q2q̃2|). Then L(R(q1)) = L(R(q2)).

It turns out that the converse is not true. However, we have the following statement:

Theorem 5.5.3. Assume that q1 and q2 are admissible. Assume that one of |q1|2 and

|q2|2 is not divisible by 5. Then L(R(q1)) = L(R(q2)) if and only if |q1|2 = |q2|2 and

gcld(q1, |q1q̃1|) = gcld(q2, |q2q̃2|).

Proof. We need to prove only the “only if”-statement. Assume L(R(q1)) = L(R(q2)),

i.e.,

φ+(q1αI+ Iq̃1α) = φ+(q2αI+ Iq̃2α) = φ+(q1αI+ Iq̃1α + q2αI+ Iq̃2α) = φ+(gI+ Ig̃),(5.84)

where we have used the Q-linearity of φ+ and applied the definition g = gcld(q1α, q2α). If

g is the extension of an admissible primitive quaternion, we can apply Lemma 5.5.1 and

gI = q1αI = q2αI and q1I = q2I follows. However, in general, g is not the extension of a

primitive admissible quaternion. So we have to argue differently. First, we observe that we

can apply Lemma 5.5.1 to show |q1α|2 = |q2α|2, i.e. none of them is divisible by 5. Next, we

consider the following chain of inclusions

φ+(q1αI+ Iq̃1α) + τφ+(q1αI+ Iq̃1α) =

= φ+(q1αI+ Iq̃1α) ∩ φ+(q2αI+ Iq̃2α) + τ
(
φ+(q1αI+ Iq̃1α) ∩ φ+(q2αI+ Iq̃2α)

)

⊆ (q1αI+ Iq̃1α) ∩ (q2αI+ Iq̃2α) ⊆ (q1αI+ Iq̃1α) ⊆ I.

We know [I : (φ+(q1αI+ Iq̃1α) + τφ+(q1αI+ Iq̃1α))] = 5 lcm(|q1|2, |q̃1|2) by Lemma 5.3.6 and

[I : (q1αI + Iq̃1α)] = lcm(|q1|2, |q̃1|2) = [I : (q2αI + Iq̃2α)]. Since the latter indices are not

divisible by 5 by assumption, this implies

[I : (q1αI+ Iq̃1α) ∩ (q2αI+ Iq̃2α)] = [I : (q1αI+ Iq̃1α)].(5.85)

As a consequence, we have

(q1αI+ Iq̃1α) ∩ (q2αI+ Iq̃2α)] = q1αI+ Iq̃1α = q2αI+ Iq̃2α(5.86)

and an application of Theorem 5.4.13 yields |q1q̃1| = |q2q̃2|, lcm(|q1|2, |q̃1|2) = lcm(|q2|2, |q̃2|2),
and gcld(q1, |q1q̃1|) = gcld(q2, |q2q̃2|). Recalling |qiq̃i|

αq̃i

= | gcld(qi, |qiq̃i|)|2 we see that αq̃1 = αq̃2

and, hence, αq1 = αq2 , which gives |q1|2 = |q2|2 via |qi|2 = lcm(|qi|2,|q̃i|2)
α2
qi

. �

Next, we consider the case where Σ is a power of 5. The general case will follow from a

combination of these two special cases.
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Lemma 5.5.4. Assume that q1 and q2 are admissible. Assume that one of |q1|2 and |q2|2 is

a power of 5. Then L(R(q1)) = L(R(q2)) if and only if |q1|2 = |q2|2 and gcld(q1, |q1q̃1|/
√
5) =

gcld(q2, |q2q̃2|/
√
5).

Proof. First, let us assume L(R(q1)) = L(R(q2)). If |q1|2 is a power of 5, then |q1|2 =

|q̃1|2 = ΣA4
(R(q1)) and q1 = q1α, i.e., we may drop the subscript α everywhere. Hence, |q2|2

is a power of 5 as well and |q1|2 = |q2|2, since the coincidence indices must be the same. We

proceed now as above and find that either

[I : (q1I+ Iq̃1) ∩ (q2I+ Iq̃2)] = [I : (q1I+ Iq̃1)](5.87)

– in this case we argue as above and conclude that gcld(q1, |q1q̃1|) = gcld(q2, |q2q̃2|) and, a

fortiori, gcld(q1, |q1q̃1|/
√
5) = gcld(q2, |q2q̃2|/

√
5) – or

[I : (q1I+ Iq̃1) ∩ (q2I+ Iq̃2)] = 5[I : (q1I+ Iq̃1)].(5.88)

In this case, (q1I+ Iq̃1) has index 5 in

(q1I+ Iq̃1) + (q2I+ Iq̃2) = gI+ Ig̃,(5.89)

where g = gcld(q1, q2) need not be an admissible quaternion, since |g|2 may be an odd power

of
√
5 (up to units, of course). However, |g|2 and hence |gg̃| are still in Z[τ ], thus (g, g̃) is an

admissible pair for I. Since g = gα we see that gI+Ig̃ is the CSM generated by the pair (g, g̃)

and, hence, its coincidence index Σ
I

is given by Nr(|g|2), i.e., Nr(|q1|2) = 5Nr(|g|2). This is

equivalent to |q1|2 =
√
5|g|2. As g is a left divisor of q1 and |g|2 we infer g = gcld(q1, |g|2) =

gcld(q1, |q1|2/
√
5) and, by symmetry, g = gcld(q2, |q2|2/

√
5) as well.

Conversely, let us assume |q1|2 = |q2|2 and gcld(q1, |q1q̃1|/
√
5) = gcld(q2, |q2q̃2|/

√
5). Then

either q1 = q2 (up to units) and we are done, or g = gcld(q1, q2) = gcld(q1, |q1q̃1|/
√
5). In

this case g is not admissible for L since |g|2 = |q1|2/
√
5 is no integer. We define g1 =

gcld(q1, |q1q̃1|/5), which is the greatest admissible divisor of g. We have |g1|2 = |q1|2/5 and

φ+(q1I) ⊆ φ+(q1I) + φ+(q2I) = φ+(gI) ⊆ φ+(g1I)(5.90)

with [φ+(g1I) : φ+(q1I)] = 5. Hence, either φ+(q1I) = φ+(q1I) + φ+(q2I) – in this case we

are done – or φ+(gI) = φ+(g1I). We want to rule out the latter by contradiction. So assume

the latter. Then φ+(q1I) has index 5 in φ+(gI). Moreover, φ+(gI) + τφ+(gI) has index

|g1|4 = |q1|4/25 in L[τ ] and index 5|g1|4 = |q1|4/5 in I. Furthermore,

φ+(gI) + τφ+(gI) ⊆ gI+ Ig̃,(5.91)

where the latter has index |g|4 = |q1|4/5 in I. Hence,

gI+ Ig̃ = φ+(gI) + τφ+(gI) ⊂ L[τ ].(5.92)

Now, Corollary 5.3.4 tells us
√
5I ⊂ L[τ ], i.e., with m = gcld(g,

√
5), we have mI+Im̃ ⊆ L[τ ].

Since the left hand side has index Nr(|m|2) = 5 in I, this would imply mI + Im̃ = L[τ ].

But this is impassible: as m is a prime quaternion of norm |m|2 =
√
5, this would imply

mI = mI+ Im̃ = Im̃. But mI cannot be a two-sided ideal, as m is not central (compare the

proof of Lemma 5.3.6). This gives a contradiction and finishes the proof. �
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Next, we combine Theorem 5.5.3 and Lemma 5.5.4 to obtain the corresponding statement

for general indices that are divisible by 5.

Theorem 5.5.5. Assume that q1 and q2 are admissible. Assume that one of |q1|2
and |q2|2 is divisible by 5. Then L(R(q1)) = L(R(q2)) if and only if |q1|2 = |q2|2 and

gcld(q1, |q1q̃1|/
√
5) = gcld(q2, |q2q̃2|/

√
5).

Proof. Using the same arguments as in the preceding proof, we can show that the

conditions |q1|2 = |q2|2 and gcld(q1, |q1q̃1|/
√
5) = gcld(q2, |q2q̃2|/

√
5) are sufficient.

To show the converse, we note that the unique prime factorisation in I guarantees that

every coincidence rotation R can be written as R = R1R2, where ΣA4
(R1) is not divisible by

5 and ΣA4
(R2) is a power of 5. Thus, with m := ΣA4

(R1) and n := ΣA4
(R2) all conditions of

Lemma 3.4.7 are met. Now, (nL) ∩L(R1R2) = nL(R1) and (mRL) ∩L(R1R2) = nR1L(R2).

This allows us to determine L(R1) and L(R2) from the knowledge of L(R1R2) alone. Thus,

two coincidence rotations R and R′ can generate the same CSL only if L(R1) = L(R′
1) as

well as L(R2) = L(R′
2). We can now apply Theorem 5.5.3 and Lemma 5.5.4 to obtain the

result. �

We can calculate cA4
(m) now. As cA4

(m) is multiplicative, we only need to determine it for

prime powers. Actually, we do not need Theorem 5.5.5, but Lemma 5.5.4 and Theorem 5.5.3

are sufficient. If |q|2 =
√
5
r
ε, then the lemma tells us that the last prime quaternion in the

prime factorisation does not matter, which gives cA4
(5r) = 1

5c
rot
A4

(5r). If p ≡ ±2 (mod 5), the

conditions of the theorem reduce to q1I = q2I, and, hence, cA4
(pr) = crotA4

(pr) in this case.

The case p ≡ ±1 (mod 5) is again more complicated. But similar arguments as in the

previous sections finally yield the following explicit formula

cA4
(pr) =





6 · 52r−2, if p = 5,
(p+1)2

p3−1

(
p2r+1 + p2r−2 − 2p(r−1)/2

)
, if p ≡ ±1 (mod 5) and r is odd,

(p+1)2

p3−1
(p2r+1 + p2r−2 − 2pr/2−1 1+p2

1+p ), if p ≡ ±1 (mod 5) and r is even,

p2r + p2r−2, if p ≡ ±2 (mod 5).

(5.93)

This enables us to write down the generating function.

Theorem 5.5.6. Let cA4
(m) be the number of CSLs of the lattice A4. Then the Dirichlet

series generating function for cA4
(m) reads a follows

ΨA4
(s) =

∑

n∈N

cA4
(n)

ns

=

(
1 + 6

5−s

1− 52−s

) ∏

p≡±2(5)

1 + p−s

1− p2−s

∏

p≡±1(5)

1 + p−s + 2p1−s + 2p−2s + p1−2s + p1−3s

(1− p2−s)(1− p1−2s)

= 1 +
5

2s
+

10

3s
+

20

4s
+

6

5s
+

50

6s
+

50

7s
+

80

8s
+

90

9s
+

30

10s
+

144

11s
+

200

12s
+

170

13s
+ · · · .
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In order to compare ΨA4(s) and Ψrot
A4

(s) we consider the function

ψA4
(s) :=

ΨA4(s)

Ψrot
A4

(s)
(5.94)

=

(
1− 24 · 5−s

1 + 51−s

) ∏

p≡±1(5)

(
1− 2(p2 − 1)p−2s

(1 + p−s)(1 + p1−s)(1− p1−2s)

)
.

It is analytic in the open half plane {Re(s) > 3
2}, as the Euler product converges there.

This proves that ΨA4
(s) is a meromorphic function in the open half plane {Re(s) > 3

2}. Its

rightmost pole is a simple pole at s = 3 with residue

ρA4
= Ress=3ΨA4

(s) = ψA4
(3)ρrotA4

≈ 1.025695,(5.95)

where ψA4
(3) ≈ 0.8152576 < 1 has been calculated numerically. Finally, we apply Delange’s

theorem 7.A.1, which gives us the asymptotic growth rate of cA4
(m).

Corollary 5.5.7. With the residue ρA4
from above, the asymptotic behaviour of cA4

(m)

is given by

∑

m≤x

cA4
(m) ∼ ρA4

x3

3
≈ 0.341898x3, as x→ ∞.(5.96)

Comparing the growth rates of the number of CSLs and coincidence rotations, we see that

the former is approximately 20% lower than the latter. This difference is much bigger than

in the case of the icosian ring. Nevertheless, it is still more an exception than a rule that two

coincidence rotations that are not symmetry related generate the same CSL.



CHAPTER 6

Multiple CSLs of the cubic lattices

So far, we have considered ordinary CSLs and CSMs. The problem of finding all multiple

CSLs (MCSLs) is, in general, more difficult than determining all CSLs. There are only few

cases, where the problem of multiple coincidences has been solved so far. These include

some 2-dimensional lattices and modules of n-fold symmetry [6] and the 3-dimensional cubic

lattices, which we want to discuss in this chapter. Some of the present results can be found

in [75].

6.1. Basic results

Let us recall from Section 3.5 that any coincidence rotation R of the cubic lattices can

be parametrised by primitive quaternions. Moreover, there is a bijection between the CSLs

of the body-centred cubic lattice and the ideals qJ generated by odd primitive quaternions.

In particular, we have Γbcc = Im(J) and Γbcc(R(q)) = Im(qJ) with Σ(R(q)) = |q|2 if q is a

primitive odd quaternion. If q is an even primitive quaternion, then Σ(R(q)) = |q|2
2 . In this

case, q can be written as a product r(1, 1, 0, 0) of an odd primitive quaternion with an even

one, and the corresponding CSL can be written as Γbcc(R(q)) = Im(rJ).

Thus, it is sufficient to consider CSLs generated by primitive odd quaternions. Just as in

the case of ordinary CSLs, we start with the analysis of the body-centred cubic lattice and

derive from it the MCSLs of the other cubic lattices.

Let us discuss the spectrum of possible coincidence indices first. We know that the

possible indices for ordinary CSLs for all three types of cubic lattices are the positive odd

integers, and, indeed, all of them occur as indices. Moreover, we have seen in Section 3.3 that

Σ(R1, . . . , Rm) divides Σ(R1) · . . . ·Σ(Rm). Thus, the spectrum of indices of MCSLs is again

the set of positive odd integers.

Proposition 6.1.1. Let Γ be any cubic lattice. The possible values for the coincidence

indices Σ(R1, . . . , Rm) are exactly the positive odd integers, and all of those values do occur.

Hence, no new indices occur. Nevertheless, additional lattices emerge and the multiplicity

of a given index will increase. We have seen that cΓ (m) is a multiplicative function, and

by Theorem 3.4.9 this implies that any ordinary CSL can be written as the intersection

Γ (R) = Γ (R1)∩ . . .∩Γ (Rn), where the indices ΣΓ (Ri) are powers of distinct primes. In this

case, the MCSL Γ (R1) ∩ . . . ∩ Γ (Rn) is equal to an ordinary CSL. However, if the indices

of the Γ (Ri) are not relatively prime, the corresponding MCSL Γ (R1) ∩ . . . ∩ Γ (Rn) is, in

general, not equal to an ordinary CSL.

89
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More generally, the multiplicativity of cΓ (m) guarantees by Theorem 3.4.9 that any MCSL

Γ (R1, . . . , Rn) can be written as the intersection of MCSLs Γk of prime power index. Further-

more, the Γk can be chosen in such a way that they are intersections of at most n ordinary

CSLs. Thus, we may restrict our analysis of MCSLs to those MCSLs, whose index is a prime

power.

To become more concrete, we mention that the decomposition of CSLs into CSLs of prime

power index corresponds to the prime factorisation in J. In particular, if |q|2 = πα1
1 · . . . ·

παk

k is the prime factorisation of |q|2 in N and pi := gcld(q, παi

i ), then the aforementioned

decomposition is given by Γ (R(q)) = Γ (R(p1)) ∩ . . . ∩ Γ (R(pk)). Note that q is a common

right multiple of all pi. Conversely, if pi are primitive odd quaternions such that all |pi|2 are

relatively prime, then any least common right multiple q is primitive and odd, and we have

Γ (R(q)) = Γ (R(p1)) ∩ . . . ∩ Γ (R(pk)). Likewise, if we define pij = gcld(qi, π
αij

j ), where the

αij are the exponents in the prime factorisation |qi|2 = παi1
1 · . . . ·παjk

k , then the corresponding

decomposition of the MCSL reads Γ (R(q1), . . . , R(qn)) = Γ1 ∩ . . .∩Γk with Γℓ = Γ (R(p1ℓ))∩
. . . ∩ Γ (R(pnℓ)).

Moreover, this guarantees the multiplicativity of the corresponding counting functions

c(∞)(m) and c(k)(m), where c(∞)(m) is the number of all MCSLs of a given index m and

c(k)(m) the corresponding number of all MCSLs that can be written as the intersection of at

most k ordinary CSLs.

As we want to count all different MCSLs, an essential question is under which condition

two MCSLs are equal. A preliminary result is the following one, which generalises Lemma 3.4.2

for the present situation.

Lemma 6.1.2. Let Γ be any cubic lattice and assume Γ (R(q1), . . . , R(qn)) =

Γ (R(q′1), . . . , R(q
′
m)), where qi and q

′
j are primitive odd quaternions. Then

ΣΓ (R(q1), . . . , R(qn)) = ΣΓ

(
R(q′1), . . . , R(q

′
m)
)

and

lcm
(
|q1|2, . . . , |qn|2

)
= lcm

(
|q′1|2, . . . , |q′n|2

)
.

Proof. The proof is similar to the proof of Lemma 3.4.2. Note that lcm(|q1|2, . . . , |qn|2)
is the least common multiple of all denominators denΓ (R(qi)) = denΓ (R(qi)

−1) = |qi|2.
Let β be the smallest positive integer such that βΓ ⊆ Γ (R(q1), . . . , R(qn)). Since βΓ ⊆
Γ (R(qi)) ⊆ R(qi)Γ for all i, β must be a multiple of denΓ (R(qi)

−1) = |qi|2 for all i. Hence,

by definition, β = lcm(|q1|2, . . . , |qn|2), and from Γ (R(q1), . . . , R(qn)) = Γ (R(q′1), . . . , R(q
′
m))

we infer lcm
(
|q1|2, . . . , |qn|2

)
= lcm

(
|q′1|2, . . . , |q′n|2

)
. �

The conditions of the lemma are necessary, but by no means sufficient. For ordinary

CSLs we have the much stronger condition qJ = q′J, and we expect additional conditions for

MCSLs. Let us start with the case n = 2 first.
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6.2. Intersection of two CSLs of the body-centred cubic lattice

As the body-centred cubic lattice Γ = Γbcc = Im(J) has the most convenient representa-

tion in terms of quaternions, we start with this lattice. The first step to determine all possible

MCSLs Γ (R1, R2) that can be written as the intersection of at most two ordinary CSLs is the

calculation of their indices. We note that Γ+(R1, R2) := Γ (R1) + Γ (R2) = Im(q1J + q2J) =

Im(qJ), where q is the greatest common left divisor of q1 and q2. Hence, we have – recall that

we may assume that |qi|2 is odd –

Σ(R1, R2) =
|q1|2|q2|2

|q|2 with q = gcld(q1, q2).(6.1)

In case that |q1|2 and |q2|2 are relatively prime, this reduces to Σ(R1, R2) = |q1|2|q2|2. This

is the aforementioned case when the MCSL is equal to an ordinary CSL. Another special

case is the case that q1 is a left divisor of q2. Here, we have Γ (R2) ⊆ Γ (R1) and the MCSL

Γ (R1, R2) = Γ (R2) is again an ordinary CSL. In order to understand the general situation,

we start with the case that both |qi|2 are powers of the same prime p ∈ N.

6.2.1. Intersection of two CSLs of prime power index. Actually, confining our

consideration to MCSLs of prime power index is no real restriction, as we can recover the

general case from this one, as we have mentioned before. We are mainly interested in the

case of two different CSLs, where none of them is a sublattice of the other one, i.e. neither

q1 nor q2 is a right multiple of the other one. But we do not need to exclude the latter case

explicitly, as all formulas include the case of ordinary CSLs implicitly.

Our first aim is to find an explicit expression for the MCSLs. We note that there is always

a quaternion r ∈ J such that q1rq̄2 is a primitive quaternion, if q1 and q̄2 are primitive odd

quaternions. This follows from the unique prime factorisation in J. In fact, we can even

choose r to be a unit quaternion u – we just have to choose r such that q1 and q2r̄ have no

common right divisor.

Lemma 6.2.1. Let qi, i = 1, 2, be primitive quaternions such that |qi|2 = pαi , where p is

an odd prime. Choose r such that q1rq̄2 is a primitive quaternion and let q be a least common

right multiple of q1 and q2. Then Γ (R1, R2) = Γ (R(q1)) ∩ Γ (R(q2)) = Im(qJ+ q1rq̄2Z).

Proof. Without loss of generality, we may assume α1 ≥ α2. Let d denote a greatest

common left divisor of q1 and q2. If |d|2 =: pβ = pα2 , we can choose d = q2 and q = q1.

Then, Γ (R(q1)) ⊆ Γ (R(q2)) and hence, Γ (R1, R2) = Γ (R(q1)) = Im(q1J) = Im(qJ+q1rq̄2Z).

Assume |d|2 = pβ < pα2 now, i.e. d 6= qi. Thus, Σ(R1, R2) = pα1+α2−β > pα1 . Clearly, d

divides q, moreover, q can be chosen such that q = pα2−βdq′ where |q′|2 = pα1−α2 and dq′ is a
primitive quaternion. Now qJ ⊆ qiJ implies Im(qJ) ⊆ Im(q1J)∩ Im(q2J) = Γ (R1, R2), where

Im(qJ) has index pα1+2α2−2β in Γ and index pα2−β in Γ (R1, R2). We choose r such that

q1rq̄2 is a primitive quaternion. Then, Im(q1rq̄2) = − Im(q2r̄q̄1) ∈ Γ (R1, R2) is not divisible

by p – otherwise Re(q1rq̄2) would be divisible by p as well and q1rq̄2 would not be primitive.

Hence, the pα2−β cosets k Im(q1rq̄2) + Im(qJ), k = 0, . . . , pα2−β − 1 are all disjoint. Thus,
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Im(qJ + q1rq̄2Z) ⊆ Γ (R1, R2), and since both lattices have the same index in Γ , they must

be equal. �

The r in the previous lemma is by no means unique. This means that we can represent

Γ (R1, R2) in different ways. Alternatively, we may write Γ (R1, R2) as follows:

Lemma 6.2.2. Let qi, i = 1, 2, be primitive quaternions such that |qi|2 = pαi , where p

is an odd prime, and let q be a least common right multiple of q1 and q2. Then we have

Γ (R1, R2) = Im(qJ+ q1Jq̄2) = Im(qJ+ q2Jq̄1).

Proof. From the previous lemma we conclude Γ (R1, R2) = Im(qJ+ q1rq̄2Z) ⊆ Im(qJ+

q1Jq̄2). The converse inclusion Im(qJ + q1Jq̄2) ⊆ Γ (R1, R2) follows from Im(qJ + q1Jq̄2) ⊆
Im(qiJ) = Γ (Ri), i = 1, 2. �

Alternatively, we can prove this result without reference to Lemma 6.2.1 as follows.

Proof No. 2. We prove Im(qJ + q1Jq̄2) ⊆ Γ (R1, R2) as above. Hence, it remains to

prove that every vector of Γ (R1, R2) indeed can be written as Im(qm+q1nq̄2) for appropriate

integer quaternions m and n. If x ∈ Γ (R1, R2) there exist integer quaternions a, b such that

x = Im(q1a) = Im(q2b), i.e. there exist integers c, d such that q1a = q2b + ce = −b̄q̄2 + de,

where e = (1, 0, 0, 0). Since q2 is primitive, there exists an integer quaternion r such that

1 = 〈r, q2〉 = 1
2(rq̄2 + q2r̄). Thus, we have 2q1a = q1arq̄2 + q1aq2r̄. But the second term

q1aq2r̄ = (−b̄q̄2 + de)q2r̄ = −|q̄2|2b̄+ dq2r̄

is a right multiple of q1 and q2, and, hence, a multiple of q, i.e. q1aq2r̄ = qm for a suitable

integer quaternion m. With n := ar this proves the representation 2x = Im(qm + q1nq̄2),

i.e. 2x ∈ Im(qJ + q1Jq̄2). In addition, |q|2x ∈ Im(qJ + q1Jq̄2), and since |q|2 is odd we have

x ∈ Im(qJ+ q1Jq̄2) for all x ∈ Γ (R1, R2) and our claim follows. �

Note that qJ+ q1Jq̄2 is, in general, no ideal and, hence, Γ (R1, R2) is neither an ordinary

CSL nor a multiple of an ordinary CSL. Further, note that Im(qJ+ q1Jq̄2)/ Im(qJ) is a cyclic

group of order |q|2
max(|q1|2,|q2|2) and that Im(qJ) is a multiple of an ordinary CSL (q is not

primitive here). The next lemma tells us under which conditions different pairs of CSLs give

rise to different MCSLs:

Theorem 6.2.3. Let qi be primitive quaternions with |qi|2 = pαi, where p is a prime and

α1 ≥ α2 ≥ α4, α3 ≥ α4. Let qij with |qij |2 = pαij be the greatest common left divisor of qi and

qj. If α1 = α2 let α13 ≥ α23. If α3 = α4 let α13 ≥ α14. Then Γ (R1)∩Γ (R2) = Γ (R3)∩Γ (R4)

if and only if α1 = α3, α2 − α12 = α4 − α34, α1 − α13 ≤ min(α4 − α34, α34) and α4 − α24 ≤
min(α4 − α34, α34) are satisfied.

Note that the ordering conditions on the α’s do not put any restrictions on the validity

of the theorem, since we can always interchange the role of the qi such that these conditions

are met.
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Remark 6.2.1. The two conditions α1 = α3 and α2 − α12 = α4 − α34 correspond to

the two conditions in Lemma 6.1.2. The first one means that the least common multiples of

the denominators must be the same, and the second follows from the equality of the indices,

which gives α1 + α2 − α12 = α3 + α4 − α34. Furthermore, the condition α1 − α13 ≤ α4 − α34

can be easily understood by considering

Γ (R1) ∩ Γ (R3) ⊇ Γ (R1) ∩ Γ (R2) ∩ Γ (R3) ∩ Γ (R4) = Γ (R3) ∩ Γ (R4).

Comparing the indices of the two sublattices gives α1 + α3 − α13 ≤ α3 + α4 − α34. Similarly,

we get the condition α4 − α24 ≤ α4 − α34, where we have to apply α2 ≤ α1 = α3 in addition.

Proof. We have already proven part of the necessary conditions in the remark above.

Nevertheless, we will prove them in a different way here, as they follow from a set of inequalities

that we need anyway.

Recall that the content cont(q) of a quaternion q ∈ J is defined as the largest integer c

such that 1
c q ∈ J. Now, let q be a greatest common right multiple of q1 and q2. We may choose

q = q1 gcld
(
q̄1,

|q2|2
|q12|2

)
by our assumption α1 ≥ α2. From this, we conclude cont(q) = pα2−α12 .

Likewise, if q′ is a greatest common right multiple of q1 and q2, then cont(q′) = pα3−α34 .

A vector Im(x) is in Γ (Ri) ∩ Γ (Rj) if and only if Im(x) ∈ Γ (Rk) for k = i, j. This is

equivalent to

R−1
k Im(x) = Im

(
q̄kxqk
|qk|2

)
∈ Γ

for all k = i, j. Now, R−1
k Im(x) ∈ Γ if and only if |qk|2 divides cont (q̄kxqk). Next, by

applying Γ (R1) ∩ Γ (R2) = Im(qJ + q1Jq̄2), we see that Γ (R1) ∩ Γ (R2) ⊆ Γ (R3) ∩ Γ (R4) if

and only if |qi|2 divides cont(q̄iq) and cont(q̄iq1) cont(q̄iq2) for i = 3, 4. Analogous results hold

forΓ (R3)∩Γ (R4) ⊆ Γ (R1)∩Γ (R2). If we calculate the contents and take logarithms, we see

that Γ (R1) ∩ Γ (R2) = Γ (R3) ∩ Γ (R4) is equivalent to the following set of inequalities

α13 + α23 ≥ α3 ≤ α2 − α12 +min(α13, α1 − α2 + α12)(6.2)

α14 + α24 ≥ α4 ≤ α2 − α12 +min(α14, α1 − α2 + α12)(6.3)

α13 + α14 ≥ α1 ≤ α4 − α34 +min(α13, α3 − α4 + α34)(6.4)

α23 + α24 ≥ α2 ≤ α4 − α34 +min(α23, α3 − α4 + α34).(6.5)

As the αij correspond to the greatest common left divisors qij , they are not independent. In

particular, αij > αik implies αik = αjk, whereas αij = αik implies αjk ≥ αij = αik. Under

these restrictions and our assumptions on the αi, the inequalities from above can be shown

to be equivalent to the following set

α1 = α3(6.6)

α2 − α12 = α4 − α34(6.7)

α1 − α13 ≤ min(α4 − α34, α34)(6.8)

α4 − α24 ≤ min(α4 − α34, α34),(6.9)
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which finishes the proof. �

We know now, in principle, under which conditions two MCSLs are equal. However,

the theorem is not very intuitive and we should try to find a more accessible approach to

understand it. It first tells us that q1 and q3 must have the same norm if Γ (R1, R2) =

Γ (R3, R4), but q2 and q4 may have different norm. However, write q2 = q12q
′
2, i.e. decompose

q2 into a “common part” and a “different part”, and do the analogous thing for q4 = q34q
′
4.

Then we see that the different parts q′2 and q
′
4, respectively, must have the same norm. At last

the theorem tells us something about the difference of q1 and q3 and the difference between q2
and q4 (or q′2 and q′4). In fact, they must not differ too much, i.e. the prime decompositions

of q1 and q3 may differ only in the last min(α4 − α34, α34) prime factors (read from the left).

This guarantees that the least common right multiples lcrm(q1, q2) and lcrm(q3, q4) are the

same.

For q2 and q4, the situation is a bit more involved, due to the fact that they do not need

to have the same norm. To understand their situation better, we need some information on

the greatest common divisors qij . We first observe α34 ≤ α24 due to α4 − α24 ≤ min(α4 −
α34, α34) ≤ α4 − α34. Similarly we see α34 ≤ α13, where the equality sign holds if and only

if α1 = α2 = α4. That means that q34 is a left divisor of both q1 and q2 and thus of q12,

resulting in α34 ≤ α12. Here, the equality sign holds if and only if α2 = α4. Thus, q34 is a

left divisor of all qi and, hence, it is the greatest common left divisor of the qi, which implies

α34 = min(α12, α13, α24). But this is only possible, if α24 = α34 or α2 = α4.

Now, we have everything at hand to understand the relationship of q2 and q4 in more

detail. Let us consider the case α4 − α34 > α34 first. Then α4 − α24 ≤ α34 < α4 − α34 gives

α34 < α24, which means that α2 = α4, i.e. q2 and q4 have the same norm and differ only in

the last α34 prime factors (viewed from the left). If α4 − α34 ≤ α34 we have two possibilities:

Either α2 = α4, i.e. q2 and q4 have again the same norm and differ only in the last α4 − α34

prime factors, or α2 > α4 and hence α24 = α34, α12 > α34 and α13 > α34.

The latter case is of particular interest. Let (q1, q2) be any pair with α1 ≥ α2. We

construct a pair (q3, q4) as follows: we set q3 = q1 and choose q4 such that its norm is equal

to p2(α2−α12) and that the greatest common divisor of q4 and q3 = q1 has norm pα2−α12 (such

a choice is always possible). Then (q3, q4) generates the same MCSL as (q1, q2). Moreover,

α4 = 2α34 = 2(α2 − α12), which implies that q4 has a certain minimality property: there is

no pair (q3, q4) with α4 < 2(α2 − α12) that generates the same MCSL as (q1, q2).

Now, we can proceed to the calculation of the number c(2)(Σ) of different MCSLs with

coincidence index Σ which are intersections of at most two ordinary CSLs. This task is

equivalent to counting all pairs (q1, q2) that generate different MCSLs. From the previous

paragraph, it is evident that we need to consider only pairs such that α2 − α12 ≥ α12. Now,

we take into account that the MCSLs do not depend on the last α12 prime factors of qi and

that the first α12 prime factors of q2 are the same as those of q1. If we use the notation

α := α1, β := α2, γ := α12 and define c(2)(p, α, β, γ) as the number of different MCSLs for
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given α, β, γ we obtain (recall that we assume α ≥ β)

c(2)(p, α, β, γ) =





(p+ 1)pα−γ−1 if β − γ = γ > 0

(p2 − 1)pα+β−3γ−2 if α > β, β − γ > γ ≥ 1
1
2(p

2 − 1)pα+β−3γ−2 if α = β, β − γ > γ ≥ 1

(p+ 1)pα+β−1 if α > β > γ = 0
1
2(p+ 1)pα+β−1 if α = β > γ = 0

(p+ 1)pα−1 = f(pα) if α > β = γ = 0.

(6.10)

Note that the factor 1
2 for α = β is due to the fact that interchanging the role of q1 and

q2 does not give new MCSLs. The last equation just tells us that the MCSL reduces to an

ordinary CSL in case of β = 0. If we sum all these values for fixed α+ β − γ we get

Theorem 6.2.4. Let p be an odd prime number. Then the number c(2)(pr) of different

MCSLs of index pr that are an intersection of at most two ordinary CSLs is given by

c(2)(pr) =
r + 1

2
(p+ 1)pr−1 +

(r
2
− 1
)
pr−2 −

(r
2
−
[r
2

])
pr−4

+
pr−1 − pr−2[r/3]−1

p2 − 1
+
p4[r/3]−r+2 − p4[r/2]−r−2

2(p2 − 1)
,(6.11)

where [x] is Gauss’ symbol denoting the largest integer n such that n ≤ x. �

Using the sums

∞∑

r=1

(r + 1)prp−rs =
1

(1− p1−s)2
− 1(6.12)

∞∑

r=1

(r
2
−
[r
2

])
prp−rs =

p1−s

2(1− p2−2s)
(6.13)

∞∑

r=1

pr−2[r/3]p−rs =
p1−s + p2−2s + p1−3s

1− p1−3s
(6.14)

∞∑

r=1

p4[r/3]−rp−rs =
p−1−s + p−2−2s + p1−3s

1− p1−3s
(6.15)

∞∑

r=1

p4[r/2]−rp−rs =
p−1−s + p2−2s

1− p2−2s
(6.16)

we get the corresponding Euler factor for our generating function

ψ2(p, s) :=
∞∑

r=1

c(2)(pr)

prs
(6.17)

= 1 +
(p+ 1)

2p

(
1

(1− p1−s)2
− 1

)
+

(p+ 1)p−3s

2 (1− p1−3s)

(
1− p1−2s

(1− p1−s)2
+ 1

)
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=
(1 + p−s)(1 + p−3s)

(1− p1−s)(1− p1−3s)

×
(
1 +

p−2s(p2 + p)

2(1 + p−s)(1− p1−s)
− p−4s(p+ 1)

(1 + p−s)(1− p1−s)(1 + p−3s)

)
.

6.2.2. Intersection of two general CSLs. As we have seen in the beginning, c(2)

is a multiplicative function. Thus, our results from above can be combined to give us the

generating function for all MCSLs of the type Γ (R1) ∩ Γ (R2).

Theorem 6.2.5. Let c(2)(m) be the number of different MCSLs of index m that are an in-

tersection of at most two ordinary CSLs. Then c(2)(Σ) is a multiplicative arithmetic function

whose Dirichlet series is given by

Ψ(2)(s) :=

∞∑

n=1

c(2)(n)

ns
=

∏

p∈P\{2}
ψ2(p, s) =

1− 21−3s

1 + 2−3s

ζ(3s− 1)ζ(3s)

ζ(6s)
ϕ(2)(s)Ψcub(s)

=
(1− 21−s)(1− 21−3s)

(1 + 2−s)(1 + 2−3s)

ζ(s− 1)ζ(s)ζ(3s− 1)ζ(3s)

ζ(2s)ζ(6s)
ϕ(2)(s)

= 1 +
4

3s
+

6

5s
+

8

7s
+

18

9s
+

12

11s
+

14

13s
+

24

15s
+

18

17s
+

20

19s
+

32

21s
+

24

23s
+

45

25s
+ · · · ,

where ψ2(p, s) is given by Eq. (6.17) and

ϕ(2)(s) =
∏

p∈P\{2}

(
1 +

p−2s(p2 + p)

2(1 + p−s)(1− p1−s)
− p−4s(p+ 1)

(1 + p−s)(1− p1−s)(1 + p−3s)

)
.(6.18)

The explicit knowledge of Ψ(2)(s) allows us to find its analytic properties. We know

from Section 3.5 that Ψcub(s) is meromorphic function of s, whose right-most pole is located

at s = 2. Furthermore, ϕ(2)(s) converges absolutely in the half plane {Re(s) > 3
2}, which

guarantees its analyticity there.

Thus, Ψ(2)(s) is a meromorphic function in the half plane {Re(s) > 3
2}. Its rightmost

pole is a simple located at s = 2 with residue

ρ(2) := Ress=2Ψ
(2)(s) =

124

325

ζ(2)ζ(6)ζ(5)

ζ(4)ζ(12)
ϕ(2)(2) =

3866940

691π8
ζ(5)ϕ(2)(2) ≈ 0.712983,(6.19)

where we have used the explicit expressions

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(12) =

691π12

638512875
,(6.20)

and the numerical values

ζ(5) ≈ 1.036928 and ϕ(2)(2) ≈ 1.165843.(6.21)

This gives us to the following asymptotic behaviour of c(2)(m).
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Corollary 6.2.6. The asymptotic behaviour of the summatory function of c(2)(m) reads

as follows

∑

m≤x

c(2)(m) ∼ ρ(2)

2
x2 ≈ 0.356491x2 as x→ ∞.(6.22)

If we compare the asymptotic growth rates for ordinary CSLs and MCSLs, we see that

the latter is not much bigger than the former. This shows that most MCSLs are ordinary

CSLs. This behaviour is not surprising, since c(2)(m) = c(m) for square free indices m. Thus,

all terms n−s with n square free are missing in the expansion of Ψ(2)(s) − Ψ(s), whose first

terms are given by

Ψ(2)(s)−Ψ(s) =
6

9s
+

15

25s
+

40

27s
+

36

45s
+

28

49s
+

48

63s
+

60

75s
+

174

81s
+

72

99s
+

84

117s
+ · · ·

(6.23)

For the determination of the counting function it was sufficient to have an explicit expression

for Γ (R1, R2) for prime power indices. Nevertheless, we can give an explicit expression for

MCSLs with general index as well, which generalises Lemma 6.2.2

Theorem 6.2.7. Let qi, i = 1, 2 be primitive odd quaternions and let q be their least

common right multiple. Then Γ (R(q1), R(q2)) = Im(qJ+ q1Jq̄2) = Im(qJ+ q2Jq̄1).

Proof. We can show the inclusion Γ (R(q1), R(q2)) ⊇ Im(qJ + q1Jq̄2) with the same

arguments as in the proof of Lemma 6.2.2. The equality will follow if we show that both

lattices have the same index in Γ . If d denotes the greatest common right divisor of q1
and q2, then Γ (R(q1), R(q2)) has index |q1|2|q2|2

|d|2 in Γ by Eq. (6.1). Since Im(qJ) has index

lcm(|q1|2, |q2|2)(gcd(|q1|
2,|q2|2)

|d|2 )2 it suffices to show that the order of Im(qJ+ q1Jq̄2)/ Im(qJ) is

a multiple of gcd(|q1|2,|q2|2)
|d|2 . Note that q is a multiple of gcd(|q1|2,|q2|2)

|d|2 , too, where the latter

shall have the prime decomposition gcd(|q1|2,|q2|2)
|d|2 = pδ11 · · · pδℓℓ . Now, for each prime pi there is

a quaternion ri such that q1riq̄2 and hence Im(q1riq̄2) is not divisible by pi. But that implies

that the cosets ni Im(q1riq̄2) + Im(q1J) are all distinct for 0 ≤ ni < pδii i.e. the order of

Im(qJ+ q1Jq̄2)/ Im(qJ) is a multiple of pδii for all i, from which the claim follows. �

6.3. Intersection of three CSLs of the body-centred cubic lattice

6.3.1. Intersection of three CSLs of prime power index. Our next step is to

analyse MCSLs which are the intersection of three ordinary CSLs. It will turn out that any

MCSL can be obtained by the intersection of at most three ordinary MCSLs. Again, it is

sufficient to consider only MCSLs of prime power index.

First, we note that any MCSL Γ (R1, R2, R3) can be written as Γ (R1, R2) ∩ Γ (R1, R3),

where we may assume, without loss of generality, Σ(R1) ≥ Σ(Ri), i = 2, 3. If we denote

the least common right multiple of qi, qj by mij , then Γ (R1, R2, R3) = Im(m12J + q1Jq̄2) ∩
Im(m13J + q1Jq̄3). In fact, we can show that taking the imaginary part Im commutes with
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the intersection, whence the analysis of the MCSLs can be reduced to the analysis of the

corresponding quaternion modules.

Lemma 6.3.1. Let qi be odd primitive quaternions with prime power norm |qi|2 = pαi ,

such that |q1|2 ≥ |qi|2. Let mij be the least common right multiple of qi, qj. Then

Γ (R(q1), R(q2), R(q3)) = Im ((m12J+ q1Jq̄2) ∩ (m13J+ q1Jq̄3)) .(6.24)

Proof. The inclusion

Γ (R(q1), R(q2), R(q3)) ⊇ Im ((m12J+ q1Jq̄2) ∩ (m13J+ q1Jq̄3))

is immediate, so it remains to check the converse inclusion. Let x ∈ Γ (R(q1), R(q2), R(q3)).

Then there exist quaternions y ∈ m12J+ q1Jq̄2 and z ∈ m13J+ q1Jq̄3 such that x = Im(x) =

Im(y) and hence x − y = ne for some integer n. Now, q1 divides both x and y and thus n

must be a multiple of |q1|2. Since |q1|2 is a multiple of m13, it is contained in m13J+ q1Jq̄3,

hence, so is x = y + ne, and the claim follows. �

Note that m1iJ + q1Jq̄i can be written as q1(riJ + Jq̄i), where r̄i is a right divisor of q1
and satisfies m1i = q1ri. Thus the task of determining the MCSLs is reduced to analysing

intersections of Z–modules which are the sums of left and right ideals in J. Hence, it is

worthwhile to study these objects in more detail. We first consider their index in J:

Lemma 6.3.2. If a, b are primitive quaternions whose norm is a power of the same odd

prime p, then the index of aJ + Jb in J is given by [J : (aJ + Jb)] = gcd(|a|2, |b|2) =

min(|a|2, |b|2).

Proof. Without loss of generality, we may assume that |a|2 divides |b|2. Let c be a

greatest common right divisor of |a|2 and b. Then |c|2 = |a|2. Then aJ+Jb = aJ+Jb+J|a|2 =
aJ+Jc Thus, (a, c) is a primitive admissible pair in the sense of Chapter 4, and, hence, aJ+Jc

is a CSL of J. This means that its index is given by |a|2 = gcd(|a|2, |b|2) by Theorem 4.1.6 �

Actually, the proof shows even more. It gives us a sufficient condition for modules of the

form aJ+ Jb to be equal, which we will need later on.

Corollary 6.3.3. Let a, b, b′ be primitive quaternions whose norm is a power of the

same odd prime p and assume that the greatest common right divisor c of b and b′ satisfies
|c|2 ≥ |a|2. Then aJ + Jb = aJ + Jb′ = aJ + Jc. In particular, this holds true if |b|2 ≥ |a|2
and b′ is the greatest common right divisor of b and |a|2.

We will also need the following generalisation:

Lemma 6.3.4. If a, b are primitive quaternions whose norm is a power of the same odd

prime p with |a|2 ≤ pα|b|2, α ∈ N0, then the index of aJ + pαJb in J is given by [J :

(aJ+ Jb)] = |a|2min(|a|2, pα).

It follows immediately from the following more general version:
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Lemma 6.3.5. Let a and b be primitive quaternions whose norm is a power of the same

odd prime p and let c be an arbitrary integer quaternion. Then aJ+ cJb = aJ+ dJb and its

index in J is given by [J : (aJ + cJb)] = |d|4min( |a|
2

|d|2 , |b|2), where d is the greatest common

left divisor of a and c.

Proof. Let us write a = da′ and c = dc′. Then,

aJ+ cJb = d(a′J+ c′Jb) = d(a′J+ a′Jb+ c′Jb) = d(a′J+ Jb) = aJ+ dJb,(6.25)

since a′ and c′ have no common divisor. The statement about the index follows by applying

Lemma 6.3.2 to the last expression but one in Eq. (6.25). �

Our next task is to determine intersections of modules aJ + Jb. For our purposes it is

sufficient to consider the following special case:

Lemma 6.3.6. Let ai, bi be primitive quaternions whose norm is a power of the same odd

prime p such that |ai|2 ≤ |bi|2 and assume that a2 is a left divisor of a1. Let c be the greatest

common right divisor of b1 and b2. Then

(a1J+ Jb1) ∩ (a2J+ Jb2) = a1J+
|a2|2
|c|2 Jb1(6.26)

if |c|2 < |a2|2 and

(a1J+ Jb1) ∩ (a2J+ Jb2) = a1J+ Jb1(6.27)

if |c|2 ≥ |a2|2.

Proof. If |c|2 ≥ |a2|2, then applying Corollary 6.3.3 gives

a2J+ Jb2 = a2J+ Jb1 ⊇ a1J+ Jb1(6.28)

and the claim follows.

Let us assume |c|2 < |a2|2 now. Clearly, a1J + Jb1 ⊇ a1J + |a2|2
|c|2 Jb1. If we denote the

greatest common right divisor of b2 and |a2|2 by d, then, by Corollary 6.3.3,

a2J+ Jb2 = a2J+ Jd ⊇ a2J+
|a2|2
|c|2 Jb1 ⊇ a1J+

|a2|2
|c|2 Jb1,(6.29)

since d is a right divisor of |a2|2
|c|2 b1. Thus, (a1J+Jb1)∩(a2J+Jb2) ⊇ a1J+

|a2|2
|c|2 Jb1 and we are

done, if we can show that both expressions have the same index in J. By Lemma 6.3.4, the

index of the right hand side in J is given by |a1|2|a2|2
|c|2 . The index of the left hand side can be

calculated by means of the second isomorphism theorem. Since (a1J+ Jb1) + (a2J+ Jb2) =

a2J+ Jc has index |c|2 in J, the left hand side has index |a1|2|a2|2
|c|2 , too. �

We are now ready to formulate the solution of the coincidence problem:
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Theorem 6.3.7. Let qi be odd primitive quaternions with prime power norm |qi|2 = pαi ,

such that |q1|2 ≥ |qi|2. Let mij be the least common right multiple of qi, qj and let gij be their

greatest common left divisor. Let |m12|2 ≥ |m13|2. Then

Γ (R(q1), R(q2), R(q3)) = Im (m12J+ nq1Jq̄2) ,(6.30)

where n = max
(

|q3|2
|g13|2|g23|2 , 1

)
.

Proof. Lemma 6.3.1 allows us to write

Γ (R(q1), R(q2), R(q3)) = Im (q1 [(r2J+ Jq̄2) ∩ (r3J+ Jq̄3)]) ,(6.31)

where the primitive quaternions ri are defined by m1i = q1ri. Now, |m12|2 ≥ |m13|2 implies

that r3 is a left divisor of r2 (note that r2 and r3 both are left divisors of q̄1). Moreover,

|ri|2 ≤ |qi|2, so we can apply Lemma 6.3.6:

Γ (R(q1), R(q2), R(q3)) = Im (q1 [(r2J+ Jq̄2) ∩ (r3J+ Jq̄3)])

= Im (q1(r2J+ nJq̄2)) = Im (m12J+ nq1Jq̄2) ,(6.32)

where n = max
(

|r3|2
|g23|2 , 1

)
= max

(
|q3|2

|g13|2|g23|2 , 1
)
. �

Note that the expression for the triple CSL is very similar to the expression for the double

CSL. In fact, the only difference is that an additional factor n occurs. If n = 1 the triple CSL

is just the intersection of two ordinary CSLs, since Γ (R(q1), R(q2)) ⊆ Γ (R(q1), R(q3)) in this

case. But even if n > 1, the triple CSL is just a multiple of a double CSL, as we have the

following result.

Theorem 6.3.8. Let Γ ′ be a sublattice of Γ of prime power index pα in Γ . Then Γ ′

can be represented as the intersection of three ordinary CSLs Γ ′ = Γ (R1) ∩ Γ (R2) ∩ Γ (R3)

if and only if there exists a β ∈ N0 and two coincidence rotations R′
1 and R′

2 such that

Γ ′ = pβ(Γ (R′
1) ∩ Γ (R′

2)). The integer β is determined uniquely by Γ ′.

Proof. Without loss of generality, we may assume that Ri = R(qi), where qi, i = 1, 2, 3

are odd primitive quaternions with prime power norm |qi|2 = pαi . Furthermore, we may

assume |q1|2 ≥ |qi|2 and, using the notation of the previous theorem, |m12|2 ≥ |m13|2. If n :=

max
(

|q3|2
|g13|2|g23|2 , 1

)
= 1 then Γ (R(q1), R(q2), R(q3)) = Γ (R(q1), R(q2)). Assume n = pβ > 1

now. Then pβ divides |r3|2, which, in turn, is a divisor of |r2|2. As r2 is a left divisor of q̄1,

this means that m12 is divisible by pβ and, hence, m′
12 := p−βm12 is in J. Define q′i as the

greatest common left divisor of qi and m
′
12. Then m′

12 is the least common right multiple of

q′1 and q′2. Using Corollary 6.3.3 and Lemma 6.3.5, we infer

m12J+ pβq1Jq̄2 = pβ
(
m′

12J+ q1Jq̄2
)
= pβ

(
m′

12J+ q′1Jq̄
′
2

)
.(6.33)

This shows

Γ (R(q1), R(q2), R(q3)) = pβ Im
(
m′

12J+ q′1Jq̄
′
2

)
= pβΓ (R(q′1), R(q

′
2)),

which proves the first part of the theorem.
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Conversely, we assume that Γ ′ = pβ(Γ (R(q′1))∩Γ (R(q′2)) is given. We choose qi i = 1, 2, 3

such that |qi|2 = pβ|q′i|2 and gcld(qi, q
′
j) = gcld(q′i, q

′
j), where q

′
3 = 1 (we note that such a choice

is always possible, since we have p + 1 > 2 non-associate prime quaternions with norm p).

Then Γ ′ = Γ (R(q1)) ∩ Γ (R(q2)) ∩ Γ (R(q3)) as claimed. At last, the uniqueness of β is a

consequence of the fact that no intersection of two ordinary CSLs is a sublattice of pΓ , i.e.,

β is the largest integer α such that p−αΓ ′ ⊆ Γ . �

Thus, we have established a one-to-one correspondence between intersections of three

ordinary CSLs and multiples of intersections of two ordinary CSLs. We can now easily

express c(3)(pr) in terms of c(2)(pr). We note that the index of pαΓ (R1, R2) in Γ is just p3α

times the index of Γ (R1, R2) in Γ .

Corollary 6.3.9. Let p be an odd prime number. Then

c(3)(pr) =
∑

0≤n≤r/3

c(2)(pr−3n),(6.34)

where c(3)(m) and c(2)(m) denote the number of MCSLs of index m that can be written as

intersection of (up to) three and two ordinary CSLs, respectively.

6.3.2. General intersections of three CSLs. Since we know from our initial consid-

erations that the multiplicity function c(3) is multiplicative, we can easily infer its generating

function from Eq. (6.34).

Theorem 6.3.10. Let c(3)(m) be the number of different MCSLs of index m that are

an intersection of at most three ordinary CSLs. Then c(3)(m) is a multiplicative arithmetic

function whose Dirichlet series is given by

Ψ(3)(s) :=
∞∑

n=1

c(3)(n)

ns
= (1− 2−3s)ζ(3s)Ψ(2)(s)

= 1 +
4

3s
+

6

5s
+

8

7s
+

18

9s
+

12

11s
+

14

13s
+

24

15s
+

18

17s
+

20

19s
+

32

21s
+

24

23s
+

45

25s
+ · · · ,

where Ψ(2)(s) is given by Theorem. (6.2.5).

Proof. This follows from Eq. (6.34) and multiplicativity by a standard calculation. We

note that c(3)(m) is the Dirichlet convolution of c(3)(m) with the arithmetic function

χ(m) =

{
0 if m is even

1 if m is odd,

whose Dirichlet series is given by (1− 2−3s)ζ(3s). �

It follows immediately from the analytic properties of Ψ(2)(s) that Ψ(3)(s) is a meromor-

phic function in the half plane {Re(s) > 3
2}. Its rightmost pole is a simple located at s = 2
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with residue

ρ(3) := Ress=2Ψ
(3)(s) =

63

64
ζ(6)ρ(2) =

1953

5200

ζ(2)ζ(6)2ζ(5)

ζ(4)ζ(12)
ϕ(2)(2)(6.35)

=
64449

11056π2
ζ(5)ϕ(2)(2) ≈ 0.714014,

where we have used the values given in Eqs. (6.20) and (6.21).

A familiar argument involving Delange’s theorem 7.A.1 gives us the following asymptotic

behaviour.

Corollary 6.3.11. The asymptotic behaviour of the summatory function of c(3)(m) reads

as follows

∑

m≤x

c(3)(m) =
ρ(3)

2
x2 ≈ 0.357007x2 as x→ ∞.(6.36)

Comparing these results with Corollary 6.2.6, we see that the difference in the growth

rate is much less than 1%. This small difference is not surprising as triple CSLs that are not

double CSLs can occur only for indices that are divisible by p3 for some odd p. In particular,

the first such lattice occurs for the index Σ = 27. The fact that new MCSLs are rather rare

is also illustrated by the first terms of the expansion

Ψ(3)(s)−Ψ(2)(s) = Ψ(2)(s)
(
(1− 2−3s)ζ(3s)− 1

)
(6.37)

=
1

27s
+

4

81s
+

1

125s
+

6

135s
+

8

189s
+

18

243s
+

12

297s
+

1

343s
+ · · · .

Here, all terms n−s with n third power free are missing, which is just a reformulation of the

fact that c(3)(n) = c(2)(n) for these n.

Finally, let us mention that any triple CSL is just a multiple of a double CSL for general

index m, as we have the following generalisation of Theorem 6.3.8.

Theorem 6.3.12. Let Ri, i = 1, 2, 3 be coincidence rotations. Then there exist rotations

R′
i, i = 1, 2 and an integer n ∈ N such that Γ (R1, R2, R3) = nΓ (R′

1, R
′
2). Conversely, for any

sublattice of the form nΓ (R′
1, R

′
2) there exist coincidence rotations Ri, i = 1, 2, 3 such that

Γ (R1, R2, R3) = nΓ (R′
1, R

′
2).

Proof. Theorem 3.4.9 guarantees that we can decompose Γ (R1, R2, R3) into triple CSLs

of prime power index. Now, we can apply Theorem 6.3.8 to these prime power CSLs to

obtain multiples of double CSLs. Finally, we recombine the prime power CSLs by means of

Theorem 3.4.9. Note that we have applied the fact that n1Γ1 ∩ n2Γ2 = n1n2(Γ1 ∩ Γ2) if ni
and [Γ : Γj ] are coprime for i 6= j. Similarly, we can prove the converse statement. �

6.4. General MCSLs of the body-centred cubic lattices

So far, we have mainly discussed intersections of two and three ordinary CSLs. But in

fact, this is no real restriction, since any MCSL can be represented as the intersection of three



6.4. GENERAL MCSLS OF THE BODY-CENTRED CUBIC LATTICES 103

ordinary CSLs. From the considerations above this is not surprising since the intersections of

three CSLs can be viewed, apart from a factor, as intersections of two CSLs.

In order to prove this statement we need two lemmas:

Lemma 6.4.1. Let q be an odd primitive quaternion with prime power norm |q|2 = pα and

assume that 2 Im(qr) is divisible by pβ. Then qr is divisible by pmin(α,β).

Proof. We write 2qr =: s = (s0, s1, s2, s3). We want to show that pα|si, for i = 1, . . . , 3

implies pmin(α,β)|s0. Let pγ be the maximal power that divides s0 and let δ := min(β, γ).

Then q and pδ divide s, and so does their least common right multiple m. Now, |m|2 is

divisible by pmax(α+δ,2δ) and hence so is |s|2. Thus, s20 = |s|2 − |2 Im(qr)|2 is divisible by

min(pmax(α+δ,2δ), p2β), which must divide p2γ , since γ was chosen maximal. But this is only

possible if either β ≤ γ or γ = δ ≥ α and the claim follows. �

Lemma 6.4.2. Let Γ (R) be a CSL with coincidence index pβ. Then there exists a coinci-

dence rotation R′ such that pαΓ ∩ Γ (R) = pαΓ (R′).

Proof. Without loss of generality, we may assume that R = R(q) where q is an odd

primitive quaternion. Then

pαΓ ∩ Γ (R) = Im(pαJ) ∩ Im(qJ) = Im(pαJ ∩ qJ),(6.38)

where the last equation is a consequence of Lemma 6.4.1. Let m = pαr be the least common

right multiple of pα and q. Then

pαΓ ∩ Γ (R) = Im(pαJ ∩ qJ) = Im(mJ) = pα Im(rJ) = pαΓ (R(r)),(6.39)

which finishes the proof. �

Theorem 6.4.3. Let R1, . . . , Rn be a finite number of coincidence rotations. Then there

exist coincidence rotations R′
1, R

′
2, R

′
3 such that Γ (R1, . . . , Rn) = Γ (R′

1, R
′
2, R

′
3).

Proof. Obviously, it is sufficient to prove the claim for the case n = 4. Moreover, due

to Theorem 3.4.9, we only need to consider MCSLs of prime power index. Now, we apply

Theorem 6.3.8 and Lemma 6.4.2. They guarantee that there exist exponents α, β and and

coincidence rotations Ri, R
′
i such that

Γ (R1, R2, R3, R4)
6.3.8
= pαΓ (R5, R6) ∩ Γ (R4) = pαΓ (R5, R6) ∩ (pαΓ ∩ Γ (R4))

6.4.2
= pαΓ (R5, R6) ∩ pαΓ (R7)

6.3.8
= pαpβΓ (R8, R9)

6.3.8
= Γ (R′

1, R
′
2, R

′
3),(6.40)

which yields the claim. �

Thus, no new MCSLs emerge, if we consider intersections of more than three ordinary

CSLs. Hence, the total number of MCSLs of given index m is given by c(3)(m) already, i.e.

for all n ≥ 3 we have c(∞)(m) = c(n)(m) = c(3)(m). A similar phenomenon has been observed

in two dimensions [6], where the set of MCSL stabilises already for n = 2.
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6.5. Other cubic lattices

So far, we have only discussed the body centred cubic lattice. However, we know from the

ordinary CSLs that all three types of cubic lattices have the same group of coincidence rota-

tions, the same spectrum of indices and the same multiplicity function. In fact, this remains

valid in the case of MCSLs, too. To see this, we need some general results about commensurate

lattices, which generalise the corresponding results for ordinary CSLs of Chapter 3.

Lemma 6.5.1. Let Γ1 ⊆ Γ2 have index m in Γ2. Then the indices Σi of the MCSLs

Γi(R1, . . . , Rn) in Γi satisfy Σ2|mΣ1.

Proof. Γ1(R1, . . . , Rn) ⊆ Γ2(R1, . . . , Rn) ⊆ Γ2 and Γ1(R1, . . . , Rn) has index mΣ1 in

Γ2. �

In the following let Γi, i = {pc, bcc, fcc} denote the primitive, body centred and face

centred cubic lattices, respectively. Analogously Σi(R1, . . . , Rn) denotes the indices of the

MCSLs Γi(R1, . . . , Rn) in their corresponding lattices Γi. Then we have at once:

Theorem 6.5.2. Let R1, . . . , Rn be coincidence rotations. Then Σpc(R1, . . . , Rn) =

Σbcc(R1, . . . , Rn) = Σfcc(R1, . . . , Rn).

Proof. Clearly, 4Γbcc
16⊂ 2Γfcc

2⊂ Γpc
2⊂ Γbcc, where the superscripts indicate the relative

indices. Hence, Σi(R1, . . . , Rn) may only differ by a power of 2. But all indices must be odd

by Proposition 6.1.1, so all three indices must be equal. �

Thus, we may drop the subscripts for the indices Σ. Moreover, this immediately implies

the following result.

Theorem 6.5.3. All three cubic lattices share the same multiplicity functions c(m),

c(2)(m), and c(∞)(m) = c(3)(m).

Proof. Two MCSLs Γi(R1, . . . , Rn) and Γi(R
′
1, . . . , R

′
m) are equal, if and only if the

three indices Σ(R1, . . . , Rn), Σ(R′
1, . . . , R

′
m) and Σ(R1, . . . , Rn, R

′
1, . . . , R

′
m) are equal. But

this implies that Γi(R1, . . . , Rn) = Γi(R
′
1, . . . , R

′
m) for all three types of cubic lattices or

for none. Hence, the multiplicity function must be the same for all three types of cubic

lattices. �

We have seen that there is an explicit expression for the MCSLs of the body centred

cubic lattice in terms of submodules of the ring of Hurwitz quaternions. A similar expression

is available for the primitive lattice. Recall that L, the ring of Lipschitz quaternions, is a

subring of index 2 in J, and the same is valid for its projection onto the imaginary part, i.e.

Γpc = Z

3 = Im(L) is a sublattice of Γbcc = Im(J) with index 2. Similarly, if q1 and q2 are

odd quaternions, then q1Lq2 has index 2 in q1Jq2 and the same holds for their projections

Im(q1Lq2) and Im(q1Jq2). Thus, we expect the following result, where primitive means J-

primitive as usual.
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Theorem 6.5.4. Let qi ∈ L, i = 1, 2 be primitive odd quaternions and let q be their least

common right multiple. Then

Γpc(R(q1)) = Γbcc(R(q1)) ∩ Γpc = Im(q1L)(6.41)

Γpc(R(q1), R(q2)) = Γbcc(R(q1), R(q2)) ∩ Γpc = Im(qL+ q1Lq̄2) = Im(qL+ q2Lq̄1).(6.42)

Moreover,

Γpc(R1, . . . , Rn) = Γbcc(R1, . . . , Rn) ∩ Γpc.(6.43)

Proof. First, observe Γpc(R) ⊂ Γbcc(R) with index 2. Moreover, Γbcc(R)∩Γpc ⊂ Γbcc(R)

has index 2 as well. This gives Γpc(R) = Γbcc(R)∩Γpc. By induction, we see Γpc(R1, . . . , Rn) =

Γbcc(R1, . . . , Rn) ∩ Γpc for arbitrary n. Now, Im(q1L) has index 2 in Im(q1J), as mentioned

above. The same is true for all the sublattices Im(q1L) ⊆ Im(q1J)∩Im(L) = Γbcc(R(q1))∩Γpc,
hence Γpc(R(q1)) = Im(q1J) as well.

Analogously, the second statement follows, once we have checked that Im(qL+q1Lq̄2) has

index 2 in Im(qJ+ q1Jq̄2). In fact, it is sufficient to check that the index of Im(qL+ q1Lq̄2)

in Im(qJ + q1Jq̄2) is at most 2, and the latter follows immediately, if we have shown that

qL+ q1Lq̄2 has index 2 in qJ+ q1Jq̄2. Clearly, we have J = L ∪ (r+L), where r ∈ J \L. In
particular, r may be chosen as r1 = 1

2(1, 1, 1, 1)q̄2 or r2 = 1
2q3(1, 1, 1, 1), where q3 is uniquely

defined by q = q1q3. Now, qr1 ± q1r2q̄2 = (12 ± 1
2)q(1, 1, 1, 1)q̄2 ∈ qL implies

qJ+ q1Jq̄2 =
1⋃

n1,n2=0

[q(n1r1 + L) + q1(n2r2 + L)q̄2] =
1⋃

n1=0

[n1qr1 + qL+ q1Lq̄2] ,(6.44)

which, indeed, proves that qL+ q1Lq̄2 ⊂ qJ+ q1Jq̄2 has index 2. �

Although we do not have similar expressions for Γfcc, we still have the following theorem,

Theorem 6.5.5. The CSLs of Γfcc satisfy the following equations

Γfcc(R) = Γbcc(R) ∩ Γfcc(6.45)

Γfcc(R1, . . . , Rn) = Γbcc(R1, . . . , Rn) ∩ Γfcc.(6.46)

Proof. First, we note that Γfcc ⊂ Γpc has index 2 in Γpc and contains exactly those

vectors of Γpc whose square of the (3-dimensional) norm is even. Now, Γpc(R) ∩ Γfcc =

RΓpc ∩ Γfcc = RΓfcc ∩ Γfcc = Γfcc(R), since R preserves the norm. Using the previous

theorem, we see immediately Γfcc(R) = Γbcc(R) ∩ Γfcc. The second statement follows by

induction. �

6.6. Triple Junctions

Finally, let us mention an application to crystallography. One object crystallographers

are interested in are so-called triple junctions [29, 30, 31]. Roughly speaking, triple junctions

are three crystal grains meeting in a straight line. This means that there are three pairs of

grains sharing a common plane (grain boundary) and, thus, giving rise to three simple CSLs,

and a double CSL, which is the intersection of the former. In our terms, the latter is an MCSL
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Γ ∩R1Γ ∩R2Γ , whereas the former are the simple CSLs Γ ∩R1Γ , Γ ∩R2Γ and R1Γ ∩R2Γ ,

respectively. An important question is the relation of the indices of these lattices.

Let us denote the indices of the simple CSLs by Σ1 := Σ(R1), Σ2 := Σ(R2) and Σ3 :=

Σ(R3), where R3 := R−1
1 R2. Let q1 and q2 be the quaternions generating R1 and R2,

respectively. Then R3 is generated by q̄1q2, which is in general not a primitive quaternion.

The corresponding primitive quaternion reads q3 :=
q̄1q2
|q12|2 , where we have used the definition

q12 = gcld(q1, q2). Hence, we can immediately reproduce Gertsman’s result [30] for the index

Σ3 = Σ1Σ2

Σ2
12

, where Σ12 := Σ(R(q12)) is the index corresponding to the rotation R(q12). On

the other hand, we know from Eqs. (3.20) and (6.1) that

Σ(R1, R2) =
Σ1Σ2

Σ12
= Σ12Σ3.(6.47)

Now, we define q′1 := q−1
12 q1 and q′2 := q−1

12 q2. Then we may write

q1 = q12q
′
1 q2 = q12q

′
2 q3 = q̄′1q

′
2(6.48)

and correspondingly, we may decompose the rotations R1, R2, R3 into the “basic” constituents

R12 := R(q12), R
′
1 := R(q′1) and R′

2 := R(q′2). We note that the corresponding indices are

multiplicative

Σ(R1) = Σ(R12)Σ(R′
1), Σ(R2) = Σ(R12)Σ(R′

2), Σ(R3) = Σ(R′
1)Σ(R′

2).(6.49)

Furthermore, we see q̄′1 = gcld(q̄1, q3) =: q13 and q̄′2 = gcld(q̄2, q̄3) =: q23 and thus Eq. (6.48)

may be written in a more symmetrical way

q1 = q12q̄13 =
q2q̄3
|q23|2

q2 = q12q̄23 =
q1q3
|q13|2

q3 = q̄13q̄23 =
q̄1q2
|q12|2

.(6.50)

If we define the corresponding indices in the intuitive way, we see that Σ(R1, R2) can be

written as

Σ(R1, R2) =
Σ1Σ2

Σ12
=
Σ1Σ3

Σ13
=
Σ2Σ3

Σ23
= Σ12Σ3 = Σ13Σ2 = Σ23Σ1(6.51)

= Σ12Σ13Σ23 = Σ12Σ
′
1Σ

′
2 = (Σ1Σ2Σ3)

1/2.(6.52)

The last expression has been proved by different methods in [30]. Note that we can express

Σ(R1, R2) either in terms of the simple indices Σ1, Σ2, Σ3 or in terms of the “reduced” indices

Σ12, Σ13, Σ23, which describe somehow the “common” part of R1, R2 and R3. Note that R12,

R13, R23 contain the complete information of the triple junction. In particular, we can write

Γ (R1, R2) as Γ (R1, R2) = R12(R
−1
12 Γ ∩R−1

13 Γ ∩R−1
23 Γ ).
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CHAPTER 7

Well-rounded sublattices of planar lattices

Abstract. A lattice in Euclidean d-space is called well-rounded if it contains d linearly in-

dependent vectors of minimal length. This class of lattices is important for various questions,

including sphere packing or homology computations. The task of enumerating well-rounded

sublattices of a given lattice is of interest already in dimension 2, and has recently been

treated by several authors. In this paper, we analyse the question more closely in the spirit

of earlier work on similar sublattices and coincidence site sublattices. Combining explicit geo-

metric considerations with known techniques from the theory of Dirichlet series, we arrive,

after a considerable amount of computation, at asymptotic results on the number of well-

rounded sublattices up to a given index in any planar lattice. For the two most symmetric

lattices, the square and the hexagonal lattice, we present detailed results.

7.1. Introduction

A lattice in Euclidean space Rd is well-rounded if the non-zero lattice vectors of minimal

length span Rd. Well-rounded lattices are interesting for several reasons. First of all, the

concept is put into a broader context by the notion of the successive minima of a lattice

(more precisely, of a norm function on a lattice). By definition, a lattice is well-rounded if

and only if all its d successive minima (norms of successively shortest linearly independent

vectors) are equal to each other.

A first observation is that many important ‘named’ lattices in higher-dimensional space

are well-rounded, such as the Leech lattice, the Barnes-Wall lattice(s), the Coxeter-Todd

lattice, all irreducible root lattices, and many more [10]. There are essentially two reasons

for this (which often apply both). First of all, distinct successive minima give rise to proper

subspaces of Rd that are invariant under the orthogonal group (automorphism group) of the

lattice. If this finite group acts irreducibly on Rd, the lattice must be well-rounded. Secondly,

a lattice which gives rise to a locally densest sphere packing (a so-called extreme lattice),

is well-rounded. It is actually perfect by Voronoi’s famous theorem (this part goes back

to Korkine and Zolotareff), and it is easily seen that perfection implies well-roundedness;

compare [21].

However, these two observations are not at the core of the notion. They might give

the impression that well-rounded lattices are very rare or special, which is not the case.

In terms of Gram matrices or quadratic forms, the well-rounded ones lie in a subspace of

codimension d − 1 in the space of all symmetric matrices, similarly for the cone of positive

definite Minkowski-reduced forms. Despite its codimension, this subspace is large enough

111
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so that certain questions about general forms can be reduced to well-rounded ones. A good

illustration for this is Minkowski’s proof of the fact that the geometric mean of all d successive

minima of a lattice is bounded by the same quantity γd ·
(
disc(Λ)

) 1
d as the first minimum (see

Section 7.2). Here, γd is the Hermite constant in dimension d, and for well-rounded lattices

this estimate reduces to the definition of this constant. The proof is obtained by a certain

deformation of the quadratic form; see [29]. A sharpened version of this technique asks for

a diagonal matrix which transforms a given lattice into a well-rounded one. In general, its

existence is unknown, but C. McMullen [22] recently proved a weaker version which suffices for

applications to Minkowski’s conjecture on the minimum of a (multiplicative) norm function on

lattices. The method of proof is related to applications of well-rounded lattices to cohomology

questions as described in the introduction of [18]; compare the references given there.

Having this kind of ‘richness’ of well-rounded lattices in mind, it is tempting to ask how

frequent they are in terms of counting sublattices. So, the principal object of study in this

paper is the function

(7.1) aΓ (n) := card{Λ | Λ ⊆ Γ is a well-rounded sublattice with [Γ : Λ] = n},

where Γ is an in principle arbitrary lattice, and [Γ : Λ] denotes the index of Λ in Γ . This

question is of interest already in dimension 2 (where some of the general features described

above reduce to rather obvious facts). Moreover, since the well-rounded sublattices are the

objects of interest, and not so much the enveloping ‘lattice of reference’ Γ , it seems natural

to focus mainly on the two most symmetric lattices, the hexagonal lattice and the square

lattice. In this paper, we shall obtain complete and explicit results on the asymptotic number

of well-rounded sublattices, as a function of the index, of the hexagonal lattice and of the

square lattice. We also have results for general Γ which are somewhat weaker, which seems

to be unavoidable.

In special situations, lattice enumeration problems have a long history. The coefficients

of the Dedekind zeta functions of an algebraic number field K of degree d over the rationals

count the number of ideals of given index in the ring of integers ZK , which is considered as a

lattice in a well-known way [7]. The perhaps most basic result on lattice enumeration, which

is also one of the most frequently rediscovered ones, is the determination of the number g(n)

of all distinct sublattices of index n in a given lattice Γ ⊂ Rd. The result follows easily from

the Hermite normal form for integral matrices and reads

(7.2) gd(n) = g(n) =
∑

m1·...·md=n

m0
1 ·m1

2 · · ·md−1
d

with Dirichlet series generating function

(7.3) Dg(s) =
∞∑

n=1

g(n)

ns
= ζ(s)ζ(s− 1) · · · ζ(s− d+ 1)

(compare [26, p. 64], [27, p. 307], [20, 2]; for several different proofs, see [20, Theorem 15.1]).

This result of Eq. (7.2) is insensitive to any geometric property of the lattice Γ , in the sense
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that it is actually a result for the free Abelian group of rank d and its subgroups. In [11, 15],

extensions to more general classes of finitely generated groups are treated.

As for lattices, it is natural to refine the question by looking at classes of sublattices

with particular properties (number-theoretic or geometric), possibly defined by an additional

structure on the enveloping vector space. In addition to the classical case of the Dedekind

zeta function mentioned above, we are aware of only few, scattered results. Quite a while ago,

in [27, 9], modules in an order in a semisimple algebra over a number field were considered.

Well-rounded lattices in dimension 2 have recently been analysed in [12, 13, 14, 18]; see

also the references in [14]. Together with our earlier work on similar sublattices [4, 6] and

on coincidence site sublattices (CSLs) [2, 31, 5, 33], these papers were our starting point.

One benefit of Dirichlet series is the access to asymptotic results on the growth of a

(non-negative) arithmetical function f(n). Since f in general need not behave regularly, in

particular need not be monotone, one usually considers the average growth of f(n), that is,

one studies the summatory function F (x) =
∑

n≤x f(n). For the above counting function

gd(n) for sublattices, the summatory function Gd(x) satisfies

(7.4) Gd(x) = cxd +∆d(x),

with c = 1 for d = 1 and c = 1
d

∏d
ℓ=2 ζ(ℓ) otherwise, which follows from Eq. (7.3) by applying

Delange’s theorem; compare Theorem 7.A.1 in Appendix 7.A. Clearly, G1(x) = [x], where [·]
denotes the Gauss bracket, and thus ∆1(x) = O(1). In dimension 2, G2 = σ1(n) :=

∑
ℓ|n ℓ,

so we have the well-known asymptotic growth behaviour of the divisor function, whose error

term can be estimated as ∆2(x) = O
(
x log(x)

)
; see [1, Thm 3.4].

One can ask for a more refined description of the asymptotic growth of an arithmetic

function, consisting of a main term for the summatory function, a term of second order (a

‘first order error term’), and an error term of a strictly smaller order of magnitude than the

term of second order. For instance, for the number of divisors of n, it is known that

(7.5)
∑

n≤x

σ0(n) = x log(x) + (2γ − 1)x+O
(√
x
)
,

where γ is the Euler–Mascheroni constant; compare [1, 28]. So we have a term of second

order which is linear in this case and thus of ‘almost the same’ growth as the main term,

whereas the error term is much smaller.

The content of this paper can now be summarised as follows. In the short preparatory

Section 7.2, we recall a few facts about reduced bases and Bravais classes of lattices in the

plane, and state some auxiliary remarks about well-rounded (sub-)lattices.

In Section 7.3, we begin with an explicit description of all well-rounded sublattices of the

square lattice, the latter viewed as the ring Z[i] of Gaussian integers. After these preparations,

the main result then is Theorem 7.3.2, which gives a refined asymptotic description of the

function A�, of the kind that we have explained above for the divisor function in Eq. (7.5);

the constants for the main term and the term of second order are determined explicitly. The

proof relies on classic methods from analytic number theory, including Delange’s theorem and
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some elementary tools around Euler’s summation formula and Dirichlet’s hyperbola method.

We describe the strategy and the main steps of the proof; some of the details, which are long

and technical, have been transferred to a supplement to this paper. A weaker result, namely

the explicit asymptotics without the second-order term, is stated in Theorem 7.3.1, which is

fully proved here.

Section 7.4 provides the analogous analysis for the hexagonal lattice, realised as the ring

of Eisenstein integers Z[ρ] with ρ = e2π i/3; Theorems 7.4.1 and 7.4.2 are completely analogous

to Theorems 7.3.1 and 7.3.2.

The general case of well-rounded sublattices of two-dimensional case is treated in Sec-

tion 7.5, which is subdivided into two parts. The first one starts with a criterion for the

existence of well-rounded sublattices. The lattices that have a well-rounded sublattice in-

clude all ‘rational’ lattices, that is, lattices whose Gram matrix consists of rational numbers

(or even rational integers), up to a common multiple. So these are exactly the lattices that

correspond to integral quadratic forms in the classical sense. There is an interesting connec-

tion between well-rounded sublattices and CSLs, which is established in Lemma 7.5.1. In

the rest of this part, it is shown in Theorem 7.5.8 that all non-rational lattices that contain

well-rounded sublattices have essentially the same power-law growth (linear) of their average

number AΓ (x). The second part of Section 7.5 deals with the behaviour of AΓ (x) in the

general rational case. The discussion is more complicated, but nevertheless we can show that

the growth rate is proportional to x log(x), as in the square and hexagonal case. Summaris-

ing, we see that three regimes exist as follows: A planar lattice can have many, some or no

well-rounded sublattices, the first case is exactly the rational case, while the second case is

explained by the existence of an essentially unique coincidence reflection.

Our paper is complemented by four appendices. In Appendix 7.A, some classic results

about Dirichlet series are collected in a way that suits our needs. In Appendix 7.B, we

explicitly record the asymptotic behaviour of the number of similar sublattices of the square

and the hexagonal lattice, which are a useful by-product of Sections 7.3 and 7.4. Appendix 7.C

summarises key properties of a special type of sublattices that we need, while Appendix 7.D

recalls some facts about Epstein’s zeta functions.

7.2. Tools from the geometry of planar lattices

Let us collect some simple, but useful facts from the geometric theory of lattices. We

assume throughout this paper that we are in dimension d = 2, so we consider an arbitrary

lattice Λ in the Euclidean plane. Let v ∈ Λ be a shortest non-zero vector, and w ∈ Λ shortest

among the lattice vectors linearly independent from v. Then v, w form a basis of Λ. (The

reader may consult [7, Chapter 2, §7.7] for this and for related statements below.) Changing

the sign of w if necessary, we may assume that the inner product satisfies (v, w) ≥ 0. A

basis of this kind is called a reduced basis of Λ. By definition, we have the following chain of
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inequalities,

(7.6) |v| ≤ |w| ≤ |v − w| ≤ |v + w| .

In terms of the quantities a := |v|2, c := |w|2, and b := (v, w), which are the entries of the

Gram matrix
(
a b
b c

)
with respect to v, w, these conditions read

(7.7) 0 ≤ 2b ≤ a ≤ c.

Conversely, if we start with any two linearly independent vectors v, w satisfying Eqs. (7.6)

or (7.7), then v, w form a reduced basis of the lattice that they generate. Concerning the

reduction conditions (7.6), there are six cases possible for the pair v, w as follows,

(a) |v| < |w| < |v − w| < |v + w| , (v, w) > 0 general type

(b) |v| < |w| < |v − w| = |v + w| , (v, w) = 0 rectangular type

(c) |v| < |w| = |v − w| < |v + w| , (v, w) > 0 centred rectangular type

(d) |v| = |w| < |v − w| < |v + w| , (v, w) > 0 rhombic type

(e) |v| = |w| < |v − w| = |v + w| , (v, w) = 0 square type

(f) |v| = |w| = |v − w| < |v + w| , (v, w) > 0 hexagonal type

It is well-known and easily shown that the entries a, b, c of the Gram matrix with respect

to a reduced basis v, w, only depend on the lattice, but not on the choice of the reduced

basis v, w. Therefore, it is well-defined to talk about the geometric type of the lattice, which

is one of the types (a) to (f) above. As a further consequence of this uniqueness property,

the orthogonal group O(Λ) acts transitively (and thus sharply transitively) on the set of all

(ordered) reduced bases of Λ. (By definition, O(Λ) is the set of orthogonal transformations

of the enveloping vector space which maps the lattice into, and thus onto itself.) O(Λ) is

cyclic of order 2 for lattices of general type, a dihedral group of order 4 (generated by two

perpendicular reflections) for the types (b), (c) and (d), a dihedral group of order 8 for the

square lattice, and of order 12 for the hexagonal lattice.

Typically, one wants to classify lattices only up to similarity, which means that the Gram

matrix may be multiplied with a positive constant. Clearly, a square or hexagonal lattice

is unique up to similarity. Similarity classes of rhombic type depend on one parameter, the

angle α formed by v and w, where π/3 < α < π/2. The limiting cases α = π/3 and α = π/2

lead to the hexagonal, respectively square lattice.

A lattice Λ (in any dimension) is called rational if its similarity class contains a lattice

with rational Gram matrix. The discriminant disc(Λ) of a lattice Λ is the determinant of

any of its Gram matrices. (This is the square of the volume of a fundamental domain for the

action of Λ by translations.)

Two lattices Γ,Λ (on the same space) are called commensurate (or commensurable) if

their intersection Γ ∩Λ has finite index in both. Equivalently, there exists a non-zero integer

a such that aΓ ⊆ Λ ⊆ a−1Γ . This in turn is equivalent to the condition that Γ and Λ
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generate the same space over the rationals, QΓ = QΛ. If Γ and Λ are commensurate, the

ratio of their discriminants is a rational square.

A coincidence isometry for Λ is an isometry (an orthogonal transformation R of the

underlying real space) such that Λ and RΛ are commensurate. In earlier work [2], we have

introduced the notation OC(Λ) for the set of all coincidence isometries for Λ. If R ∈ OC(Λ),

it follows that RQΛ = QRΛ = QΛ (see above), i.e. R induces an orthogonal transformation

of the rational space QΛ. Conversely, any such orthogonal transformation maps Λ onto a

lattice of full rank in the same rational space, which, by the above remarks, is commensurate

with Λ. Altogether, OC(Λ) is equal to the rational orthogonal group O(QΛ) (in particular,

it is a group). If Γ and Λ are commensurate, their groups of coincidence isometries coincide,

OC(Γ ) = O(QΓ ) = O(QΛ) = OC(Λ).

A coincidence site lattice (CSL) for Λ is a sublattice of the form Λ ∩ RΛ with R ∈ OC(Λ);

see [2] for further motivation concerning this notion.

Geometric types as introduced above are closely related, but not identical, with the so-

called Bravais types of lattices, which are defined in any dimension. Two lattices Γ and Λ

are Bravais equivalent if and only if there exists a linear transformation which maps Γ onto Λ

and also conjugates O(Γ ) into O(Λ). The Bravais type (or Bravais class) of a lattice depends

only on its geometric type; the centred rectangular and the rhombic lattices belong to the

same Bravais type (thus we call them rhombic-cr lattices). Otherwise, geometric types and

Bravais types (or rather the respective equivalence classes of lattices) coincide.

Let us return to well-rounded lattices. Clearly, a planar lattice is well-rounded if and only

if it is of rhombic, square or hexagonal type. Any rhombic-cr lattice contains a rectangular

sublattice of index 2. In fact, if v and w form a reduced basis, then v − w and v + w are

orthogonal, and form a reduced basis of the desired sublattice. Conversely, if v, w is a reduced

basis of a rectangular lattice, and if we further assume that |w2| = c < 3a = 3|v|2, then v+w
and −v+w form a reduced basis of a rhombic sublattice of index 2. (If c = 3a, this sublattice

is hexagonal, whereas for c > 3a, we have |2v| < | ± v + w|, and thus the vectors are not

shortest any more; in this case, the sublattice is centred rectangular.)

Similarly, a hexagonal lattice contains a rectangular sublattice of index 2, or more pre-

cisely, it contains exactly three rectangular sublattices of index 2 for symmetry reasons.

Analogously, the square lattice contains precisely one square sublattice of index 2.

7.3. Well-rounded sublattices of Z[i]

We use the Gaussian integers as a representation of the square lattice. Note that there is

no hexagonal sublattice of Z[i] (consider the discriminant). Hence, all well-rounded sublattices

are either rhombic or square lattices, which we treat separately, in line with the geometric

classification explained above.

A fundamental quantity that will appear frequently below is the Dirichlet series generating

function for the number of similar sublattices of Z[i], compare [4, 6], which is equal to the
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Dedekind zeta function of the quadratic field Q(i),

(7.8) Φ�(s) = ζQ(i)(s) = ζ(s)L(s, χ−4) .

Here, ζ(s) is Riemann’s zeta function, and L(s, χ−4) is the L-series corresponding to the

Dirichlet character χ−4 defined by

χ−4(n) =





0, if n is even,

1, if n ≡ 1 mod 4,

−1, if n ≡ 3 mod 4;

see [2, 6, 30] and Appendix 7.A.

Before dealing with the well-rounded sublattices, let us consider all rhombic-cr and square

sublattices of Z[i] (recall that the term ‘rhombic-cr’ means rhombic or centred rectangular).

Let z1, z2 ∈ Z[i] be any two elements of equal norm. The sublattice Γ = 〈z1, z2〉Z is of rhombic

or centred rectangular or square type, and every rhombic-cr or square sublattice is obtained

in this way (see Section 2). We can write z1+ z2 and z1− z2 as z1+ z2 = pz and z1− z2 = iqz

where p, q are integers and z is primitive, which means that Re(z) and Im(z) are relatively

prime. W.l.o.g., we may assume that p and q are positive (interchange z1 and z2 if necessary).

Thus Γ = 〈z1, z2〉Z = 〈p+iq
2 z, p−iq

2 z〉Z is a sublattice of Z[i] of index 1
2pq|z|2. The lattice Γ

is a square lattice if and only if p = q. Determining the number of rhombic-cr and square

sublattices is thus equivalent to finding all rectangular and square sublattices of Z[i] with the

additional constraint that (p+ qi)z is divisible by 2.

We distinguish two cases (note that z is primitive, hence, in particular, not divisible by 2,

and thus p and q must have the same parity), which we call ‘rectangular’ and ‘rhombic case’

for reasons that will become clear later.

(1) ‘rectangular’ case: z is not divisible by 1 + i, hence p and q must be even. We write

p = 2p′, q = 2q′. The index is even since it is given by 2p′q′|z|2. Note that p′, q′ may

take any positive integral value, even or odd.

(2) ‘rhombic’ case: z is divisible by 1 + i. We write z = (1 + i)w.

(a) If p and q are both even, we again write p = 2p′, q = 2q′. The index is divisible

by 4 since it is given by 4p′q′|w|2. Note that p′, q′ may take any positive integral

value, even or odd.

(b) If p and q are both odd, the index is odd and given by pq|w|2.
For fixed z, interchanging p 6= q gives a rhombic-cr (and rectangular) lattice which is rotated

through an angle π
2 , hence we count no lattice twice if we let p, q run over all positive integers.

Let Φeven(s) be the Dirichlet series for the number of rhombic-cr and square sublattices

of even index. This comprises the cases (1) and (2a). As p′, q′ run over all positive integers,

they each contribute a factor of ζ(s), and since z is primitive, this gives the factor Φpr
� (s),

where Φpr
� (s) is the Dirichlet series generating function of primitive similar sublattices of Z[i].

The additional factor of 2 in the index formula gives a contribution of 2−s, and combining all
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these factors finally yields

(7.9) Φeven(s) =
1

2s
ζ(s)2Φpr

� (s).

It remains to calculate the number of rhombic-cr and square sublattices of odd index, with

generating function Φodd(s). Here, p and q run over all odd positive integers and hence each

contribute a factor of (1− 2−s)ζ(s), whereas w runs over all primitive w with |w|2 odd, and

hence gives the contribution 1
1+2−sΦ

pr
� (s), so that we have

(7.10) Φodd(s) =
(1− 2−s)2

1 + 2−s
ζ(s)2Φpr

� (s).

In total, the generating function Φ♦+�(s) for the number of all rhombic-cr and square sub-

lattices is given by

(7.11) Φ♦+�(s) = Φeven(s) + Φodd(s) =
1− 2−s + 2−2s+1

1 + 2−s
ζ(s)2Φpr

� (s).

Via standard arguments involving Moebius inversion (see [6] and references therein), the

number of primitive rhombic-cr and square sublattices together is given by

(7.12) Φpr

♦+�
(s) =

1

ζ(2s)
Φ♦+�(s) =

1− 2−s + 2−2s+1

1 + 2−s

ζ(s)2

ζ(2s)
Φpr
� (s).

Putting all this together, we obtain the generating functions Φpr
� , Φ

pr

♦
and Φpr

⊏⊐ for the number

of primitive square, rhombic-cr and rectangular sublattices, respectively, as

Φpr
� (s) = (1 + 2−s)

∏

p≡1(4)

1 + p−s

1− p−s
=

ζ(s)L(s, χ−4)

ζ(2s)
,(7.13)

Φpr

♦
(s) =

(
1− 2−s + 2−2s+1

1 + 2−s

ζ(s)2

ζ(2s)
− 1

)
Φpr
� (s),(7.14)

Φpr
⊏⊐(s) =

(
ζ(s)2

ζ(2s)
− 1

)
Φpr
� (s),(7.15)

with the L-series and the character χ−4 from above (see Appendix 7.A for details and nota-

tion). Note that the last equation follows from the fact that the generating function for all

rectangular lattices including the square lattices is given by ζ(s)2Φpr
� (s).

Let us return to the well-rounded sublattices. Since z1 and z2 are shortest (non-zero)

vectors, we have |z1 ± z2|2 ≥ |z1|2 = |z2|2, which is equivalent to min(p2, q2) ≥ p2+q2

4 , which

in turn is equivalent to 3p2 ≥ q2 ≥ 1
3p

2. Note that this condition is also sufficient. Hence,

we have to apply this extra condition to our considerations from above. We distinguish two

cases:

(1) p and q are both even,
√
3p ≥ q ≥ 1√

3
p, and z may or may not be divisible by 1 + i.

We write p = 2p′, q = 2q′, for which we likewise have
√
3p′ ≥ q′ ≥ 1√

3
p′. The index

is even since it is given by 2p′q′|z|2. Here, p′ and q′ may take any positive integral
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values, even or odd, which satisfy
√
3p′ ≥ q′ ≥ 1√

3
p′. This corresponds to E , E ′ in

Eqs. (29) and (31) of [12].

(2) p and q are both odd,
√
3p ≥ q ≥ 1√

3
p, and z is divisible by 1 + i. We write

z = (1 + i)w. The index is odd and given by pq|w|2. This corresponds to O,O′ in
Eqs. (30) and (32) of [12].

The set of all possible indices of well-rounded sublattices is thus given by (we may interchange

p and q if necessary)

(7.16)
{
2pq|z|2

∣∣ q ≤ p ≤
√
3q, z ∈ Z[i]

}
∪
{
pq|z|2

∣∣ q ≤ p ≤
√
3q, z ∈ Z[i], 2 ∤ pq|z|2

}

Note that this set is a proper subset of Fukshansky’s [12, Thm 1.2, Thm 3.6] index set

(7.17) D :=
{
pq|z|2

∣∣ q ≤ p ≤
√
3q, z ∈ Z[i]

}

since 6 = 2 · 3 · |1|2 ∈ D, but 6 is not contained in the set (7.16).

The Dirichlet series generating function for the well-rounded sublattices may now be cal-

culated as above by taking the condition
√
3p ≥ q ≥ 1√

3
p into account, so that the generating

Dirichlet series for the well-rounded sublattices of even index is given by

(7.18)
1

2s

∑

p∈N

∑

1√
3
p<q<

√
3p

1

psqs
Φpr
� (s).

Clearly, this sum is symmetric in p and q, and comprises the similar sublattices. In fact,

if we exclude the square sublattices (those lattices with p = q) from Eq. (7.18) and note

that
∑

p∈N
∑

1√
3
p<q<p =

∑
q∈N

∑
q<p<

√
3q, we obtain the generating function for the rhombic

lattices with even index as

(7.19) Φwr,even(s) =
2

2s

∑

p∈N

∑

p<q<
√
3p

1

psqs
Φpr
� (s).

The case of odd indices is slightly more cumbersome. Here, we have to replace the factor

(1 − 2−s)2ζ(s)2 by the corresponding sum over all odd integers with p < q <
√
3p. Writing

p = 2k + 1 and q = 2ℓ + 1, our condition reads k < ℓ <
√
3k +

√
3−1
2 . Since this inequality

has no integral solution for k = 0, we may start our sum with k = 1, and finally arrive at

(7.20) Φwr,odd(s) =
2

1 + 2−s
Φpr
� (s)

∑

k∈N

∑

k<ℓ<
√
3k+

√
3−1
2

1

(2k + 1)s(2ℓ+ 1)s
.

Now, Φwr,even(s)+Φwr,odd(s)+Φ�(s) gives the Dirichlet series generating function Φ�,wr(s) for

the arithmetic function a�(n) of well-rounded sublattices of Z[i] of index n. To get a better

understanding of it, we ‘sandwich’ it, on the half-axis s > 1, between two explicitly known

meromorphic functions. All these Dirichlet series satisfy the conditions of Theorem 7.A.1 (see

Appendix 7.A). This gives a result on the asymptotic growth and its error as follows.

Theorem 7.3.1. Let a�(n) be the number of well-rounded sublattices of index n in the

square lattice, and Φ�,wr(s) =
∑∞

n=1 a�(n)n
−s the corresponding Dirichlet series generating
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function. The latter is given by

Φ�,wr(s) = Φ�(s) + Φwr,even(s) + Φwr,odd(s)

via Eqs. (7.8), (7.19) and (7.20). The generating function Φ�,wr is meromorphic in the half

plane {Re(s) > 1
2}, with a pole of order 2 at s = 1, and no other pole in the half plane

{Re(s) ≥ 1}.
If s > 1, we have the inequality

D�(s)− Φ�(s) < Φ�,wr(s) < D�(s) + Φ�(s),

with Φ�(s) from Eq. (7.8) and the function

D�(s) = 2 + 2s

1 + 2s
1−

√
3
1−s

s− 1

L(s, χ−4)

ζ(2s)
ζ(s)ζ(2s− 1).

As a consequence, the summatory function A�(x) =
∑

n≤x a�(n) possesses the asymptotic

growth behaviour

A�(x) =
log(3)

2π
x log(x) + O

(
x log(x)

)
, as x→ ∞.

Proof. Clearly, Φ�,wr(s) is the sum of Φ�(s) and the two contributions from Eqs. (7.19)

and (7.20). For real s > 1, the latter can be both bounded from below and above by an

application of Lemma 7.A.2 from Appendix 7.A with α =
√
3, the former with parameters

β = γ = 0 and the latter (after pulling out a factor of 2s in the denominator) with β =

(
√
3− 1)/2 and γ = 1

2 . A straight-forward calculation leads to the explicit expression for the

function D�(s), as well as to the inequality stated.

It follows from the explicit expression for D�(s) that it is a meromorphic function

in the whole plane. Using the Euler summation formula, we see that the difference(
Φ�,wr(s)−D�(s)

)
/Φpr

� (s) is an analytic function for Re(s) > 1
2 , guaranteeing that Φ�,wr(s)

is meromorphic in the half plane {Re(s) > 1
2}.

The right-most singularity of ζ(s)ζ(2s − 1) is s = 1, with a pole of the form 1
2(s−1)2

,

while the entire factor of D�(s) in front of it is analytic near s = 1 (as well as on the line

{Re(s) = 1}). An application of Theorem 7.A.1 from Appendix A now leads to the claimed

growth rate. �

The difference of the bounds in Theorem 7.3.1 is 2Φ�(s), which is a Dirichlet series that

itself allows an application of Theorem 7.A.1. The corresponding summatory function has an

asymptotic growth of the form cx+O(x), which suggests that the error term of A�(x) might

be improved in this direction. However, it seems difficult to extract good error terms from

Delange’s theorem; compare the example in [8, Sec 1.8]. Since numerical calculations support

the above suggestion, we employed direct methods such as Dirichlet’s hyperbola method;

compare [1, Sec 3.5] or [28, Sec. I.3]. A lengthy calculation (see [32] for the details) finally

leads to the following result.
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Theorem 7.3.2. Let a�(n) be the number of well-rounded sublattices of index n in the

square lattice. Then, the summatory function A�(x) =
∑

n≤x a�(n) possesses the asymptotic

growth behaviour

A�(x) =
log(3)

3

L(1, χ−4)

ζ(2)
x(log(x)− 1) + c�x+O

(
x3/4 log(x)

)

=
log(3)

2π
x log(x) +

(
c� − log(3)

2π

)
x+O

(
x3/4 log(x)

)

where, with γ denoting the Euler–Mascheroni constant,

c� :=
L(1, χ−4)

ζ(2)

(
ζ(2) +

log(3)

3

(
L′(1, χ−4)

L(1, χ−4)
+ γ − 2

ζ ′(2)
ζ(2)

)
+

log(3)

3

(
2γ − log(3)

4
− log(2)

6

)

−
∞∑

p=1

1

p

(
log(3)

2
−

∑

p<q<p
√
3

1

q

)
− 4

3

∞∑

k=0

1

2k + 1

(
1

4
log(3)−

∑

k<ℓ<k
√
3+(

√
3−1)/2

1

2ℓ+ 1

))

≈ 0.6272237

is the coefficient of (s− 1)−1 in the Laurent series of
∑

n≥1 a�(n)n
−s around s = 1.

Note that L′(1, χ−4) can be computed efficiently via

(7.21)
L′(1, χ−4)

L(1, χ−4)
= log

(
M(1,

√
2)2

eγ

2

)
= log

(
Γ

(
3

4

)4 eγ
π

)
≈ 0.2456096,

where M(x, y) is the arithmetic-geometric mean of x and y, and Γ denotes the gamma func-

tion; see [23] and references therein.

Sketch of proof. Φ�,wr(s) =
∑∞

n=1 a�(n)n
−s is a sum of three Dirichlet series, each

of which is itself a product of several Dirichlet series. Hence, each contribution to a�(n) is a

Dirichlet convolution of arithmetic functions. The asymptotic behaviour can thus be calcu-

lated by elementary methods as described in [1, Sec. 3.5], making use of Euler’s summation

formula (7.42) wherever appropriate. To be more specific, let

(7.22) Φwr,even(s) =
∑

n∈N

aeven(n)

ns
,

which is a product of the Dirichlet series

2

2s
1

ζ(2s)
=
∑

n∈N

c(n)

ns
,

∑

p∈N

∑

p<q<
√
3p

1

psqs
=
∑

n∈N

w(n)

ns
,

Φ�(s) =
∑

n∈N

b(n)

ns
.
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Hence aeven = c ∗ w ∗ b is the Dirichlet convolution of c, w, b. The summatory function of

a Dirichlet convolution f ∗ g can now be calculated via the classic formulas (compare [1]

and [28, Sec. I.3.2])
∑

n≤x

(f ∗ g) (n) =
∑

m≤x

∑

d≤x/m

f(m)g(d)(7.23)

=
∑

m≤√
x

∑

m<d≤x/m

(
f(m)g(d) + f(d)g(m)

)
+
∑

m≤√
x

f(m)g(m),(7.24)

where the latter formula is used for the convolutions w ∗ b and b = χ−4 ∗ 1. �

7.4. Well-rounded sublattices of Z[ρ]

Next, we consider the hexagonal lattice Z[ρ], with ρ = 1+i
√
3

2 . As an arithmetic object,

it is the ring of Eisenstein integers, the maximal order of the quadratic field Q(i
√
3 ). The

Dirichlet series generating function for the number of similar sublattices of Z[ρ] is

(7.25) Φ△(s) = ζQ(ρ)(s) = L(s, χ−3)ζ(s),

with the character

χ−3(n) =





0, if n ≡ 0 mod 3,

1, if n ≡ 1 mod 3,

−1, if n ≡ 2 mod 3,

see [6, 30] and Appendix 7.A.

Let {z1, z2} be a reduced basis of a well-rounded sublattice of Z[ρ]. The orthogonality of

z1 + z2 and z1 − z2 implies that z1+z2
z1−z2

= i
√
3 r with r ∈ Q. This shows that square lattices

cannot occur here since this would require |z1 + z2|2 = |z1 − z2|2, which is impossible. Thus,

the well-rounded sublattices of Z[ρ] are rhombic-cr or hexagonal lattices. However, at least

one of z1 + z2 and z1 − z2 is divisible by i
√
3 = ρ− ρ̄, and w.l.o.g. we may assume that i

√
3

divides z1 − z2. Hence, there exist p and q ∈ Z together with a primitive z ∈ Z[ρ] such that

z1+ z2 = pz and z1− z2 = i
√
3qz. Here, primitive means that n = 1 is the only integer n ∈ N

that divides z. We may again choose p and q positive and

(7.26) Γ = 〈z1, z2〉Z =
〈
p+i

√
3q

2 z, p−i
√
3q

2 z
〉
Z
=
〈
(p−q

2 + ρq)z, (p+q
2 − ρq)z

〉
Z

is thus a sublattice of index pq|z|2. In particular, Γ is a hexagonal lattice if and only if p = q

or p = 3q. Note that Eq. (7.26) shows that p and q have the same parity.

Well-rounded sublattices must satisfy the additional constraints |z1 ± z2|2 ≥ |z1|2 = |z2|2,
which, in this case, are equivalent to q ≤ p ≤ 3q. The set of possible indices of well-rounded

sublattices is thus given by

(7.27)
{
4pq|z|2

∣∣ q ≤ p ≤ 3q, z ∈ Z[ρ]
}
∪
{
pq|z|2

∣∣ q ≤ p ≤ 3q, z ∈ Z[ρ], 2 ∤ pq
}
.

An alternative parametrisation of this set can be found in [13, Cor. 4.9]. The equivalence of

these formulations can easily be checked by recalling that the (rational) primes represented

by the norm form m2 −mn+ n2 of Z[ρ] are precisely 3 and all primes p ≡ 1 (mod 3).
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Counting the number of distinct well-rounded sublattices of a given index works essentially

as in the square lattice case. However, we have to avoid counting the same lattice twice. Let

z be divisible by i
√
3, so that z = i

√
3w. Then,

z1 =
p+ i

√
3q

2
z = −3q − i

√
3p

2
w,(7.28)

z2 =
p− i

√
3q

2
z =

3q + i
√
3p

2
w(7.29)

shows that the tuples (p, q, z) and (3q, p, w) correspond to the same sublattice. Thus, we only

sum over primitive z that are not divisible by i
√
3.

Since we know the generating function (7.25) for the similar sublattices already from [4],

we concentrate on the rhombic sublattices here (excluding hexagonal sublattices, as before).

The summation over all primitive z ∈ Z[ρ] not divisible by i
√
3 gives the contribution

1
1+3−sΦ

pr

△(s). The generating function of all rhombic sublattices of even index then reads

(7.30) Φ△,wr,even(s) =
3

4s(1 + 3−s)

∑

p∈N

∑

p<q<3p

1

psqs
Φpr

△(s),

where the factor of 3 reflects that each sublattice occurs in three different orientations.

In the case of odd indices, we substitute again p = 2k + 1 and q = 2ℓ+ 1, wherefore our

constraints read k < ℓ < 3k + 1. This leads to the following expression for the generating

function of all rhombic sublattices of odd index:

(7.31) Φ△,wr,odd(s) =
3

1 + 3−s

∑

k∈N

∑

k<ℓ<3k+1

1

(2k + 1)s(2ℓ+ 1)s
Φpr

△(s).

Now, we can apply the same strategy as in the square lattice case.

Theorem 7.4.1. Let a△(n) be the number of well-rounded sublattices of index n in the

hexagonal lattice, and Φ△,wr(s) =
∑∞

n=1 a△(n)n−s the corresponding Dirichlet series gener-

ating function. It is given by

Φ△,wr(s) = Φ△(s) + Φ△,wr,even(s) + Φ△,wr,odd(s),

with the series from Eqs. (7.25), (7.30) and (7.31).

If s > 1, we have the inequality

D△(s)− E△(s) < Φ△,wr(s) < D△(s),

with the functions

D△(s) = 1
2

3
1 + 3−s

1− 31−s

s− 1

L(s, χ−3)

ζ(2s)
ζ(s)ζ(2s− 1) ,

E△(s) = 3
1 + 3−s L(s, χ−3)ζ(s).

The function Φ△,wr(s) is meromorphic in the half plane {Re(s) > 1
2}, with a pole of order 2

at s = 1, and no other pole in the half plane {Re(s) ≥ 1}. As a consequence, the summatory
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function A△(x) =
∑

n≤x a△(n), as x→ ∞, possesses the asymptotic growth behaviour

A△(x) =
3
√
3 log(3)

8π
x log(x) + O

(
x log(x)

)
.

Sketch of proof. In analogy to before, Φ△,wr(s) is the sum of the contributions from

Eqs. (7.30) and (7.31). The calculation of the upper and lower bounds can be done as in

Theorem 7.3.1 via Lemma 7.A.2, this time with α = 3 and appropriate choices for β and γ.

The conclusion on the growth rate of A△(x) follows as before from Theorem 7.A.1. �

As for the square lattice, we can improve the error term considerably by lengthy but

elementary calculations (see [32] for the details). Eventually, we obtain the following result.

Theorem 7.4.2. Let a△(n) be the number of well-rounded sublattices of index n in the

hexagonal lattice. Then, the summatory function A△(x) =
∑

n≤x a△(n) possesses the as-

ymptotic growth behaviour

A△(x) =
9 log(3)

16

L(1, χ−3)

ζ(2)
x(log(x)− 1) + c△x+O

(
x3/4 log(x)

)

=
3
√
3 log(3)

8π
x(log(x)− 1) + c△x+O

(
x3/4 log(x)

)
,

where

c△ = L(1, χ−3) +
9 log(3)L(1, χ−3)

16ζ(2)

((
γ +

L′(1, χ−3)

L(1, χ−3)
− 2

ζ ′(2)
ζ(2)

)
+ 2γ − log(3)

4

−
∞∑

p=1

1

p

(
log(3)−

∑

p<q≤3p−1

1

q

)
−

∞∑

k=0

4

2k + 1

(
1

2
log(3)−

∑

k<ℓ≤3k

1

2ℓ+ 1

))

≈ 0.4915036

is the coefficient of (s− 1)−1 in the Laurent series of
∑

n

a△(n)

ns around s = 1. �

The number L′(1, χ−3) can be computed efficiently as well, via a formula involving the

arithmetic-geometric mean (see [23]), and reads

(7.32)
L′(1, χ−3)

L(1, χ−3)
= log

(
2

3
4M

(
1, cos( π

12)
)2
eγ

3

)
= log

(
24π4eγ

3
3
2 Γ
(
1
3

)6

)
≈ 0.3682816.

Above and in the previous section, we have seen that the asymptotic growth rate for

the hexagonal and square lattice is of the form c1x log(x) + c2x + O
(
x3/4 log(x)

)
. Actually,

numerical calculations suggest that the error term is O(x1/2) or maybe even slightly better.

Let us now see what we can say about the other planar lattices.

7.5. The general case

7.5.1. Existence of well-rounded sublattices. Recall from Section 7.2 that a lattice

allows a well-rounded sublattice if and only if it contains a rectangular or square sublattice.

The following lemma contains several reformulations of this property.
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Lemma 7.5.1. Let Γ be any planar lattice. There are natural bijections between the

following objects:

(1) Rational orthogonal frames for Γ , that is, unordered pairs Qw,Qz of perpendicular

(w⊥z), one-dimensional subspaces of the rational space QΓ generated by Γ (so we

may assume w, z ∈ Γ ).

(2) Unordered pairs {±R} of coincidence reflections of Γ ; from now on, we shall simply

write ±R for such a pair.

(3) Basic rectangular or square sublattices Λ ⊆ Γ , where ‘basic’ means that Λ = 〈w, z〉Z
with w, z primitive in Γ (so Qw ∩ Γ = Zw and Qz ∩ Γ = Zz). We shall call them

BRS sublattices for short.

(4) Four-element subsets {±w,±z} ⊂ Γ of non-zero primitive lattice vectors with w ⊥ z.

Given Γ , we use the notation R = RΓ for the set of all pairs ±R of coincidence reflections

of Γ . So RΓ is in natural bijection with any of the four sets described in Lemma 7.5.1. For the

rest of the paper, we introduce the following notation, based on Lemma 7.5.1. For ±R ∈ RΓ ,

we denote by ΓR (rather than Γ±R) the corresponding BRS sublattice. Explicitly, this is

ΓR = Γ ∩ Fix(R)⊕ Γ ∩ Fix(−R)
= Zw ⊕ Zz, where Rw = w, Rz = −z

(thus w, z are primitive in Γ ). In accordance with part (2) of Lemma 7.5.1, we have ΓR = Γ−R,

with the roles of w and z interchanged. If we start with an arbitrary primitive vector w ∈ Γ ,

we similarly write

Γw := Zw ⊕ Zz, where z ⊥ w, z primitive in Γ.

The four element set {±w,±z} is uniquely determined by any of its members, and Γw is the

unique BRS-sublattice belonging to this set, according to part (4) of the remark.

In addition to ΓR, there is a second sublattice of Γ which is invariant under R and contains

w, z as primitive vectors. This is

(7.33) Γ̃R :=
〈w + z

2
,
w − z

2

〉
Z
,

the unique superlattice of ΓR containing ΓR with index 2 in such a way that w, z are still

primitive in Γ̃R. By the way, it is a purely algebraic fact that, if R is a non-trivial auto-

morphism of order 2 of an abstract lattice Λ (free Z-module) of rank 2, i.e. R2 = id 6= ±R,
then either Λ has a Z-basis w, z of eigenvectors of R (so Rz = z, Rw = −w), or Λ possesses

a Z-basis u, v with Ru = v. Thus, already on the level of abstract reflections, one can dis-

tinguish between ‘rectangular type’ and ‘rhombic type’ of a reflection acting on a lattice. In

the situation considered above, the reflection R on ΓR is of rectangular type, and the lattice

ΓR itself thus of rectangular or square Bravais type, whereas the reflection R on Γ̃R is of

rhombic type, which implies that Γ̃R is of rhombic-cr, square or hexagonal Bravais type. The

significance of Γ̃R is explained by the following lemma.
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Lemma 7.5.2. Given Γ and ±R ∈ RΓ as above, let Λ ⊇ ΓR = 〈w, z〉 be an R-invariant

superlattice containing w, z as primitive vectors. Then, either Λ = ΓR or Λ = Γ̃R.

Proof. Since z is primitive, Λ has a Z-basis u, z, where u is of the form u = 1
mw + k

mz

with m = [Λ : ΓR] and 0 ≤ k < m. The condition Ru ∈ Λ immediately leads to m ∈ {1, 2}
and k ∈ {0, 1}, respectively. �

Lemma 7.5.3. Given Γ and ±R ∈ RΓ as above, Γ̃R is contained in Γ if and only if the

index [Γ : ΓR] is even.

Proof. If [Γ : ΓR] = [Γ : 〈w, z〉] is even and 1
2(aw + bz) with a, b ∈ {0, 1} represents

an element of order 2 in the factor group Γ/ΓR, then, since w/2, z/2 /∈ Γ , we must have

a = b = 1, leading to the sublattice Γ̃R. The converse is clear. �

Corollary 1. For any pair of coincidence reflections ±R ∈ RΓ , the coincidence site

lattice Γ (R) = Γ ∩ RΓ is equal to ΓR or to Γ̃R. The latter occurs if and only if the index

[Γ : ΓR] is even. �

The following basic result partitions the set of all planar lattices admitting a well-rounded

(or rectangular) sublattice into two disjoint classes, as announced at the end of the intro-

duction. Clearly, a rational lattice possesses infinitely many BRS sublattices, since for any

non-zero lattice vector v, the orthogonal subspace of v also contains a non-zero lattice vector

(simply by solving a linear equation with rational coefficients). In contrast, the non-rational

case can be analysed as follows.

Proposition 7.5.4. Let Γ be non-rational planar lattice which possesses a rectangular

sublattice, so that RΓ 6= ∅ by Lemma 7.5.1. Then, |RΓ | = 1, whence Γ possesses exactly one

BRS sublattice, and one pair of coincidence reflections.

Proof. Γ has a sublattice Λ with an orthogonal basis v, w, where we may assume |v| = 1

and |w|2 = c > 0. Now assume that there is a further vector u = rv + sw with rs 6= 0

admitting an orthogonal, non-zero vector u′ = r′v+ s′w. Then, rr′+ css′ = 0 and necessarily

s′ 6= 0, thus c = −rr′/ss′ ∈ Q. Therefore Λ, and thus also Γ , is rational. �

The previous result (with a slightly more complicated proof) is also found in [18], Lemma

2.5 and Remark 2.6. Our approach suggests the following distinction of cases.

Proposition 7.5.5. Let Γ = 〈1, τ〉Z be a lattice in R2 ≃ C, and write n = |τ |2 and

t = τ + τ̄ . Then, Γ has a well-rounded sublattice if and only if one of the following conditions

is satisfied:

(1) Γ is rational, i.e. both t and n are rational;

(2) t is rational, but n is not;

(3) t is irrational, and there exist q, r ∈ Q with
√
q + r2 ∈ Q and n = q + rt.

Note that case (3) includes both rational and irrational n. In the case that n is rational,

this means that n has to be a rational square.
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Proof. Recall that Γ has a well-rounded sublattice if and only if it has a rectangular

or a square sublattice. This happens if and only if there exist integers a, b, c, d such that the

non-zero vectors a+ bτ and c+ dτ are orthogonal. The latter condition holds if and only if

(7.34) ac+ bdn+ (ad+ bc)
t

2
= 0

has a non-trivial integral solution, where n = |τ |2 and t = τ + τ̄ are the norm and the trace of

τ , respectively. In fact, there exists an integral solution if and only if there exists a rational

one. This leads to the following three cases:

(1) Clearly, Eq. (7.34) has a solution if both t and n are rational.

(2) Let t ∈ Q, n 6∈ Q: Condition (7.34) is equivalent to bd = 0 = ac+ (ad+ bc) t2 . With
t
2 = p

q , p, q ∈ Z, an integer solution is given by a = 1, b = 0, c = p, d = −q.
(3) Let t 6∈ Q, with n = q + rt. As n > 0, at least one of q and r is non-zero. Here,

condition (7.34) is equivalent to ac+ bdq = 0 and 2bdr+(ad+ bc) = 0. As a = c = 0

would imply a + bτ = 0 or c + dτ = 0, we may assume w.l.o.g. that a 6= 0. This

gives c = − bdq
a and 1+ 2 b

ar−
(
b
a

)2
q = 0, where we have assumed d 6= 0 in the latter

equation, since otherwise c + dτ = 0. The latter has a rational solution if and only

if r2 + q is a square.

Finally, we have to check that the remaining case does not allow for integral solutions. Let

t and n be irrational and assume that they are independent over Q. This clearly requires

ac = bd = ad+ bc = 0, which implies a+ bτ = 0 or c+ dτ = 0. �

Remark 7.5.1. After we had arrived at Proposition 7.5.5, we became aware of an essen-

tially equivalent result by Kühnlein [18, Lemma 2.5], where the invariant δ(Γ ) = dim〈1, t, n〉Q
is introduced. Clearly, condition (1) of Proposition 7.5.5 is equivalent with δ(Γ ) = 1, and

our conditions (2) and (3) are equivalent with δ(Γ ) = 2 together with the condition that

Kühnlein’s ‘strange invariant’ σ(Γ ) is the class of all squares in Q×. Here, σ(Γ ) is the square
class of − det(X), where X = ( x y

y z ) is a non-trivial integral matrix satisfying tr(XG) = 0,

with G =
( 1 t/2
t/2 n

)
being the Gram matrix of Γ . Altogether, this shows that our criterion is

equivalent to Kühnlein’s.

In the situation of Proposition 7.5.4, let R be the unique (up to a sign) coincidence

reflection and ΓR = 〈w, z〉 the unique BRS sublattice. We get all well-rounded sublattices by

considering the rectangular sublattices generated by kw, ℓz with the constraint

(7.35) k
1√
3

|w|
|z| ≤ ℓ ≤ k

√
3
|w|
|z| ,

whose superlattice
〈
1
2kw ± 1

2ℓz
〉
Z is a sublattice of Γ . The latter requires that k and ℓ have the

same parity. By Lemma 7.5.3, odd values k, ℓ occur if and only if the index σ = σΓ := [Γ : ΓR]

is even. This gives the following result.

Proposition 7.5.6. Let Γ be a lattice that has a well-rounded sublattice and assume that

Γ is not rational (cf. Proposition 7.5.4). Let σ be the index of its unique BRS sublattice ΓR
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and κ be the ratio of the lengths of its orthogonal basis vectors. The generating function for

the number of well-rounded sublattices then reads as follows.

(1) If σ is odd, one has

ΦΓ,wr(s) =
1

σs
φwr,even(κ; s),

with

φwr,even(κ; s) =
1

2s

∑

k∈N

∑

κ√
3
k≤ℓ≤

√
3κ k

1

ksℓs
.

(2) If σ is even, one has

ΦΓ,wr(s) =
1

σs
φwr,even(κ; s) +

2s

σs
φwr,odd(κ; s),

with φwr,even(κ; s) as above and

φwr,odd(κ; s) =
∑

k∈N

∑

κ√
3
(k+ 1

2
)− 1

2
≤ℓ≤

√
3κ (k+ 1

2
)− 1

2

1

(2k + 1)s(2ℓ+ 1)s
.

Remark 7.5.2. The quantity κ = |w|/|z| is unique up to taking its inverse. Note that

φwr,even(κ; s) = φwr,even(
1
κ ; s) and φwr,odd(κ; s) = φwr,odd(

1
κ ; s). Hence, there is no ambiguity

in the definition of the generating functions.

In the cases of the square and hexagonal lattices we have been able to give lower and

upper bounds for the generating functions Φwr. In a similar way we obtain the following

result.

Remark 7.5.3. We have the following inequalities for real s > 1:

Deven(κ; s)− Eeven(κ; s) < φwr,even(κ; s) < Deven(κ; s) + Eeven(κ; s),

Dodd(κ; s)− Eodd(κ; s) < φwr,odd(κ; s) < Dodd(κ; s) + Eodd(κ; s),

with the generating functions

Deven(κ; s) =
1

2s

(√
3

κ

)s−1
1− 31−s

s− 1
ζ(2s− 1),

Eeven(κ; s) =
1

2s

(√
3

κ

)s

ζ(2s),

Dodd(κ; s) =
1

2

(√
3

κ

)s−1
1− 31−s

s− 1

(
1− 1

22s−1

)
ζ(2s− 1),

Eodd(κ; s) =

(√
3

κ

)s(
1− 1

22s

)
ζ(2s).
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Let us now have a closer look at the analytic properties of ΦΓ,wr. Before formulating the

theorem, we observe that the two cases of Proposition 7.5.6 can be unified by considering the

index Σ := [Γ : Γ (R)] of the unique non-trivial CSL in Γ . By Corollary 1, σ = Σ if σ is odd

and σ = 2Σ if σ is even. We can now formulate a refinement of Lemma 3.3 and Corollary 3.4

in [18] as follows.

Proposition 7.5.7. Let Γ be a lattice with a well-rounded sublattice and assume that Γ

is not rational, so that Γ has exactly one non-trivial CSL. Let Σ be its index in Γ . Then,

the generating function ΦΓ,wr for the number of well-rounded sublattices has an analytic con-

tinuation to the open half plane {Re(s) > 1
2} except for a simple pole at s = 1, with residue

log(3)
4Σ .

Proof. We proceed in a similar way as in the proof of Theorem 7.3.1 by applying Euler’s

summation formula to the inner sum. This shows that both φwr,even(κ; s) − Deven(κ; s) and

φwr,odd(κ; s) − Dodd(κ; s) are analytic in the open half plane {Re(s) > 1
2}. Moreover, the

explicit formulas from above show that both Deven(κ; s) and Dodd(κ; s) are analytic in the

whole complex plane except at s = 1, where they have a simple pole with residue log(3)
4 and

log(3)
8 , respectively. Inserting this result into the expressions for ΦΓ,wr(s), we compute the

residue at s = 1 to log(3)
4Σ , where we have used that σ = Σ if σ is odd and σ = 2Σ if σ is

even. �

Using similar arguments as in the proofs of Theorems 7.3.1 and 7.3.2, one can derive

from Proposition 7.5.7 the asymptotic behaviour of the number of well-rounded sublattices

as follows.

Theorem 7.5.8. Under the assumptions of Proposition 7.5.7, the summatory function

AΓ (x) =
∑

n≤x aΓ (n) possesses the asymptotic growth behaviour

AΓ (x) =
log(3)

4Σ
x+O

(√
x
)

as x→ ∞. �

7.5.2. The rational case. A rational lattice Γ contains infinitely many BRS sublattices

ΓR. Using the same considerations as in the previous subsection, for any given pair ±R we

can count the number of well-rounded sublattices invariant under ±R (that is, contained in

Γ̃R). Counting all possible well-rounded sublattices then amounts to sum over all possible

pairs ±R. However, some care is needed in case of square and hexagonal lattices.

For convenience, we use the notation R1 := {±R | Γ̃R 6⊆ Γ} and R2 := {±R | Γ̃R ⊆ Γ},
which, by Lemma 7.5.3, is a partition of R into sets of odd and even index of ΓR, which is

reflected by the indices 1 and 2.

Proposition 7.5.9. Let Γ be a rational lattice and let Φ△
Γ (s) be the generating function

of all hexagonal sublattices of Γ . Now, for any pair of coincidence reflections ±R ∈ RΓ , let
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σ(R) = [Γ : ΓR] and let κ(R) be the length ratio of orthogonal basis vectors of ΓR. Then, the

generating function for the number of well-rounded sublattices reads

ΦΓ,wr(s) =
∑

±R∈R1

1

σ(R)s
φwr,even(κ(R); s)(7.36)

+
∑

±R∈R2

1

σ(R)s
(
φwr,even(κ(R); s) + 2sφwr,odd(κ(R); s)

)

− 2Φ△
Γ (s),

where φwr,even(κ; s) and φwr,odd(κ; s) are as in Proposition 7.5.6.

Keep in mind that we sum over pairs of coincidence reflections ±R here. According to

Lemma 7.5.1, we could alternatively sum over BRS sublattices or rational orthogonal frames.

Furthermore, note that Φ△
Γ (s) = 0 unless Γ is commensurate to a hexagonal lattice.

Before proving Proposition 7.5.9, let us have a closer look at some special cases.

Remark 7.5.4. If Γ is not commensurate to a square or a hexagonal lattice, all well-

rounded sublattices are rhombic. Likewise, all CSLs Γ (R) generated by a reflection are either

rectangular or rhombic-cr. In fact, there exists a bijection between BRS sublattices ΓR and

the corresponding CSLs Γ (R), which implies that the summation in Eq. (7.36) could be

carried out over CSLs as well. In particular, R1 = Rrec := {±R | Γ (R) rectangular} and

R2 = Rrh-cr := {±R | Γ (R) rhombic-cr} by Lemma 7.5.3.

The case that Γ is commensurate to a hexagonal lattice is the only one where the addi-

tional term−2Φ△
Γ (s) is non-trivial, which compensates for the fact that the sum over±R ∈ R2

counts every hexagonal sublattice thrice. Here, we do not have the bijection between the BRS

sublattices ΓR and CSLs Γ (R) any more, and the sums cannot be replaced by sums over CSLs.

Still, we have a characterisation of the sets R1 and R2 via CSLs, namely R1 = Rrec := {±R |
Γ (R) rectangular} and R2 = Rrh-cr-hex := {±R | Γ (R) rhombic-cr or hexagonal}.

If Γ is commensurate to a square lattice, no simple characterisation of R1 and R2 via

CSLs is possible. This is due to the fact that square CSLs may appear both in R1 and in R2.

Proof of Proposition 7.5.9. As indicated above, counting all well-rounded sublattices

that are invariant under a given pair ±R (that is, contained in Γ̃R) gives a contribution

1

σ(R)s
φwr,even

(
κ(R); s

)

if Γ̃R 6⊆ Γ , and

1

σ(R)s

(
φwr,even

(
κ(R); s

)
+ 2sφwr,odd

(
κ(R); s

))

if Γ̃R ⊆ Γ . If Γ is not commensurate to a hexagonal or a square lattice, every well-rounded

sublattice is of rhombic type and belongs to a unique pair ±R of coincidence reflections. Thus,

summing over all pairs ±R immediately gives the result in this case.
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The situation is more complex for lattices that are commensurate to a hexagonal or a

square lattice, since some well-rounded sublattices may be of hexagonal or square type, re-

spectively, and hence there may be more than one pair ±R of coincidence reflections associated

with it. The rhombic well-rounded sublattices may still be treated in the same way as above,

but the hexagonal and square sublattices need extra care.

A hexagonal sublattice corresponds to exactly three pairs of coincidence reflections. Thus

we count the hexagonal lattices thrice if we sum over all pairs of coincidence reflections, which

we compensate by subtracting the term 2Φ△
Γ (s).

Similarly, a square sublattice Λ is invariant under two pairs ±R,±S of coincidence reflec-

tions. However, these two pairs play different roles, as exactly one of these pairs, say ±S, has
eigenvectors which form a reduced basis of Λ. This implies that Λ is only counted in the set

of rhombic and square lattices which emerge from ΓR. Hence, we have a unique pair ±R in

this case as well, and no correction term is needed here. �

Theorem 7.5.10. For any rational lattice Γ , the generating function ΦΓ,wr(s) has an

analytic continuation to the half plane {Re(s) > 1
2} except for a pole of order 2 at s = 1.

Hence there exists a constant c > 0 such that the asymptotic growth rate, as x→ ∞, is

AΓ (x) =
∑

n≤x

aΓ (n) ∼ cx log(x).

Proof. We have already shown that φwr,even(κ; s) and φwr,odd(κ; s) are analytic in the half

plane {Re(s) > 1
2} except for s = 1, where both functions have a simple pole. The same holds

true for Φ△
Γ (s). It thus remains to analyse the sums over the pairs of coincidence reflections

in Proposition 7.5.9. By Lemma 7.5.1, summing over all pairs of coincidence reflections is

equivalent to summing over all four-element subsets {±w,±z} of primitive orthogonal lattice

vectors. Since these sets are disjoint, we can as well sum over all primitive vectors in Γ ,

obtaining each summand exactly four times. As earlier, we denote by Γw the BRS-sublattice

corresponding to {±w,±z}, and we define σ(w) := [Γ : Γw], the index of Γw in Γ . Finally, we

use the notation κ(w) = |w|
|z| for the quantity κ introduced in Remark 7.5.2. We thus obtain

ΦΓ,wr(s)− 2Φ△
Γ (s) =

1

4

∑

w primitive
σ(w) odd

1

σ(w)s
φwr,even(κ(w); s)

+
1

4

∑

w primitive
σ(w) even

1

σ(w)s
(
φwr,even(κ(w); s) + 2sφwr,odd(κ(w); s)

)
,

where the factor 1
4 reflects the four elements of {±w,±z}, as observed above.

From now on, we assume w.l.o.g. that Γ is integral and primitive. Then, by Propo-

sition 7.C.1 of Appendix 7.C, we have σ(w) = (w,w)
g∗(w) , and κ(w) = g∗(w)√

d
, where d is the

discriminant of Γ and g∗(w) is the coefficient of w in Γ ∗. By Proposition 7.C.1, g∗(w) is a

divisor of d, and can therefore take only a finite number of distinct values. As a consequence,

also κ(w) takes only finitely many values. Moreover, g∗(w) and κ(w) are constant on the
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cosets of an appropriate sublattice of Γ . Accordingly, we can subdivide the above summation

into finitely many sums of simpler type.

To work this out explicitly, we choose a basis {v1, v2} of Γ ∗ such that {v1, dv2} is a basis of

Γ , as in Appendix 7.C. Using the quadratic form Q(m,n) := |mv1+ndv2|2, and similarly the

notation g∗(m,n) := g∗(mv1+ndv2), σ(m,n) := σ(mv1+ndv2) and κ(m,n) := κ(mv1+ndv2),

for (m,n) ∈ Z2, we have g∗(m,n) = gcd(m, d) and σ(m,n) = Q(m,n)
g∗(m,n) , by formula (7.48),

assuming gcd(m,n) = 1. It follows from Proposition 7.C.2 that the parity of σ(m,n) only

depends on gcd(m,D) and gcd(n, 2), where D = lcm(2, d), and if the residues m mod D and

n mod 2 are fixed, the index σ(m,n) only depends on Q(m,n). Hence,

ΦΓ,wr(s)− 2Φ△
Γ (s) =

1

4

∑

gcd(m,n)=1

gcd(m, d)s

Q(m,n)s

×
(
φwr,even(κ(m,n); s) + δσ(m,n) 2

sφwr,odd(κ(m,n); s)
)

=
1

4

∑

k|D

∑

ℓ|2

(
φwr,even(κ(k, ℓ); s) + δσ(k, ℓ) 2

sφwr,odd(κ(k, ℓ); s)
)

×
∑

gcd(m,n)=1
gcd(m,D)=k
gcd(n,2)=ℓ

gcd(k, d)s

Q(m,n)s
,

where δσ is defined by

δσ(m,n) :=

{
1 if σ(m,n) is even

0 if σ(m,n) is odd

and depends on gcd(m,D) and gcd(n, 2), only. By Remark 7.5.3, both φwr,even(κ(k, ℓ); s) and

φwr,odd(κ(k, ℓ); s) are analytic in the open half plane {Re(s) > 1
2} except for s = 1, where

both have a simple pole. Invoking Appendix 7.D, this is true of

∑

gcd(m,n)=1
gcd(m,D)=k
gcd(n,2)=ℓ

1

Q(m,n)s

as well, which shows that ΦΓ,wr(s)−2Φ△
Γ (s), and thus ΦΓ,wr(s), has a pole of order 2 at s = 1

and is analytic elsewhere in {Re(s) > 1
2}, as claimed. The asymptotic behaviour now follows

from an application of Delange’s theorem; compare Theorem 7.A.1. �

At this stage, it remains an open question whether, in the general rational case, the growth

rate behaves as c1x log(x) + c2x+ O(x), like for the square and hexagonal lattices.

Appendix 7.A. Some useful results from analytic number theory

In what follows, we summarise some results from analytic number theory that we need

to determine certain asymptotic properties of the coefficients of Dirichlet series generating

functions. For the general background, we refer to [1] and [30].



APPENDIX 7.A. SOME USEFUL RESULTS FROM ANALYTIC NUMBER THEORY 133

Consider a Dirichlet series of the form F (s) =
∑∞

m=1 a(m)m−s. We are interested in the

summatory function A(x) =
∑

m≤x a(m) and its behaviour for large x. Let us give one classic

result for the case that a(m) is real and non-negative.

Theorem 7.A.1. Let F (s) be a Dirichlet series with non-negative coefficients which con-

verges for Re(s) > α > 0. Suppose that F (s) is holomorphic at all points of the line

{Re(s) = α} except at s = α. Here, when approaching α from the half-plane to the right

of it, we assume F (s) to have a singularity of the form F (s) = g(s)+h(s)/(s−α)n+1 where n

is a non-negative integer, and both g(s) and h(s) are holomorphic at s = α. Then, as x→ ∞,

we have

(7.37) A(x) :=
∑

m≤x

a(m) ∼ h(α)

α · n! x
α
(
log(x)

)n
.

The proof follows easily from Delange’s theorem, for instance by taking q = 0 and ω = n

in Tenenbaum’s formulation of it; see [28, ch. II.7, Thm. 15] and references given there.

The critical assumption in Theorem 7.A.1 is the behaviour of F (s) along the line {Re(s) =
α}. In all cases where we apply it, this can be checked explicitly. To do so, we have to recall

a few properties of the Riemann zeta function ζ(s), and of the Dedekind zeta functions of

imaginary quadratic fields.

It is well-known that ζ(s) is a meromorphic function in the complex plane, and that it

has a sole simple pole at s = 1 with residue 1; see [1, Thm. 12.5(a)]. It has no zeros in the

half-plane {Re(s) ≥ 1}; compare [28, ch. II.3, Thm. 9]. The values of ζ(s) at positive even

integers are known [1, Thm. 12.17] and we have

(7.38) ζ(2) =
π2

6
.

This is all we need to know for this case.

Let us now consider an imaginary quadratic field K, written as K = Q(
√
d ) with d < 0

squarefree. The corresponding discriminant is

D =

{
4d, if d ≡ 2, 3 mod 4,

d, if d ≡ 1 mod 4,

see [30, §10] for more. We need the Dedekind zeta function of K (with fundamental discrim-

inant D < 0). It follows from [30, §11, Eq. (10)] that it can be written as

(7.39) ζK(s) = ζ(s) · L(s, χD)

where L(s, χD) =
∑∞

m=1 χD(m)m−s is the L-series [1, Ch. 6.8] of the primitive Dirichlet

character χD. The latter is a totally multiplicative arithmetic function, and thus completely

specified by

(7.40) χD(p) =
(D
p

)
,
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for odd primes, where
(
D
p

)
is the usual Legendre symbol, together with

(D
2

)
=





0, if D ≡ 0 mod 4,

1, if D ≡ 1 mod 8,

−1, if D ≡ 5 mod 8.

L(s, χD) is an entire function [1, Thm. 12.5]. Consequently, ζK(s) is meromorphic, and its

only pole is simple and located at s = 1. The residue is L(1, χD), and from [30, §9, Thm. 2]

we get the simple formula

(7.41) L(1, χD) = − π

|D|3/2
|D|−1∑

n=1

nχD(n).

In particular, for the two fields Q(i) and Q(ρ), one has the values π/4 and π/3
√
3, respectively.

Our next goal is an estimate on sums of the form
∑

ℓ<n<αℓ n
−s for ℓ ∈ N, α > 1 and

s > 0. Invoking Euler’s summation formula from [1, Thm. 3.1], one has

(7.42)
∑

ℓ<n≤αℓ

1
ns

=

∫ αℓ

ℓ

dx
xs

−
∫ αℓ

ℓ

(
x− [x]

) s dx
xs+1 +

[αℓ]− αℓ

(αℓ)s
− [ℓ]− ℓ

ℓs
.

The last term vanishes (since ℓ ∈ N), while the second last does whenever αℓ ∈ N (otherwise,

it is negative). Since the second integral on the right hand side is strictly positive (due to

α > 1), we see that

(7.43)
∑

ℓ<n<αℓ

1
ns

≤
∑

ℓ<n≤αℓ

1
ns

< Is :=

∫ αℓ

ℓ

dx
xs

= 1− α1−s

s− 1
ℓ1−s.

Observing next (once again due to α > 1) that

∫ αℓ

ℓ

(
x− [x]

) s dx
xs+1 < 1

ℓs
− 1

(αℓ)s
,

one can separately consider the two cases αℓ 6∈ N and αℓ ∈ N to verify that we always get
∑

ℓ<n<αℓ

1
ns

> Is − 1
ℓs
.

This can immediately be generalised to sums of the form
∑

ℓ<n<αℓ+β(n+ γ)−s with β, γ ≥ 0,

which we summarise as follows.

Lemma 7.A.2. Let ℓ ∈ N, α > 1, β ≥ 0 and 0 ≤ γ < 1. If s ≥ 0, one has the estimate

Is − 1
(ℓ+ γ)s

<
∑

ℓ<n<αℓ+β

1
(n+ γ)s

< Is ,

with the integral Is =
∫ αℓ+β
ℓ

dx
(x+γ)s as the generalisation of that in Eq. (7.43). �
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Let us finally mention that

1− α1−s

s− 1
= log(α)

∑

m≥0

(
log(α)(1− s)

)m

(m+ 1)!
,

so that this function is analytic in the entire complex plane. In particular, one has the

asymptotic expression 1−α1−s

s−1 = log(α) +O
(
|1− s|

)
for s→ 1.

Appendix 7.B. Asymptotics of similar sublattices

We have sketched how to determine the asymptotics of the number of well-rounded sub-

lattices of the square and hexagonal lattices. As a by-product of these calculations, and as

a refinement of the results from [4], we obtain the asymptotics of the number of similar and

primitive similar sublattices as follows.

Theorem 7.B.1. The asymptotics of the number of similar and of primitive similar sub-

lattices of the square lattice is given by

∑

n≤x

b�(n) = L(1, χ−4)x+O
(√
x
)
=

π

4
x+O

(√
x
)

(7.44)

and

∑

n≤x

bpr� (n) =
L(1, χ−4)

ζ(2)
x+O

(√
x log(x)

)
=

3

2π
x+O

(√
x log(x)

)
.(7.45)

Sketch of proof. Note that b�(n) = (χ−4 ∗ 1)(n). We now get the asymptotics of its

summatory function by an application of Eq. (7.24). Observe bpr� = ν ∗ b�, where ν(n) :=

µ(
√
n) is defined to be 0 if n is not a square and µ is the Moebius function. An application

of Eq. (7.23) then yields the result. �

Similarly, one proves the following result.

Theorem 7.B.2. The asymptotics of the number of similar and of primitive similar sub-

lattices of the hexagonal lattice is given by

∑

n≤x

b△(n) = L(1, χ−3)x+O
(√
x
)
=

π

3
√
3
x+O

(√
x
)

(7.46)

and

∑

n≤x

bpr△(n) =
L(1, χ−3)

ζ(2)
x+O

(√
x log(x)

)
=

2

π
√
3
x+O

(√
x log(x)

)
),(7.47)

as x→ ∞. �
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Appendix 7.C. The index of BRS sublattices

Let us complement the discussion of rational orthogonal frames and BRS sublattices as

introduced in Lemma 7.5.1. We start with an arbitrary rational, primitive, planar lattice Γ

and denote by (v, w) ∈ Z with v, w ∈ Γ the given positive definite integer-valued primitive

symmetric bilinear form on Γ , extended to the rational space QΓ . Primitivity means that

the form is not a proper integral multiple of another form; it is equivalent to the condition

that gcd(a, b, c) = 1, where G =
(
a b
b c

)
is the Gram matrix with respect to an arbitrary basis

v1, v2 of Γ .

In the following, we need the notion of the coefficient gΓ (v) of an arbitrary vector v ∈ QΓ
with respect to Γ . This is the unique positive rational number g such that v = gv0, where

v0 ∈ Γ is primitive in Γ . Equivalently, gΓ (v) is the unique positive generator of the rank one

Z-submodule of Q consisting of all q ∈ Q such that q−1v ∈ Γ . So, a vector v is primitive in

Γ if and only if gΓ (v) = 1, in accordance with the first definition. Still another description of

gΓ (v) is the gcd (taken in Q) of the coefficients of v with respect to an arbitrary Z-basis of

Γ . Below, we shall use the coefficient g∗ := gΓ ∗ in particular with respect to the dual lattice

Γ ∗ := {w ∈ QΓ | ∀v ∈ Γ : (v, w) ∈ Z}.
For an arbitrary primitive vector w ∈ Γ , we recall the notation Γw for the BRS sublattice

spanned by w and its orthogonal sublattice w⊥ ∩ Γ , i.e. by w and z, where z is the primitive

lattice vector orthogonal to w (unique up to sign). The main result of this appendix is to

compute the index of Γw ∈ Γ as follows.

Proposition 7.C.1. Let w be a primitive vector in a planar lattice Γ with primitive

symmetric bilinear form, let g∗(w) denote its coefficient in the dual lattice Γ ∗ ⊆ Γ . Then,

g∗(w) is a divisor of the discriminant d of the lattice, and

[Γ : Γw] =
(w,w)

g∗(w)
.

Proof. The first claim follows easily from the fact that d is equal to the order of the

factor group Γ ∗/Γ , but it is also a consequence of the following computation leading to a

proof of the second claim. Since w is primitive, we can complement it to a basis v1 = w, v2
of Γ . Consider the dual basis v∗1, v

∗
2 with respect to the given scalar product; it is a Z-basis

of Γ ∗. Writing the above vector z as z = sv∗1 + tv∗2 with s, t ∈ Z clearly leads to s = 0,

and t is the smallest integer such that tv∗2 ∈ Γ . If G is the Gram matrix with respect to

v1, v2 as above, then G is also the transformation matrix which expresses the original basis

vectors v1, v2 in terms of their dual vectors, in particular v1 = av∗1 + bv∗2, which shows that

the coefficient of w = v1 in Γ ∗ is

g∗(w) = gcd(a, b).

On the other hand, with d := ac− b2,

G−1 =
1

d

(
c −b
−b a

)
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is the transformation matrix expressing the dual basis in terms of the original basis. In

particular

v∗2 =
1

d
(−bv1 + av2),

which implies that

t =
d

gcd(a, b)
.

To compute the index of Γw in Γ , we use the bases v1, v2 of Γ and v1, tv
∗
2 of Γw. The

corresponding transformation matrix is
(

1 − b
d
t

0 a
d
t

)
, which has determinant

a

d
t =

a

d

d

gcd(a, b)
=

a

g∗(w)
,

as claimed. �

Since the vector w was assumed primitive in Γ , it is even true that g∗(w) is a divisor

of the exponent of the factor group Γ ∗/Γ . But from the primitivity of the bilinear form it

follows that this factor group is actually cyclic of order d, so its exponent is equal to d, and

we do not get an improvement: all divisors of the discriminant d can occur as a value g∗(w).
It is easy to see that the quantity g∗(w) only depends on an appropriate coset of w; in fact,

under the assumptions of the last proposition, the coset modulo dΓ ∗ suffices. For purposes

of reference, we state this as an explicit remark.

Remark 7.C.1. Under the assumptions of Proposition 7.C.1, let w,w′ be primitive such

that w ≡ w′ (mod dΓ ∗). Then, g∗(w) = g∗(w′).

For explicit computations involving g∗, it is convenient to use a basis corresponding to

the elementary divisors of Γ in Γ ∗, that is, a basis {v1, v2} of Γ ∗ such that {v1, dv2} is a

basis of Γ . The primitive vectors in Γ read w = mv1 + ndv2 with gcd(m,n) = 1. Using

g := gcd(m, d), we can rewrite this as w = g((m/g)v1+n(d/g)v2), where the coefficients m/g

and n(d/g) are coprime, in other words, (m/g)v1 + n(d/g)v2 is primitive in Γ ∗. This proves

(7.48) g∗(mv1 + ndv2) = gcd(m, d), if gcd(m,n) = 1.

Notice that this formula again proves Remark 7.C.1.

For our application to well-rounded sublattices, we also have to consider the parity of the

index [Γ : Γw]. For this, we need the following refinement of Remark 7.C.1.

Proposition 7.C.2. Under the assumptions of Proposition 7.C.1, let w,w′ be primitive

such that w ≡ w′ (mod dΓ ∗) and w ≡ w′ (mod 2Γ ). Then, [Γ : Γw] ≡ [Γ : Γw′ ] (mod 2).

Proof. The proof is of course based on Proposition 7.C.1, taking into account that,

under our assumptions, g := g∗(w) = g∗(w′), by Remark 7.C.1. First of all, recall that g

divides d. Now, we write w′ = w + u = w + du′ with u′ ∈ Γ ∗ and u ∈ 2Γ , and we compute

explicitly
(w′, w′)

g
=

(w,w)

g
+ 2

d

g
(w, u′) +

d

g
(u, u′) ≡ (w,w)

g
(mod 2).

Notice that the last inner product (u, u′) is indeed in 2Z, since u ∈ 2Γ and u′ ∈ Γ ∗. �
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Appendix 7.D. Epstein’s ζ-function

For a quadratic form Q(m,n) = am2 + 2bmn+ cn2, the Epstein ζ-function is defined as

(7.49) ζQ(s) :=
∑

(m,n) 6=(0,0)

1

Q(m,n)s
,

where the sum runs over all non-zero vectors (m,n) ∈ Z2. The series converges in the half

plane {Re(s) > 1}. It has an analytic continuation which is a meromorphic function in the

whole complex plane with a single simple pole at s = 1 with residue π√
d
, where d = ac − b2

as before; see [17, 25]. It is closely connected to

(7.50) ζprQ (s) :=
∑

(m,n)=1

1

Q(m,n)s
=

1

ζ(2s)
ζQ(s),

where the sum runs over all pairs of integers that are relatively prime. In the explicit sum-

mations, we now use (m,n) instead of gcd(m,n).

In Section 7.5.2, we need the sum

(7.51)
∑

(m,n)=1
(m,D)=k
(n,C)=ℓ

1

Q(m,n)s
,

where C,D, k, ℓ are some fixed positive integers with k, ℓ relatively prime. Using the Moebius

µ-function, we can express

(7.52)
∑

(m,n)=1
(m,D)=k
(n,C)=ℓ

1

Q(m,n)s
=

∑

(m,n)=1
(m,ℓD/k)=1
(n,kC/ℓ)=1

1

Q(km, ℓn)s
=
∑

c| ℓD
k

µ(c) ϕQ

(
c
kC

ℓ
; ck, ℓ; s

)

in terms of

(7.53) ϕQ(a; k, ℓ; s) :=
∑

(m,n)=1
(n,a)=1

1

Q(km, ℓn)s
.

As Q(m,n) is homogeneous of degree 2, we have

(7.54) ϕQ(a; kb, ℓb; s) =
1

b2s
ϕQ(a; k, ℓ; s).

Furthermore, observe that ϕQ(a; k, ℓ; s) = ϕQ(b; k, ℓ; s), whenever a and b have the same

prime factors. In particular, we may assume that a is squarefree in the following. Using the

same methods as above, we can derive the following recursion

(7.55) ϕQ(a; k, ℓ; s) =
∑

b|a

∑

c|a
b

µ(c)
1

b2s
ϕQ(b; k, cℓ; s),
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where we have made use of the assumption that a is squarefree and employed the multiplica-

tivity of µ. This recursion has the solution

(7.56) ϕQ(a; k, ℓ; s) =


∏

p|a

1

1− p−2s




∑

b|a
µ(b)ϕQ(1; k, bℓ; s)


 ,

where the product is taken over all primes p dividing a. As ϕQ(1; k, bℓ; s) is the primitive

Epstein ζ-function ζpr
Q̃
(s) corresponding to the quadratic form Q̃(m,n) = Q(km, bℓn), this

shows that ϕQ(a; k, ℓ; s) and thus

∑

(m,n)=1
(m,D)=k
(n,C)=ℓ

1

Q(m,n)s

are sums of Epstein zeta functions, and thus are meromorphic functions with a simple pole

at s = 1 and analytic elsewhere in {Re(s) > 1
2}.

Alternatively, we can obtain this result by an application of Theorem 3 in [25]; see also

[19]. Applied to our situation, it states that

(7.57) ψQ(D,C, i, j; s) :=
∑

m≡i(D)
n≡j(C)

1

Q(m,n)s

has an analytic continuation, which is analytic in the entire complex plane except for a simple

pole at s = 1 with residue π√
det(Q′)

, where Q′(m,n) := Q(Dm,Cn). Using methods similar

to those in [3, 24], we first observe for k, ℓ coprime

∑

(m,n)=1
(m,D)=k
(n,C)=ℓ

1

Q(m,n)s
=

∑

(m,D)=k
(n,C)=ℓ

1

Q(m,n)s

∑

r|(m,n)

µ(r)

=
∑

r∈N
µ(r)

1

r2s

∑

(rm,D)=k
(rn,C)=ℓ

1

Q(m,n)s

=
∑

u|k

∑

v|ℓ

∑

r∈N
(r,CD)=1

µ(uvr)

(uvr)2s

∑

(uvrm,D)=k
(uvrn,C)=ℓ

1

Q(m,n)s
.

As r is coprime with C and D we see that

(7.58)
∑

(uvrm,D)=k
(uvrn,C)=ℓ

1

Q(m,n)s
=

∑

(vm,D/u)=k/u
(un,C/v)=ℓ/v

1

Q(m,n)s

is independent of r. Moreover, the latter sum can be written as a (finite) sum of suitable

functions of the form ψQ(D,C, i, j; s) and therefore it is analytic in the entire complex plane
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except for a simple pole at s = 1. As u, v, r are coprime, µ(uvr) = µ(u)µ(v)µ(r), and hence

the only remaining infinite sum

(7.59)
∑

r∈N
(r,CD)=1

µ(r)

r2s
=

1

ζ(2s)

∏

p|CD

1

1− p2s

is analytic in {Re(s) > 1
2}, which again shows that

∑

(m,n)=1
(m,D)=k
(n,C)=ℓ

1

Q(m,n)s

is a meromorphic function with a simple pole at s = 1 and analytic elsewhere in {Re(s) > 1
2}.
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The authors thank S. Akiyama, J. Brüdern and L. Fukshansky for discussions, R. Schulze-

Pillot for bringing Siegel’s work on Epstein’s zeta function to our attention, and S. Kühnlein
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CHAPTER 8

Supplement to “Well-rounded sublattices of planar lattices”

Abstract. Additional material to the article “Well-rounded sublattices of planar lattices”,

including some calculations on the asymptotic behaviour of various arithmetic functions and

some remarks on BRS lattices.

In this supplement we present the details of our calculations for the asymptotic growth

rates of the number of well-rounded sublattices, which we have mentioned only briefly in our

main article. In addition, we add some details on BRS lattices.

This supplement was initially intended for private use only, but it has been adapted for a

wider audience now. Nevertheless, some parts are rather sketchy, and the explicit calculations

vary in style, ranging from very detailed textbook-like calculations to rather short ones.

8.1. Explicit expressions for BRS lattices

In Section 7.5.1 we have discussed the existence of well-rounded lattices. In particular,

Prop. 7.5.5 mentions all lattices that have well-rounded sublattices and distinguishes three

cases. Here, we want to give explicit formulas for BRS lattices in all three cases.

Recall that BRS lattices correspond to basic solutions of the equation

ac+ bdn+ (ad+ bc)
t

2
= 0,(8.1)

where ‘basic’ means that gcd(a, b) = gcd(c, d) = 1. By symmetry, the number of basic

solutions is a multiple of eight.

Using the same methods as in the proof of Prop. 7.5.5, we obtain the following results.

Remark 8.1.1. (1) n, t rational: we write τ = p
q+iβ with β =

√
r
s . Then z1 = a+bτ

and z2 = q2siβz1 yield an integral solution with c = −(spqa + sp2b + rq2b), d =

s(q2a + pqb), albeit not necessarily a basic one. If z1 is primitive, we get a basic

solution by dividing z2 by g := gcd
(
spqa+ sp2b+ rq2b, s(q2a+ pqb)

)
.

(2) t rational, but n irrational: There are only eight basic solutions. If we write t = 2p
q

with p, q ∈ Z coprime, a basic one is a = 1, b = 0, c = p, d = −q.
(3) t irrational, with n = p

q+
r
s t, where q, r, s ∈ Z\{0} and

√
r2

s2
+ p

q ∈ Q. There are eight

basic solutions. If we define u
v :=

√
r2

s2
+ p

q a solution is given by a = −b( rs + u
v ), b =

sv
gcd(sv,rv+su) , c = −d( rs − u

v ), d = sv
gcd(sv,rv−su) .

Clearly, eight basic solutions correspond to each BRS sublattice.
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We have seen that two quantities play an important role for calculating the generating

functions in the case of a unique BRS sublattice, namely the index σ := [Γ : ΓR] of this BRS

sublattice and the ratio κ of the lengths of its orthogonal basis vectors. By means of the

expressions for the BRS sublattices given above we can easily compute the values of σ and κ

explicitly for these cases. We obtain the following result.

Remark 8.1.2. The explicit values for σ and κ read as follows:

(1) n irrational, t rational with t
2 = p

q : we have σ = q, κ = q
√
n− t2/4.

(2) t irrational, with n = p
q +

r
s t, where q, r, s ∈ Z \ {0} and u

v :=
√

r2

s2
+ p

q ∈ Q: we have

σ =
2s2uv

gcd(sv, rv + su) gcd(sv, rv − su)
, κ =

gcd(sv, rv − su)

gcd(sv, rv + su)

√
2rv + 2su− svt√
−2rv + 2su+ svt

.

In the special case that n is rational, i.e. n = p2

q2
for some p, q ∈ Z coprime, the

equations above simplify considerably: σ = 2pq, κ =
√

2
√
n−t

2
√
n+t

.

8.2. Asymptotic behaviour — Introduction

Here, we calculate the asymptotic behaviour of certain arithmetic functions, in particular

the functions counting well-rounded sublattices. We are interested in functions such as

(8.2) A(x) =
∑

n≤x

a(n).

The functions we are interested in are typically Dirichlet convolutions of simpler functions.

If f ∗ g denotes the Dirichlet convolution, then

∑

n≤x

(f ∗ g) (n) =
∑

n≤x

∑

d|n
f(d)g(nd ) =

∑

m≤x

∑

d≤x/m

f(m)g(d)(8.3)

=
∑

m≤√
x

∑

m<d≤x/m

(f(m)g(d) + f(d)g(m)) +
∑

m≤√
x

f(m)g(m),(8.4)

where the latter may allow for better error terms. [Su-1]

We often approximate sums by integrals using the Euler-Maclaurin formula

(8.5)
∑

y<n≤x

f(n) =

x∫

y

f(t) dt+

x∫

y

(t− [t])f ′(t) dt+ f(x)([x]− x)− f(y)([y]− y).
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8.3. Similar Sublattices

8.3.1. Hexagonal lattice. The Dirichlet series generating function for the number of

similar and primitive similar sublattices of Z[ρ] are

Φ△(s) = ζQ(ρ)(s) = L(s, χ−3)ζ(s) =
∑

n∈N

b△(n)

ns
(8.6)

Φpr

△(s) =
ζQ(ρ)(s)

ζ(2s)
=

L(s, χ−3)ζ(s)

ζ(2s)
=
∑

n∈N

bpr△(n)

ns
,(8.7)

respectively. We can immediately read off that

b△ = 1 ∗ χ−3 and bpr△ = 1 ∗ χ−3 ∗ ν = b△ ∗ ν,(8.8)

with the character

χ−3(n) =





0, if n ≡ 0 mod 3,

1, if n ≡ 1 mod 3,

−1, if n ≡ 2 mod 3.

and

ν(n) =

{
µ(
√
n), if n is a square,

0, otherwise,
(8.9)

where µ is the Moebius function.

8.3.1.1. Asymptotics of similar sublattices. We apply Eq. (8.4) to b△ = 1 ∗ χ−3, which

gives
∑

n≤x

b△(n) =
∑

m≤√
x

∑

m<d≤x/m

(
χ−3(d) + χ−3(m)

)
+
∑

m≤√
x

χ−3(m)(8.10)

=
∑

m≤√
x

(
O(1) + χ−3(m)

([ x
m

]
−m

))
+O(1)

=
∑

m≤√
x

(
O(1) + χ−3(m)

( x
m

−m
))

+O(1)

= L(1, χ−3)x+O(
√
x) =

π

3
√
3
x+O(

√
x).

8.3.1.2. Asymptotics of primitive similar sublattices. As bpr△ = b△ ∗ ν, we can make use of

Eq. (8.4) again.

(8.11)
∑

n≤x

bpr△(n) =
∑

m≤√
x

∑

m<d≤x/m

(
ν(m) b△(d) + ν(d) b△(m)

)
+
∑

m≤√
x

ν(m) b△(m)

The last term only contributes to the error term since
∣∣∣∣∣∣

∑

m≤√
x

ν(m) b△(m)

∣∣∣∣∣∣
≤
∑

m≤√
x

b△(m) = O(
√
x)(8.12)
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by Eq. (8.10). The first term gives

∑

m≤√
x

∑

m<d≤x/m

ν(m) b△(d) =
∑

m≤√
x

ν(m)

(
L(1, χ−3)

( x
m

−m
)
+O

(√
x

m

)
+O(

√
m)

)(8.13)

=
L(1, χ−3)

ζ(2)
x+O(x3/4) =

2

π
√
3
x+O(x3/4),

where we have made use of Eqs. (8.51)–(8.53). The second term yields

∑

m≤√
x

∑

m<d≤x/m

ν(d) b△(m) =
∑

m≤√
x

b△(m)
∑

√
m<ℓ≤

√
x/m

µ(ℓ)(8.14)

=
∑

m≤√
x

b△(m)

(
O(

√
m) +O

(√
x

m

))

= O(x3/4),

where we have used Theorem 8.A.2. Thus

Lemma 8.3.1.

(8.15)
∑

n≤x

bpr△(n) =
2

π
√
3
x+O(x3/4).

Recall that ν is the arithmetic function corresponding to 1
ζ(2s) , which is analytic at s = 1.

So one might hope that this term should not influence the asymptotics too much, in particular

as 1
ζ(2s) has an abscissa of convergence of σ = 1

2 . The fact that only the first term in Eq. (8.11)

contributes to the asymptotics supports this idea. In fact, using the simpler formula

∑

n≤x

bpr△(n) =
∑

m≤x

∑

d≤x/m

ν(m) b△(d)

=
∑

m≤x

ν(m)

(
L(1, χ−3)

x

m
+O

(√
x

m

))

= L(1, χ−3)x
∑

m≤x

ν(m)
1

m
+
√
x
∑

ℓ≤√
x

µ(ℓ)O

(
1

ℓ

)

=
L(1, χ−3)

ζ(2)
x+ L(1, χ−3)xO(x−1/2) +

√
x
∑

ℓ≤√
x

O

(
1

ℓ

)

=
L(1, χ−3)

ζ(2)
x+O(

√
x log(x)) =

2

π
√
3
x+O(

√
x log(x))

gives a better result. Note that we have made use of Eq. (8.53) here. Thus
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Theorem 8.3.2. The asymptotics of the number of similar and of primitive similar sub-

lattices of the hexagonal lattice is given by

∑

n≤x

b△(n) = L(1, χ−3)x+O(
√
x) =

π

3
√
3
x+O(

√
x)(8.16)

and

∑

n≤x

bpr△(n) =
L(1, χ−3)

ζ(2)
x+O(

√
x log(x)) =

2

π
√
3
x+O(

√
x log(x)).(8.17)

8.3.2. Square lattice. The Dirichlet series generating function for the number of similar

and primitive similar sublattices of Z[ρ] are

Φ�(s) = ζQ(i)(s) = L(s, χ−4)ζ(s) =
∑

n∈N

b�(n)

ns
(8.18)

Φpr
� (s) =

ζQ(i)(s)

ζ(2s)
=

L(s, χ−4)ζ(s)

ζ(2s)
=
∑

n∈N

bpr� (n)

ns
,(8.19)

respectively. We can immediately read off that

b� = 1 ∗ χ−4 and bpr� = 1 ∗ χ−4 ∗ ν = b� ∗ ν,(8.20)

with the character

χ−4(n) =





0, if n even,

1, if n ≡ 1 mod 4,

−1, if n ≡ 3 mod 4.

8.3.2.1. Asymptotics of similar sublattices. We apply Eq. (8.4) to b� = 1 ∗ χ−4, which

gives

∑

n≤x

b�(n) =
∑

m≤√
x

∑

m<d≤x/m

(
χ−4(d) + χ−4(m)

)
+
∑

m≤√
x

χ−4(m)(8.21)

=
∑

m≤√
x

(
O(1) + χ−4(m)

([ x
m

]
−m

))
+O(1)

=
∑

m≤√
x

(
O(1) + χ−4(m)

( x
m

−m
))

+O(1)

= L(1, χ−4)x+O(
√
x) =

π

4
x+O(

√
x).
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8.3.2.2. Asymptotics of primitive similar sublattices. A calculation similar to the hexag-

onal lattice gives

∑

n≤x

bpr� (n) =
∑

m≤x

∑

d≤x/m

ν(m) b�(d)

=
∑

m≤x

ν(m)

(
L(1, χ−4)

x

m
+O

(√
x

m

))

= L(1, χ4)x
∑

m≤x

ν(m)
1

m
+
√
x
∑

ℓ≤√
x

µ(ℓ)O

(
1

ℓ

)

=
L(1, χ−4)

ζ(2)
x+ L(1, χ−4)xO(x−1/2) +

√
x
∑

ℓ≤√
x

O

(
1

ℓ

)

=
L(1, χ−4)

ζ(2)
x+O(

√
x log(x)) =

3

2π
x+O(

√
x log(x)),

where we have made use of Eq. (8.53). Thus we have proved

Theorem 8.3.3. The asymptotics of the number of similar and of primitive similar sub-

lattices of the square lattice is given by

∑

n≤x

b�(n) = L(1, χ−4)x+O(
√
x) =

π

4
x+O(

√
x)(8.22)

and

∑

n≤x

bpr� (n) =
L(1, χ−4)

ζ(2)
x+O(

√
x log(x)) =

3

2π
x+O(

√
x log(x)).(8.23)

8.4. Well-rounded sublattices

8.4.1. Hexagonal lattice. In order to compute the number of well-rounded lattices we

need the following functions

∑

n∈N

w△,even(n)

ns
=

1

4s

∑

p∈N

∑

p<q<3p

1

psqs
(8.24)

∑

n∈N

w△,odd(n)

ns
=
∑

k∈N

∑

k<ℓ<3k+1

1

(2k + 1)s(2ℓ+ 1)s
(8.25)
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For w△,even observe that 4pq ≤ x together with p < q means p <
√
x
2 . Thus

∑

n≤x

w△,even(n) =
∑

p<
√
x/2

∑

p<q≤min(3p−1,[x/(4p)])

1

(8.26)

=
∑

p<
√
x/2

(
min

(
3p− 1,

[
x

4p

])
− p

)

=
∑

p≤(1+
√
1+3x)/6

(2p− 1) +
∑

(1+
√
1+3x)/6<p<

√
x/2

([
x

4p

]
− p

)

=

[
1 +

√
1 + 3x

6

]2
+

∑

(1+
√
1+3x)/6<p≤√

x/2

(
x

4p
− p+O(1)

)

=
x

12
+
x

4

(
log

(√
x

2

)
− log

(
1 +

√
1 + 3x

6

))
− 1

2

(
x

4
− (1 +

√
1 + 3x)2

36

)
+O(

√
x)

=
x

8
log(3) +O(

√
x).

Similarly we get for the odd indices — observe that (2k+ 1)(2ℓ+ 1) ≤ x together with k < ℓ

implies k <
√
x−1
2 —

∑

n≤x

w△,odd(n) =
∑

k<(
√
x−1)/2

∑

k<ℓ≤min(3k,[x/(4k+2)−1/2])

1(8.27)

=
∑

k<(
√
x−1)/2

(
min

(
3k,

[
x

4k + 2
− 1

2

])
− k

)

=
∑

k≤(−1+
√
4+3x)/6

2k +
∑

(−1+
√
4+3x)/6<k<(

√
x−1)/2

([
x

4k + 2
− 1

2

]
− k

)

=
x

12
+
x

4

(
log

(√
x

2

)
− log

(−1 +
√
4 + 3x

6

))

− 1

2

(
(
√
x− 1)2

4
− (−1 +

√
4 + 3x)2

36

)
+O(

√
x)

=
x

8
log(3) +O(

√
x).

In total, this gives for w△ := w△,even + w△,odd

(8.28)
∑

n≤x

w△(n) =
x

4
log(3) +O(

√
x).

The next step is to calculate
∑

n≤x

w△ ∗ b△(n) =
∑

m≤√
x

∑

m<d≤x/m

(
w△(m) b△(d) + w△(d) b△(m)

)
+
∑

m≤√
x

w△(m) b△(m)
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Note that both w△ and b△ are non-negative, so we can apply the asymptotic formulas for

w△ and b△ also to the error terms. The first term gives

∑

m≤√
x

∑

m<d≤x/m

w△(m) b△(d)

=
∑

m≤√
x

w△(m)

(
L(1, χ−3)

x

m
+O

(√
x

m

)
− L(1, χ−3)m+O(

√
m)

)

= L(1, χ−3)x

(
log(3)

8
log(x) + c3

)
− L(1, χ−3)

log(3)

8
x+O(x3/4 log(x)),

= L(1, χ−3)x

(
log(3)

8
log(x) + c3 −

log(3)

8

)
+O(x3/4 log(x)),

where we have used Eq. (8.16) and Theorem 8.A.3. The second term yields

∑

m≤√
x

∑

m<d≤x/m

w△(d) b△(m)

=
∑

m≤√
x

b△(m)

(
x

4m
log(3) +O

(√
x

m

)
− m

4
log(3) +O(

√
m)

)

=
log(3)

4
x

(
1

2
L(1, χ−3) log(x) + C△(1) +O(x−1/4 log(x))

)

− log(3)

4

(
L(1, χ−3)

2
x+O(x3/4)

)

=
log(3)

8
x
(
L(1, χ−3) log(x)− L(1, χ−3) + 2C△(1)

)
+O(x3/4 log(x)),

where we have used Eq. (8.28) and Theorem 8.A.2. The third term only contributes to the

error term. Note that w△(m) ≤ d(m), where d(m) is the divisor function. As d(m) = o(mε)

for all ε > 0 (see [Su-1, p.296]) we see

∑

m≤√
x

w△(m) b△(m) =
∑

m≤√
x

b△(m)o(mε) = O(x(1+ε)/2).(8.29)

Hence we get in total

∑

n≤x

w△ ∗ b△(n) =
log(3)

4
L(1, χ−3)x(log(x)− 1)

+ x

(
log(3)

4
C△(1) + L(1, χ−3)c3

)
+O(x3/4 log(x)).
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Taking the convolution with ν gives
∑

n≤x

w△ ∗ bpr△(n) =
∑

n≤x

ν ∗ w△ ∗ b△(n)

=
∑

m≤x

∑

d≤x/m

ν(m)(w△ ∗ b△)(d)

=
∑

m≤x

ν(m)

(
log(3)

4
L(1, χ−3)

x

m
(log(x)− log(m)− 1)

+
x

m

(
log(3)

4
C△(1) + L(1, χ−3)c3

)
+O

(
x3/4

m3/4
log(x/m)

))

=
log(3)

4

L(1, χ−3)

ζ(2)
x(log(x)− 1)

+ x

(
− log(3)

2

L(1, χ−3)ζ
′(2)

ζ(2)2
+

log(3)

4ζ(2)
C△(1) +

L(1, χ−3)

ζ(2)
c3

)

+O(x3/4 log(x)),

where we have made use of Eqs. (8.53) and (8.54). Note that this has added an overall factor

of 1
ζ(2) and an additional linear term.

Now it remains to take the factor 3
1+3−s into account and add the similar sublattices.

Using Lemma 8.A.1, we get

Theorem 8.4.1. Let a△(n) be the number of well-rounded sublattices of the hexagonal

lattice with index n. Then, the summatory function A△(x) =
∑

n≤x a△(n) possesses the

asymptotic growth behaviour

A△(x) =
9 log(3)

16

L(1, χ−3)

ζ(2)
x(log(x)− 1) + c△x+O(x3/4 log(x))(8.30)

=
3
√
3 log(3)

8π
x(log(x)− 1) + c△x+O(x3/4 log(x))

where

c△ :=
9 log(3)

16ζ(2)
C△(1) +

9L(1, χ−3)

4ζ(2)
c3 −

9 log(3)

8

L(1, χ−3)ζ
′(2)

ζ(2)2
(8.31)

+
9 log(3)2

64

L(1, χ−3)

ζ(2)
+ L(1, χ−3)

= L(1, χ−3) +
9 log(3)L(1, χ−3)

16ζ(2)

((
γ +

L′(1, χ−3)

L(1, χ−3)
− 2

ζ ′(2)
ζ(2)

)
+ 2γ − log(3)

4

+
∞∑

p=1

1

p

( ∑

p<q≤3p−1

1

q
− log(3)

)
+

∞∑

k=0

4

2k + 1

( ∑

k<ℓ≤3k

1

2ℓ+ 1
− 1

2
log(3)

))

≈ 0.4915036
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is the coefficient of (s− 1)−1 in the Laurent series of
∑

n

a△(n)

ns around s = 1 with C△(1) and

c3 from Eqs. (8.62) and (8.68), respectively.

8.4.2. Square lattice. In order to compute the number of well-rounded lattices of the

square lattice we need the following functions

∑

n∈N

w�,even(n)

ns
=

1

2s

∑

p∈N

∑

p<q<
√
3p

1

psqs
(8.32)

∑

n∈N

w�,odd(n)

ns
=
∑

k∈N

∑

k<ℓ<
√
3k+(

√
3−1)/2

1

(2k + 1)s(2ℓ+ 1)s
(8.33)

∑

n∈N

w�,odd,2(n)

ns
=

1

1 + 2−s

∑

k∈N

∑

k<ℓ<
√
3k+(

√
3−1)/2

1

(2k + 1)s(2ℓ+ 1)s
(8.34)

Obviously w�,odd,2 = g2 ∗ w�,odd, where

g2(n) =

{
(−1)r if n = 2r

0 otherwise.

For w�,even observe that 2pq ≤ x together with p < q means p <
√
x/2. Thus

∑

n≤x

w�,even(n) =
∑

p<
√

x/2

∑

p<q≤min([p
√
3],[x/(2p)])

1

(8.35)

=
∑

p<
√

x/2

(
min

(
[p
√
3],

[
x

2p

])
− p

)

=
∑

p≤
√

x/(2
√
3)

([p
√
3]− p) +

∑
√

x/(2
√
3)<p<

√
x/2

([
x

2p

]
− p

)

=
∑

p≤
√

x/(2
√
3)

(p(
√
3− 1) +O(1)) +

∑
√

x/(2
√
3)<p<

√
x/2

(
x

2p
− p+O(1)

)

=

√
3− 1

4
√
3
x+

x

2

(
log

(√
x

2

)
− log

(√
x

2
√
3

))
− 1

2

(
x

2
− x

2
√
3

)
+O(

√
x)

=
x

8
log(3) +O(

√
x).

Similarly, we get for the odd indices — observe that (2k+1)(2ℓ+1) ≤ x together with k < ℓ

implies k <
√
x−1
2 —

∑

n≤x

w�,odd(n) =
∑

k<(
√
x−1)/2

∑

k<ℓ≤min([
√
3k+(

√
3−1)/2],[x/(4k+2)−1/2])

1(8.36)
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=
∑

k<(
√
x−1)/2

(
min

([
√
3k +

√
3− 1

2

]
,

[
x

4k + 2
− 1

2

])
− k

)

=
∑

k≤√
x/(2 4√3)−1/2

[
√
3k +

√
3− 1

2

]

+
∑

(
√
x/(2 4√3)−1/2<k<(

√
x−1)/2

[
x

4k + 2
− 1

2

]
−

∑

k<(
√
x−1)/2

k

=
x

8
+
x

4

(
log

(√
x

2

)
− log

( √
x

2 4
√
3

))
− x

8
+O(

√
x)

=
x

16
log(3) +O(

√
x).

The next step is to calculate

∑

n≤x

w�,i ∗ b�(n) =
∑

m≤√
x

∑

m<d≤x/m

(
w�,i(m) b�(d) + w�,i(d) b�(m)

)
+
∑

m≤√
x

w�,i(m) b�(m)

for i ∈ {even, odd}. Note that both w�,i and b� are non-negative, so we can apply the

asymptotic formulas for w�,i and b� also to the error terms. The first term gives

∑

m≤√
x

∑

m<d≤x/m

w�,even(m) b�(d)

=
∑

m≤√
x

w�,even(m)

(
L(1, χ−4)

x

m
+O

(√
x

m

)
− L(1, χ−4)m+O(

√
m)

)

= L(1, χ−4)x

(
log(3)

16
log(x) + ceven

)
− L(1, χ−4)

log(3)

16
x+O(x3/4 log(x)),

= L(1, χ−4)x

(
log(3)

16
log(x) + ceven − log(3)

16

)
+O(x3/4 log(x)),

where we have used Eq. (8.22) and Theorem 8.A.5. The second term yields

∑

m≤√
x

∑

m<d≤x/m

w�,even(d) b�(m)

=
∑

m≤√
x

b�(m)

(
x

8m
log(3) +O

(√
x

m

)
− m

8
log(3) +O(

√
m)

)

=
log(3)

8
x

(
1

2
L(1, χ−4) log(x) + C�(1) +O(x−1/4 log(x))

)

− log(3)

8

(
L(1, χ−4)

2
x+O(x3/4)

)

=
log(3)

16
x
(
L(1, χ−3) log(x)− L(1, χ−3) + 2C�(1)

)
+O(x3/4 log(x)),
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where we have used Eq. (8.35) and Theorem 8.A.4. The third term only contributes to the

error term

∑

m≤√
x

w�,even(m) b�(m) =
∑

m≤√
x

b�(m)o(mε) = O(x(1+ε)/2),(8.37)

which is shown by the same argument as in the hexagonal case. Hence we get in total

∑

n≤x

w�,even ∗ b�(n) =
log(3)

8
L(1, χ−4)x(log(x)− 1)

+ x

(
log(3)

8
C�(1) + L(1, χ−4)ceven

)
+O(x3/4 log(x)).

Along the same lines we get

∑

n≤x

w�,odd ∗ b�(n) =
log(3)

16
L(1, χ−4)x(log(x)− 1)

+ x

(
log(3)

16
C�(1) + L(1, χ−4)codd

)
+O(x3/4 log(x)).

Applying Lemma 8.A.1 we get

∑

n≤x

w�,odd,2∗b�(n) =
log(3)

24
L(1, χ−4)x(log(x)− 1)

+ x

(
log(3)

24
C�(1) +

2

3
L(1, χ−4)codd +

log(2) log(3)

72
L(1, χ−4)

)
+O(x3/4 log(x)).

Hence we get for w� := w�,even + w�,odd,2 the asymptotic behaviour

∑

n≤x

w� ∗ b�(n) =
log(3)

6
L(1, χ−4)x(log(x)− 1)

+ x

(
log(3)

6
C�(1) + L(1, χ−4)c

)
+O(x3/4 log(x)),

where

c = ceven +
2

3
codd +

log(2) log(3)

72
(8.38)

=
log(3)

3

(
γ − log(3)

8
− log(2)

12

)
+

∞∑

p=1

1

2p


 ∑

p<q<p
√
3

1

q
− log(3)

2




+
2

3

∞∑

k=0

1

2k + 1


 ∑

k<ℓ<k
√
3+(

√
3−1)/2

1

2ℓ+ 1
− 1

4
log(3)




≈ −0.5250229.
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Taking the convolution with ν gives
∑

n≤x

w� ∗ bpr� (n) =
∑

n≤x

ν ∗ w� ∗ b�(n)

=
∑

m≤x

∑

d≤x/m

ν(m)(w� ∗ b�)(d)

=
∑

m≤x

ν(m)

(
log(3)

6
L(1, χ−4)

x

m
(log(x)− log(m)− 1)

+
x

m

(
log(3)

6
C�(1) + L(1, χ−4)c

)
+O

(
x3/4

m3/4
log(x/m)

))

=
log(3)

6

L(1, χ−4)

ζ(2)
x(log(x)− 1)

+ x

(
− log(3)

3

L(1, χ−3)ζ
′(2)

ζ(2)2
+

log(3)

6ζ(2)
C�(1) +

L(1, χ−4)

ζ(2)
c

)

+O(x3/4 log(x)),

Finally, multiplying by a factor 2 and adding the similar sublattices yields

Theorem 8.4.2. Let a�(n) be the number of well-rounded sublattices of the square lattice

with index n. Then, the summatory function A�(x) =
∑

n≤x a�(n) possesses the asymptotic

growth behaviour

A�(x) =
log(3)

3

L(1, χ−4)

ζ(2)
x(log(x)− 1) + c�x+O(x3/4 log(x))(8.39)

=
log(3)

2π
x(log(x)− 1) + c�x+O(x3/4 log(x))

where

c� :=
log(3)

3ζ(2)
C�(1) +

2L(1, χ−4)

ζ(2)
c− 2 log(3)

3

L(1, χ−4)ζ
′(2)

ζ(2)2
+ L(1, χ−4)

(8.40)

=
L(1, χ−4)

ζ(2)


ζ(2) + log(3)

3

(
L′(1, χ−4)

L(1, χ−4)
+ γ − 2

ζ ′(2)
ζ(2)

)
+

log(3)

3

(
2γ − log(3)

4
− log(2)

6

)

+

∞∑

p=1

1

p

(
∑

p<q<p
√
3

1

q
− log(3)

2

)

+
4

3

∞∑

k=0

1

2k + 1

(
∑

k<ℓ<k
√
3+(

√
3−1)/2

1

2ℓ+ 1
− 1

4
log(3)

)


≈ 0.6272237
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is the coefficient of (s− 1)−1 in the Laurent series of
∑

n
a
�
(n)

ns around s = 1 with C�(1) and

c from Eqs. (8.75) and (8.38), respectively.

8.4.3. Lattices with exactly one BRS lattice (i.e., lattices with exactly one

non-trivial CSL). In this case we need

φwr,even(κ; s) =
∑

n∈N

weven(κ, n)

ns
=

1

2s

∑

p∈N

∑

κ√
3
p<q<

√
3κ p

1

psqs
(8.41)

φwr,odd(κ; s) =
∑

n∈N

wodd(κ, n)

ns
=
∑

k∈N

∑

κ√
3
(k+ 1

2
)− 1

2
<ℓ<

√
3κ (k+ 1

2
)− 1

2

1

(2k + 1)s(2ℓ+ 1)s
(8.42)

Here κ
√
3 6∈ Q and we may assume w.l.o.g. κ ≥ 1. For weven observe that 2pq ≤ x together

with p < q
√
3

κ means p <

√
x
√
3

2κ and thus
∑

n≤x

weven(κ, n) =
∑

p<
√

x
√
3/(2κ)

∑

pκ/
√
3<q≤min([p

√
3κ],[x/(2p)])

1

=
∑

p<
√

x/(2κ
√
3)

(
2pκ√
3
+O(1)

)
+

∑
√

x/(2κ
√
3)≤p<

√
x
√
3/(2κ)

(
x

2p
− pκ√

3
+O(1)

)

=
x

6
+
x

2
log




√
x
√
3/(2κ)

√
x/(2κ

√
3)


− κ

2
√
3

(
x
√
3

2κ
− x

2κ
√
3

)
+O(

√
x)

=
x

4
log 3 +O(

√
x).

Note that the leading term is independent of κ.

Similarly, we get for the odd indices — observe that (2k + 1)(2ℓ + 1) ≤ x together with

κ√
3
(2k + 1) < 2ℓ+ 1 implies k <

√
x
√
3

4κ − 1
2 —

∑

n≤x

wodd(κ, n) =
∑

k<
√

x
√
3/(4κ)−1/2

∑

κ√
3
(k+ 1

2
)− 1

2
<ℓ≤min([

√
3κ (k+ 1

2
)− 1

2
],[ x

4k+2
− 1

2
])

1

=
∑

k<
√

x/(4κ
√
3)−1/2

(
κ(2k + 1)√

3
+O(1)

)

+
∑

√
x/(4κ

√
3)−1/2≤k<

√
x
√
3/(4κ)−1/2

(
x

4k + 2
− κ√

3

(
k +

1

2

)
+O(1)

)

=
x

12
+
x

4
log




√
x
√
3/(4κ)

√
x/(4κ

√
3)


− κ

2
√
3

(
x
√
3

4κ
− x

4κ
√
3

)
+O(

√
x)

=
x

8
log 3 +O(

√
x).

Taking the index of the (unique) BRS sublattice into account we finally get
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Proposition 8.4.3. Let Γ be a lattice that has a well-rounded sublattice and assume that

at least one of n and t is irrational. Let σ be the index of the BRS sublattice and κ be the ratio

of the lengths of its orthogonal basis vectors. Let aΓ (n) denote the number of well-rounded

sublattices of Γ with index n. Then, the summatory function AΓ (x) =
∑

n≤x aΓ (n) possesses

the asymptotic growth behaviour

AΓ (x) =





log 3

4σ
x+O(

√
x) if σ is odd

log 3

2σ
x+O(

√
x) if σ is even.

(8.43)

In particular, the leading term is independent of κ and depends on σ only.

Recall that the BRS sublattice is a CSL if and only if it has odd index (we do not have

square sublattices in the present case). Hence, if Σ is the index of the unique non-trivial CSL,

then σ = Σ if σ is odd and σ = 2Σ if σ is even. Thus we can reformulate our results as

follows:

Theorem 8.4.4. Let Γ be a lattice that has a well-rounded sublattice and assume that at

least one of n and t is irrational, i.e. Γ has exactly one non-trivial CSL. Let Σ be its index

in Γ . Let aΓ (n) denote the number of well-rounded sublattices of Γ with index n. Then, the

summatory function AΓ (x) =
∑

n≤x aΓ (n) possesses the asymptotic growth behaviour

AΓ (x) =
log 3

4Σ
x+O(

√
x).(8.44)

Appendix 8.A. Some formulas

8.A.1. General formulas. We first cite some well-known formulas, see [Su-1, Theorem

3.2]. It is always to be understood that summation starts with n = 1.

∑

n≤y

ns =
1

s+ 1
ys+1 +O(ys) for s > 0(8.45)

∑

n≤y

1

ns
=

1

1− s
y1−s + ζ(s) +O(y−s) for s > 0, s 6= 1(8.46)

∑

n≤y

1

n
= log(y) + γ +O

(
1

y

)
,(8.47)

where γ ≈ 0.57721566 is the Euler-Mascheroni constant. We also need the following variant

for sums over odd integers n ≥ 3

∑

k≤y

1

2k + 1
=

1

2
log(2y + 1) +

1

2
γ +

1

2
log(2)− 1 +O

(
1

y

)
(8.48)

=
1

2
log(y) +

1

2
γ + log(2)− 1 +O

(
1

y

)
.
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Furthermore, we need a formula involving the logarithm

∑

n≤y

log(n)

n
=

1

2
log(y)2 + γ1 +O

(
log(y)

y

)
,(8.49)

where

γ1 = lim
n→∞

n∑

k=1

log(k)

k
− 1

2
log(n)2 ≈ −0.07281585(8.50)

is the first Stieltjes constant.

Next we state some formulas involving the Moebius function. For s > −1
2 ,

(8.51)
∑

n≤y

ν(n)ns =
∑

m≤√
y

µ(m)m2s = O(ys+
1
2 )

is a rough estimate, which is good enough for our purposes. This equation even holds for

s = −1
2 as

(8.52)

∣∣∣∣∣∣

∑

n≤y

ν(n)n−1/2

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

m≤√
y

µ(m)
1

m

∣∣∣∣∣∣
≤ 1,

see [Su-1, Theorem 3.13] for a proof. For s < −1
2

∑

n≤y

ν(n)ns =
∑

m∈N
µ(m)m2s −

∑

m>
√
y

µ(m)m2s =
1

ζ(−2s)
+O(ys+

1
2 ).(8.53)

In addition, we mention

∑

n≤y

ν(n)
log(n)

ns
= 2

∑

m∈N
µ(m)

log(m)

m2s
− 2

∑

m>
√
y

µ(m)
log(m)

m2s
= 2

ζ ′(2s)
ζ(2s)2

+O(y
1
2
−s log(y)),

(8.54)

which holds for s > 1
2 .

Finally we state

Lemma 8.A.1. Let f be an arithmetic function such that
∑

n≤x f(n) = ax log(x) + bx +

O(xα log(x)) with 0 < α < 1 and

g(n) =

{
(−1)r if n = qr

0 otherwise,

where q is some fixed positive integer. Then

∑

n≤x

f ∗ g(n) = q

q + 1
(ax log(x) + bx) +

q log(q)

(q + 1)2
ax+O(xα log(x)).(8.55)

8.A.2. Hexagonal lattice. In the following, k is always a positive integer.
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8.A.2.1. Formulas for χ−3. For s > 0 we have

∑

n≤y

χ−3(n) =

[
y − 1

3

]
−
[
y − 2

3

]
= O(1)(8.56)

∑

n≤y

χ−3(n)n
s = O(ys)(8.57)

∑

n≤y

χ−3(n)

ns
=
∑

n∈N

χ−3(n)

ns
−
∑

y<n

χ−3(n)

ns
= L(s, χ−3) +O

(
1

ys

)
(8.58)

∑

k<n≤y

χ−3(n)

ns
=
∑

k<n

χ−3(n)

ns
+O

(
1

ys

)
= O

(
1

ks

)
+O

(
1

ys

)
(8.59)

8.A.2.2. Formulas involving b△. For s > 0

∑

n≤y

b△(n)ns =
∑

m≤√
y

∑

m<d≤y/m

(
χ−3(m) + χ−3(d)

)
(md)s +

∑

m≤√
y

χ−3(m)m2s

=
∑

m≤√
y

ms χ−3(m)
1

s+ 1

(
ys+1

ms+1
−ms+1

)

+
∑

m≤√
y

ms

(
O

(
ys

ms

)
+O(ms)

)
+O(ys)

=
1

s+ 1
L(1, χ−3) y

s+1 +O(ys+
1
2 )

for 0 < s < 1
2

∑

n≤y

b△(n)

ns
=
∑

m≤√
y

∑

m<d≤y/m

χ−3(m) + χ−3(d)

(md)s
+
∑

m≤√
y

χ−3(m)

m2s

=
∑

m≤√
y

χ−3(m)

ms

1

1− s

(
y1−s

m1−s
−m1−s

)

+
∑

m≤√
y

1

ms

(
O

(
y−s

m−s

)
+O(m−s)

)
+ L(2s, χ−3) +O

(
1

ys

)

=
L(1, χ−3)

1− s
y1−s +O(y1/2−s)

for 1
2 < s < 1

∑

n≤y

b△(n)

ns
=
∑

m≤√
y

∑

m<d≤y/m

χ−3(m) + χ−3(d)

(md)s
+
∑

m≤√
y

χ−3(m)

m2s

=
∑

m≤√
y

χ−3(m)

ms

(
1

1− s

y1−s

m1−s
+ ζ(s) +O

(
y−s

m−s

)
−

m∑

d=1

1

ds

)
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+
∑

m≤√
y

1

ms

( ∞∑

d=m+1

χ−3(d)

ds
+O

(
ms

ys

))
+ L(2s, χ−3) +O

(
1

ys

)

=
L(1, χ−3)

1− s
y1−s + C(s) +O(y1/2−s),

with

C(s) = L(s, χ−3)ζ(s)−
∞∑

m=1

χ−3(m)

ms

m∑

d=1

1

ds
+

∞∑

m=1

1

ms

∞∑

d=m+1

χ−3(d)

ds
+ L(2s, χ−3).

The sums in C(s) are Dirichlet series that converge for Re(s) > 1
2 , and are thus analytic for

Re(s) > 1
2 . They converge absolutely for Re(s) > 1, and a reordering of terms shows that

the last three terms add up to zero for Re(s) > 1, and hence due to the analyticity also for

Re(s) > 1
2 . Hence C(s) = L(s, χ−3)ζ(s) and thus

∑

n≤y

b△(n)

ns
=
L(1, χ−3)

1− s
y1−s + L(s, χ−3)ζ(s) +O(y1/2−s)

for 1
2 < s < 1. For s = 1

2 the situation is a bit more tricky and we want to avoid logarithmic

error terms. The only two difficult terms are

∑

m≤√
y

χ−3(m)

ms

m∑

d=1

1

ds
and

∑

m≤√
y

1

ms

∞∑

d=m+1

χ−3(d)

ds

The first term

∑

m≤√
y

χ−3(m)

ms

m∑

d=1

1

ds
=

∑

k≤(
√
y−1)/3

((
1

(3k + 1)s
− 1

(3k + 2)s

) 3k+1∑

d=1

1

ds
− 1

(3k + 2)2s

)

+O

(
1√
ys

) ∑

d≤√
y

1

ds

=
∑

k≤(
√
y−1)/3

(
1

(3k + 1)s

(
s

3k + 1
+O

(
1

(3k + 1)2

))(
(3k + 1)1−s

1− s
+O(1)

)

− 1

(3k + 2)2s

)
+O(y1/2−s)

=

(
s

1− s
− 1

) ∑

k≤(
√
y−1)/3

1

(3k + 1)2s

+
∑

k≤(
√
y−1)/3

O

(
1

(3k + 1)s+1

)
+O(y1/2−s)
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is seen to be bounded for 1 > s ≥ 1
2 and so is the second term

∑

m≤√
y

1

ms

∞∑

d=m+1

χ−3(d)

ds
=

∑

0≤k≤(
√
y−1)/3

3∑

j=1

1

(3k + j)s

∞∑

d=3k+j+1

χ−3(d)

ds
+O(y−s)

=
∑

0≤k≤(
√
y−1)/3

(
1

(3k + 1)s
−2

3(3k + 2)s
+

1

(3k + 2)s
1

3(3k + 4)s

+
1

(3k + 3)s
1

3(3k + 4)s
+O

(
1

k1+2s

))
+O(y−s)

=
∑

0≤k≤(
√
y−1)/3

O

(
1

k1+2s

)
+O(y−s)

where we have made use of
∞∑

d=3k

χ−3(d)

ds
=

∞∑

d=3k+1

χ−3(d)

ds

=

∞∑

ℓ=k

(
1

(3ℓ+ 1)s
− 1

(3ℓ+ 2)s

)

=

∞∑

ℓ=k

1

(3ℓ+ 1)s

(
s

3ℓ+ 1
+O

(
1

(3ℓ+ 1)2

))

=
1

3(3k + 1)s
+O

(
1

k1+s

)

and
∞∑

d=3k+2

χ−3(d)

ds
= −

∞∑

ℓ=k

(
1

(3ℓ+ 2)s
− 1

(3ℓ+ 4)s

)

= − 2

3(3k + 2)s
+O

(
1

k1+s

)
.

Hence

∑

n≤y

b△(n)

n1/2
= 2L(1, χ−3) y

1/2 +O(1).

For s = 1 we get

∑

n≤y

b△(n)

n
=
∑

m≤√
y

∑

m<d≤y/m

χ−3(m) + χ−3(d)

md
+
∑

m≤√
y

χ−3(m)

m2

=
∑

m≤√
y

χ−3(m)

m

(
log
( y
m

)
+ γ +O

(
m

y

)
−

m∑

d=1

1

d

)

+
∑

m≤√
y

1

m

( ∞∑

d=m+1

χ−3(d)

d
+O

(
m

y

))
+ L(2, χ−3) +O

(
1

y

)
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= L(1, χ−3) log(y) + C(1) +O(y−1/2 log(y)),

with

C(1) = L(1, χ−3)γ −
∞∑

m=1

χ−3(m)

m

(
log(m) +

m∑

d=1

1

d

)

+
∞∑

m=1

1

m

∞∑

d=m+1

χ−3(d)

d
+ L(2, χ−3)

= L(1, χ−3)γ −
∞∑

m=1

χ−3(m)

m
log(m) = L(1, χ−3)γ + L′(1, χ−3).

by a similar argument as above.

For s > 1 we get

∑

n≤y

b△(n)

ns
=
∑

m≤√
y

∑

m<d≤y/m

χ−3(m) + χ−3(d)

(md)s
+
∑

m≤√
y

χ−3(m)

m2s

=
∑

m≤√
y

χ−3(m)

ms

(
ζ(s) +

1

1− s

ms−1

ys−1
+O

(
ms

ys

)
−

m∑

d=1

1

ds

)

+
∑

m≤√
y

1

ms

( ∞∑

d=m+1

χ−3(d)

ds
+O

(
ms

ys

))
+ L(2s, χ−3) +O

(
1

ys

)

= L(s, χ−3)ζ(s) +
L(1, χ−3)

1− s
y1−s +O(y−s/2),

where we again have used the identity

−
∞∑

m=1

χ−3(m)

ms

m∑

d=1

1

ds
+

∞∑

m=1

1

ms

∞∑

d=m+1

χ−3(d)

ds
+ L(2s, χ−3) = 0.(8.60)

Summarising we have

Theorem 8.A.2.

∑

n≤y

b△(n)n−s =





L(1,χ−3)

1−s y1−s +O(y1/2−s) for s < 1
2

2L(1, χ−3) y
1/2 +O(1) for s = 1

2
L(1,χ−3)

1−s y1−s + L(s, χ−3)ζ(s) +O(y1/2−s) for 1
2 < s < 1

L(1, χ−3) log(y) + C△(1) +O(y−1/2 log(y)) for s = 1

L(s, χ−3)ζ(s) +
L(1,χ−3)

1−s y1−s +O(y−s/2) for s > 1

(8.61)

where

C△(1) = L(1, χ−3)γ + L′(1, χ−3) ≈ 0.5716475.(8.62)



APPENDIX 8.A. SOME FORMULAS 163

Note that L′(1, χ−3) can be computed efficiently (see [Su-2] and references therein), in

particular

L′(1, χ−3)

L(1, χ−3)
= log

(
2

3
4M

(
1, cos( π

12)
)2
eγ

3

)
= log

(
24π4eγ

3
3
2Γ
(
1
3

)6

)
,(8.63)

where M(x, y) is the arithmetic-geometric mean of x and y.

8.A.2.3. Formulas for w△. For s > −1 we have
∑

n≤y

w△,even(n)n
s =

∑

p<
√
y/2

∑

p<q≤min(3p−1,[y/(4p)])

(4pq)s

=
∑

p≤(1+
√
1+3y)/6

(4p)s
∑

p<q≤3p−1

qs +
∑

(1+
√
1+3y)/6<p<

√
y/2

(4p)s
∑

p<q≤[y/(4p)]

qs

=
∑

p≤(1+
√
1+3y)/6

(4p)s
(

1

s+ 1
p1+s(3s+1 − 1) +O(ps)

)

+
∑

(1+
√
1+3y)/6<p<

√
y/2

(4p)s
(

1

s+ 1

(
ys+1

(4p)s+1
− ps+1

)
+O(ps) +O

(
ys

ps

))

=
4s(3s+1 − 1)

2(s+ 1)2
(3y)s+1

62s+2
+O(ys+

1
2 ) +O(1)

+
ys+1

4(s+ 1)
log

(
3
√
y

1 +
√
1 + 3y

)
− 4s

2(s+ 1)2

(
ys+1

22s+2
− (3y)s+1

62s+2

)

=
log(3)

8(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1).

Similarly (again for s > −1)
∑

n≤y

w△,odd(n)n
s =

∑

k<(
√
y−1)/2

∑

k<ℓ≤min(3k,[y/(4k+2)−1/2])

(2k + 1)s(2ℓ+ 1)s

=
∑

k≤(−1+
√
4+3y)/6

(2k + 1)s
∑

k<ℓ≤3k

(2ℓ+ 1)s

+
∑

(−1+
√
4+3y)/6<k<(

√
y−1)/2

(2k + 1)s
∑

k<ℓ≤[y/(4k+2)−1/2]

(2ℓ+ 1)s

=
∑

k≤(−1+
√
4+3y)/6

(2k + 1)s
1

2(s+ 1)

(
(6k + 1)s+1 − (2k + 1)s+1

)
︸ ︷︷ ︸

(3s+1 − 1)(2k + 1)s+1 +O(ks)

+
∑

(−1+
√
4+3y)/6<k<(

√
y−1)/2

(2k + 1)s×

×
(

1

2(s+ 1)

(
ys+1

(2k + 1)s+1
− (2k + 1)s+1

)
+O(ks) +O

(
ys

(2k + 1)s

))

=
3s+1 − 1

8(s+ 1)2
22s+2(3y)s+1

62s+2
+O(ys+

1
2 ) +O(1)
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+
ys+1

4(s+ 1)
log

(
3(
√
y − 1)

−1 +
√
4 + 3y

)

− 1

8(s+ 1)2

(
(
√
y − 1)2s+2

22s+2
− (−1 +

√
4 + 3y)2s+2

62s+2

)

=
log(3)

8(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1),

and hence in total for s > −1

∑

n≤y

w△(n)ns =
∑

n≤y

(
w△,even(n) + w△,odd(n)

)
ns =

log(3)

4(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1).

For s = −1 we get

∑

n≤y

w△,even(n)

n
=

∑

p<
√
y/2

∑

p<q≤min(3p−1,[y/(4p)])

1

4pq

=
∑

p≤(1+
√
1+3y)/6

1

4p

∑

p<q≤3p−1

1

q
+

∑

(1+
√
1+3y)/6<p<

√
y/2

1

4p

∑

p<q≤[y/(4p)]

1

q

=
∑

p≤(1+
√
1+3y)/6

1

4p

(
log(3) +

∑

p<q≤3p−1

1

q
− log(3)

︸ ︷︷ ︸
O

(
1

p

)

)

+
∑

(1+
√
1+3y)/6<p<

√
y/2

1

4p

(
log

(
y

4p2

)
+O

(
1

p

)
+O

(
p

y

))

=
log(3)

4

(
log

(
1 +

√
1 + 3y

6

)
+ γ +O(y−1/2)

)

+
∞∑

p=1

1

4p


 ∑

p<q≤3p−1

1

q
− log(3)




︸ ︷︷ ︸
=: c1

+O(y−1/2)

+
log(y)− 2 log(2)

4
log

(
3
√
y

1 +
√
1 + 3y

)

− 1

4

((
log

(√
y

2

))2

−
(
log

(
1 +

√
1 + 3y

6

))2
)

+O(y−1/2 log(y))

=
log(3)

8
log(y) +

log(3)

4

(
γ − 1

4
log(3)− log(2)

)
+ c1 +O(y−1/2 log(y)).

where we have made use of
(
log

(√
y

2

))2

−
(
log

(
1 +

√
1 + 3y

6

))2

= log

(
3
√
y

1 +
√
1 + 3y

)
log

(√
y(1 +

√
1 + 3y)

12

)
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=
log(3)

2

(
log(y)− 1

2
log(3)− 2 log(2)

)
+O(y−1/2 log(y))

Similarly

∑

n≤y

w△,odd(n)

n
=

∑

k<(
√
y−1)/2

∑

k<ℓ≤min(3k,[y/(4k+2)−1/2])

1

(2k + 1)(2ℓ+ 1)

=
∑

k≤(−1+
√
4+3y)/6

1

2k + 1

∑

k<ℓ≤3k

1

2ℓ+ 1

+
∑

(−1+
√
4+3y)/6<k<(

√
y−1)/2

1

2k + 1

∑

k<ℓ≤[y/(4k+2)−1/2]

1

2ℓ+ 1

=
∑

k≤(−1+
√
4+3y)/6

1

2k + 1

(
1

2
log(3) +

∑

k<ℓ≤3k

1

2ℓ+ 1
− 1

2
log(3)

︸ ︷︷ ︸
O

(
1

k

)

)

+
∑

(−1+
√
4+3y)/6<k<(

√
y−1)/2

1

2k + 1

(
1

2
log

(
y

(2k + 1)2

)
+O

(
1

k

)
+O

(
k

y

))

=
1

2
log(3)

(
1

2
log

(−1 +
√
4 + 3y

6

)
+

1

2
γ + log(2)− 1 +O(y−1/2)

)

+
∞∑

k=1

1

2k + 1


 ∑

k<ℓ≤3k

1

2ℓ+ 1
− 1

2
log(3)




︸ ︷︷ ︸
=: c2 +

1

2
log(3)

+O(y−1/2)

+
log(y)

4
log

(
3
√
y

2 +
√
4 + 3y

)

− 1

4

(
(log(

√
y))2 −

(
log

(
2 +

√
4 + 3y

3

))2
)

+O(y−1/2 log(y))

=
log(3)

8
log(y) +

log(3)

4

(
γ − 1

4
log(3) + log(2)

)
+ c2 +O(y−1/2 log(y))

where we have made use of

(log(
√
y))2 −

(
log

(
2 +

√
4 + 3y

3

))2

= log

(
3
√
y

2 +
√
4 + 3y

)
log

(√
y(2 +

√
4 + 3y)

3

)

=
log(3)

2

(
log(y)− 1

2
log(3)

)
+O(y−1/2 log(y)).
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In total, this gives

∑

n≤y

w△(n)

n
=
∑

n≤y

w△,even(n) + w△,odd(n)

n

=
log(3)

4
log(y) +

log(3)

2

(
γ − 1

4
log(3)

)
+ c1 + c2 +O(y−1/2 log(y)),

where

c1 =
∞∑

p=1

1

4p


 ∑

p<q≤3p−1

1

q
− log(3)


 ≈ −0.2534695(8.64)

c2 =
∞∑

k=0

1

2k + 1


 ∑

k<ℓ≤3k

1

2ℓ+ 1
− 1

2
log(3)


 ≈ −0.6976870(8.65)

Summarising we have

Theorem 8.A.3.

∑

n≤y

w△(n)ns =
log(3)

4(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1). for s > −1(8.66)

∑

n≤y

w△(n)

n
=

log(3)

4
log(y) + c3 +O(y−1/2 log(y)),(8.67)

where

c3 :=
log(3)

2

(
γ − 1

4
log(3)

)
+ c1 + c2 ≈ −0.7849570(8.68)

and c1 and c2 are given by Eqs. (8.64) and (8.65), respectively.

8.A.3. Square lattice. In the following, k is always a positive integer.

8.A.3.1. Formulas for χ−4. For s > 0 we have

∑

n≤y

χ−4(n) =

[
y − 1

4

]
−
[
y − 3

4

]
= O(1)(8.69)

∑

n≤y

χ−4(n)n
s = O(ys)(8.70)

∑

n≤y

χ−4(n)

ns
=
∑

n∈N

χ−4(n)

ns
−
∑

y<n

χ−4(n)

ns
= L(s, χ−4) +O

(
1

ys

)
(8.71)

∑

k<n≤y

χ−4(n)

ns
=
∑

k<n

χ−4(n)

ns
+O

(
1

ys

)
= O

(
1

ks

)
+O

(
1

ys

)
(8.72)
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8.A.3.2. Formulas involving b�. Calculations completely analogous to those for the hexag-

onal lattice yield

∑

n≤y

b�(n)n
−s =

1

1− s
L(1, χ−4) y

1−s +O(y
1
2
−s)

for s < 0, whereas for 0 < s < 1
2 we get

∑

n≤y

b�(n)n
−s =

L(1, χ−4)

1− s
y1−s +O(y1/2−s).

For 1
2 < s < 1 we get

∑

n≤y

b�(n)n
−s =

L(1, χ−4)

1− s
y1−s + C(s) +O(y1/2−s),

with

C(s) = L(s, χ−4)ζ(s)−
∞∑

m=1

χ−4(m)

ms

m∑

d=1

1

ds
+

∞∑

m=1

1

ms

∞∑

d=m+1

χ−4(d)

ds
+ L(2s, χ−4).

The sums in C(s) are Dirichlet series that converge for Re(s) > 1
2 , and are thus analytic for

Re(s) > 1
2 . They converge absolutely for Re(s) > 1, and a reordering of terms shows that

the last three terms add up to zero for Re(s) > 1, and hence due to the analyticity also for

Re(s) > 1
2 . Hence C(s) = L(s, χ−4)ζ(s) and thus

∑

n≤y

b�(n)

ns
=
L(1, χ−4)

1− s
y1−s + L(s, χ−4)ζ(s) +O(y1/2−s).

For s = 1
2 the situation is again a bit more tricky and we want to avoid logarithmic error

terms. The only two difficult terms are

∑

m≤√
y

χ−4(m)

ms

m∑

d=1

1

ds
and

∑

m≤√
y

1

ms

∞∑

d=m+1

χ−4(d)

ds

The first term

∑

m≤√
y

χ−4(m)

ms

m∑

d=1

1

ds
=

∑

k≤(
√
y−1)/4

((
1

(4k + 1)s
− 1

(4k + 3)s

) 4k+1∑

d=1

1

ds
− 1

(4k + 3)2s

)

+O

(
1√
ys

) ∑

d≤√
y

1

ds

=
∑

k≤(
√
y−1)/4

(
1

(4k + 1)s

(
2s

4k + 1
+O

(
1

(4k + 1)2

))(
(4k + 1)1−s

1− s
+O(1)

)

− 1

(4k + 3)2s

)
+O(y1/2−s)
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=

(
s

1− s
− 1

) ∑

k≤(
√
y−1)/4

1

(4k + 1)2s

+
∑

k≤(
√
y−1)/4

O

(
1

(4k + 1)s+1

)
+O(y1/2−s)

is seen to be bounded for 1 > s ≥ 1
2 and so is the second

∑

m≤√
y

1

ms

∞∑

d=m+1

χ−4(d)

ds
=

∑

0≤k≤(
√
y−1)/4

4∑

j=1

1

(4k + j)s

∞∑

d=4k+j+1

χ−4(d)

ds
+O(y−s)

=
∑

0≤k≤(
√
y−1)/4

((
1

(4k + 1)s
+

1

(4k + 2)s

) −1

2(4k + 3)s

+

(
1

(4k + 3)s
+

1

(4k + 4)s

)
1

2(4k + 5)s
+O

(
1

k1+2s

))
+O(y−s)

=
∑

0≤k≤(
√
y−1)/4

O

(
1

k1+2s

)
+O(y−s)

where we have made use of
∞∑

d=4k

χ−4(d)

ds
=

∞∑

d=4k+1

χ−4(d)

ds

=
∞∑

ℓ=k

(
1

(4ℓ+ 1)s
− 1

(4ℓ+ 3)s

)

=
∞∑

ℓ=k

1

(4ℓ+ 1)s

(
2s

4ℓ+ 1
+O

(
1

(4ℓ+ 1)2

))

=
1

2(4k + 1)s
+O

(
1

k1+s

)

and
∞∑

d=4k+2

χ−4(d)

ds
=

∞∑

d=4k+3

χ−4(d)

ds
= −

∞∑

ℓ=k

(
1

(4ℓ+ 3)s
− 1

(4ℓ+ 5)s

)

= − 1

2(4k + 3)s
+O

(
1

k1+s

)
.

Hence
∑

n≤y

b�(n)

n1/2
= 2L(1, χ−4) y

1/2 +O(1).

For s = 1 we get

∑

n≤y

b�(n)

n
= L(1, χ−4) log(y) + C(1) +O(y−1/2 log(y)),
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with

C(1) = L(1, χ−4)γ −
∞∑

m=1

χ−4(m)

m

(
log(m) +

m∑

d=1

1

d

)

+
∞∑

m=1

1

m

∞∑

d=m+1

χ−4(d)

d
+ L(2, χ−4)

= L(1, χ−4)γ −
∞∑

m=1

χ−4(m)

m
log(m) = L(1, χ−4)γ + L′(1, χ−4).

by a similar reordering and analyticity argument as above.

For s > 1 we get

∑

n≤y

b�(n)

ns
= L(s, χ−4)ζ(s) +

L(1, χ−4)

1− s
y1−s +O(y−s/2),

where we again have used the identity

−
∞∑

m=1

χ−4(m)

ms

m∑

d=1

1

ds
+

∞∑

m=1

1

ms

∞∑

d=m+1

χ−4(d)

ds
+ L(2s, χ−4) = 0.(8.73)

Summarising we have

Theorem 8.A.4.

∑

n≤y

b�(n)n
−s =





L(1,χ−4)

1−s y1−s +O(y1/2−s) for s < 1
2

2L(1, χ−4) y
1/2 +O(1) for s = 1

2
L(1,χ−4)

1−s y1−s + L(s, χ−4)ζ(s) +O(y1/2−s) for 1
2 < s < 1

L(1, χ−4) log(y) + C�(1) +O(y−1/2 log(y)) for s = 1

L(s, χ−4)ζ(s) +
L(1,χ−4)

1−s y1−s +O(y−s/2) for s > 1

(8.74)

where

C�(1) = L(1, χ−4)γ + L′(1, χ−4) ≈ 0.6462454.(8.75)

Note that we have the following formula (see [Su-2])

L′(1, χ−4)

L(1, χ−4)
= log

(
M(1,

√
2)2

eγ

2

)
= log

(
Γ

(
3

4

)4 eγ

π

)
,(8.76)

where M(x, y) is the arithmetic-geometric mean of x and y.
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8.A.3.3. Formulas for w�. For s > −1 we have

∑

n≤y

w�,even(n)n
s =

∑

p<
√

y/2

∑

p<q≤min([p
√
3],[y/(2p)])

(2pq)s

=
∑

p≤
√

y/(2
√
3)

(2p)s
∑

p<q<p
√
3

qs +
∑

√
y/(2

√
3)<p<

√
y/2

(2p)s
∑

p<q≤y/(2p)

qs

=
∑

p≤
√

y/(2
√
3)

(2p)s
(

1

s+ 1
p1+s(3(s+1)/2 − 1) +O(ps)

)

+
∑

√
y/(2

√
3)<p<

√
y/2

(2p)s
(

1

s+ 1

(
ys+1

(2p)s+1
− ps+1

)
+O(ps) +O

(
ys

ps

))

=
2s(3(s+1)/2 − 1)

2(s+ 1)2
ys+1

2s+13(s+1)/2
+O(ys+

1
2 ) +O(1)

+
ys+1

2(s+ 1)
log




√
y/2√

y/(2
√
3)


− 2s

2(s+ 1)2

(
ys+1

2s+1
− ys+1

2s+13(s+1)/2

)

=
log(3)

8(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1).

Similarly (again for s > −1)

∑

n≤y

w�,odd(n)n
s =

∑

k<(
√
y−1)/2

∑

k<ℓ≤min([
√
3k+(

√
3−1)/2],[y/(4k+2)−1/2])

(2k + 1)s(2ℓ+ 1)s

=
∑

k≤√
y/(2 4√3)−1/2

(2k + 1)s
∑

k<ℓ<k
√
3+(

√
3−1)/2

(2ℓ+ 1)s

+
∑

√
y/(2 4√3)−1/2<k<(

√
y−1)/2

(2k + 1)s
∑

k<ℓ≤y/(4k+2)−1/2

(2ℓ+ 1)s

=
∑

k≤√
y/(2 4√3)−1/2

(2k + 1)s
1

2(s+ 1)

((
2k

√
3 +

√
3
)s+1

− (2k + 1)s+1

)

︸ ︷︷ ︸
(3(s+1)/2 − 1)(2k + 1)s+1 +O(ks)

+
∑

√
y/(2 4√3)−1/2<k<(

√
y−1)/2

(2k + 1)s×

×
(

1

2(s+ 1)

(
ys+1

(2k + 1)s+1
− (2k + 1)s+1

)
+O(ks) +O

(
ys

(2k + 1)s

))

=
3(s+1)/2 − 1

8(s+ 1)2
ys+1

3(s+1)/2
+O(ys+

1
2 ) +O(1)

+
ys+1

4(s+ 1)
log

( √
y

√
y/ 4

√
3

)
− 1

8(s+ 1)2

(
ys+1 − ys+1

3(s+1)/2

)



APPENDIX 8.A. SOME FORMULAS 171

=
log(3)

16(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1),

For s = −1 we get

∑

n≤y

w�,even(n)

n
=

∑

p<
√

y/2

∑

p<q≤min([p
√
3],[y/(2p)])

1

2pq

=
∑

p≤
√

y/(2
√
3)

1

2p

∑

p<q<p
√
3

1

q
+

∑
√

y/(2
√
3)<p<

√
y/2

1

2p

∑

p<q≤y/(2p)

1

q

=
∑

p≤
√

y/(2
√
3)

1

2p

(
log(3)

2
+

∑

p<q<p
√
3

1

q
− log(3)

2

︸ ︷︷ ︸
O

(
1

p

)

)

+
∑

√
y/(2

√
3)<p<

√
y/2

1

2p

(
log

(
y

2p2

)
+O

(
1

p

)
+O

(
p

y

))

=
log(3)

4

(
log

(√
y

2
√
3

)
+ γ +O(y−1/2)

)

+

∞∑

p=1

1

2p


 ∑

p<q<p
√
3

1

q
− log(3)

2




︸ ︷︷ ︸
=: c4

+O(y−1/2)

+
log(y)− log(2)

2
log
(

4
√
3
)

− 1

2

((
log

(√
y

2

))2

−
(
log

(√
y

2
√
3

))2
)

+O(y−1/2 log(y))

=
log(3)

8
log(y) +

log(3)

4

(
γ − 1

8
log(3)− 1

2
log(2)

)
+ c4 +O(y−1/2 log(y)).

where we have made use of
(
log

(√
y

2

))2

−
(
log

(√
y

2
√
3

))2

= log
(

4
√
3
)
log

(
y

2 4
√
3

)

=
log(3)

4

(
log(y)− 1

4
log(3)− log(2)

)

Similarly

∑

n≤y

w�,odd(n)

n
=

∑

k<(
√
y−1)/2

∑

k<ℓ≤min([
√
3k+(

√
3−1)/2],[y/(4k+2)−1/2])

1

(2k + 1)(2ℓ+ 1)

=
∑

k≤√
y/(2 4√3)−1/2

1

2k + 1

∑

k<ℓ<k
√
3+(

√
3−1)/2

1

2ℓ+ 1
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+
∑

√
y/(2 4√3)−1/2<k<(

√
y−1)/2

1

2k + 1

∑

k<ℓ≤y/(4k+2)−1/2

1

2ℓ+ 1

=
∑

k≤√
y/(2 4√3)−1/2

1

2k + 1

(
1

4
log(3) +

∑

k<ℓ<k
√
3+(

√
3−1)/2

1

2ℓ+ 1
− 1

4
log(3)

︸ ︷︷ ︸
O

(
1

k

)

)

+
∑

√
y/(2 4√3)−1/2<k<(

√
y−1)/2

1

2k + 1

(
1

2
log

(
y

(2k + 1)2

)
+O

(
1

k

)
+O

(
k

y

))

=
1

4
log(3)

(
1

2
log

(√
y

4
√
3

)
+

1

2
γ +

1

2
log(2)− 1 +O(y−1/2)

)

+
∞∑

k=1

1

2k + 1


 ∑

k<ℓ<k
√
3+(

√
3−1)/2

1

2ℓ+ 1
− 1

4
log(3)




︸ ︷︷ ︸
=: c5 +

1

4
log(3)

+O(y−1/2)

+
log(y)

4
log
(

4
√
3
)
− 1

4

(
(log(

√
y))2 −

(
log

(√
y

4
√
3

))2
)

+O(y−1/2 log(y))

=
log(3)

16
log(y) +

log(3)

8

(
γ − 1

8
log(3) + log(2)

)
+ c5 +O(y−1/2 log(y))

where we have made use of

(log(
√
y))2 −

(
log

(√
y

4
√
3

))2

= log
(

4
√
3
)
log

(
y
4
√
3

)

=
log(3)

4

(
log(y)− 1

4
log(3)

)
.

Summarising we have

Theorem 8.A.5. The asymptotic formulas for w�,even and w�,odd read

∑

n≤y

w�,even(n)n
s =

log(3)

8(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1),(8.77)

∑

n≤y

w�,odd(n)n
s =

log(3)

16(s+ 1)
ys+1 +O(ys+

1
2 ) +O(1)(8.78)

for s > −1. Furthermore

∑

n≤y

w�,even(n)

n
=

log(3)

8
log(y) + ceven +O(y−1/2 log(y)),(8.79)

∑

n≤y

w�,odd(n)

n
=

log(3)

16
log(y) + codd +O(y−1/2 log(y)),(8.80)
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where

ceven =
log(3)

4

(
γ − log(3)

8
− log(2)

2

)
+

∞∑

p=1

1

2p


 ∑

p<q<p
√
3

1

q
− log(3)

2




(8.81)

≈ −0.3966993

codd =
log(3)

8

(
γ − log(3)

8
+ log(2)

)
+

∞∑

k=0

1

2k + 1


 ∑

k<ℓ<k
√
3+(

√
3−1)/2

1

2ℓ+ 1
− 1

4
log(3)




(8.82)

≈ −0.2083500
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