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Summary

A great part of human behavior is based on visual cognition, the processing of visual information about
external objects. For goal-directed behavior, two functions of visual cognition seem especially impor-
tant. The �rst one is object recognition. Objects in the environment must be identi�ed as belonging to
an object category, so that they can be used to accomplish a given task. The second function is short-
term recognition. It must be recognized whether an object in the environment has been viewed recently,
so that current behavior involving the object can be related to previous behavior. Both functions share
a common constraint: They must be ful�lled across distinct episodes of visual processing, which are
interrupted by changes in processing demands.

For object recognition, visual processing episodes lead to a problem ofselective integration. That
is, it must be decided whether object information from the current episode should update and thus be
integrated with object representations from the previous episode. Alternatively, object representations
from two successive episodes are retained separately. This decision is critical. Updating and integration
should enable a cumulative and fast object recognition. However, integration should also conceal object
changes across episodes by leaving no separate representations that can be compared. Separation should
improve change perception but impair object recognition, because limited visual processing resources
for object recognition must be split between the separate representations.

For short-term recognition visual processing episodes lead to a problem ofmatching. That is, an ob-
ject from the current episode must be matched against object representations, not only from the previous
but from several episodes in the recent past (irrespective of whether objects are categorized).

The overarching goal of the present dissertation is to make a �rst step in understanding how the
mechanisms underlying object recognition and short-term recognition operate across visual processing
episodes, and how they solve the two problems. In �ve empirical studies, we investigated key issues
that must be addressed before a theoretical account of object and short-term recognition across visual
processing episodes can be given.

The �rst three studies focused on object recognition across visual processing episodes of eye �xa-
tions. Fixations are periods of visual information uptake, in which the eyes stand relatively still. They are
separated by rapid saccadic eye movements. Saccades are necessary for object recognition, because they
direct the central fovea of the eye's retina at interesting objects, allowing high-acuity inspection. How-
ever, saccades also disrupt visual input and displace and alter the retinal images of objects. Therefore,
saccades dissect visual information processing into distinct episodes of �xations, which the mechanisms
for object recognition must accommodate. In two studies (Poth, Herwig, & Schneider, 2015; Poth &
Schneider, 2016a), we investigated how the selective integration problem is solved to support object
recognition across successive �xations. We assessed the recent hypothesis (Schneider, 2013) that the
problem is solved by a mechanism testing for correspondence (“object continuity”) between an object
before and after a saccade. If object correspondence is established, the object before and after the sac-
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cade should be integrated into a common representation. In contrast, if object correspondence is broken,
the object before and after the saccade should be represented separately. Separation should allow to
compare the two representations, improving the discrimination of transsaccadic object displacements.
At the same time, however, object recognition of the object after the saccade should be impaired, be-
cause the necessary visual processing resources had to be split between the two representations. Results
were consistent with this hypothesis. Breaking object correspondence by brie�y blanking an object after
a saccade to it improved the discrimination of displacements of the object but impaired object recog-
nition. Thus, the object correspondence mechanism seems to impact on object recognition after the
saccade. Further experiments investigated the nature of object correspondence. They showed that object
recognition was impaired when object correspondence was broken by changing an object's contrast-
polarity (and luminance), its color-and-luminance, and its color alone. Together with the initial �nding,
this indicates that object correspondence is based on spatiotemporal as well as on the surface features of
objects. In the third study (Poth & Schneider, 2016b, submitted), we went on to test the limits of object
recognition across saccades. Because object recognition relies on limited visual processing resources, it
can only be achieved for a few objects at a time. Here, we examined if different objects must compete
for these resources across saccades. If this was the case, visual processing after a saccade would be
slowed down as more and more objects are viewed before the saccade. Our �ndings show that this is
the case, but only if the objects are task-relevant. Therefore, the �ndings support a key prediction of a
recent theory, namely that the importance of an object representation determines whether it will survive
a saccade and take up limited processing resources afterwards (Schneider, 2013).

With the fourth study (Poth & Schneider, 2016c), we turned from the processing episodes of succes-
sive eye �xations to those de�ned by appearing and disappearing objects and associated task-requirements.
We asked about the relationship between the mechanisms underlying object recognition and those un-
derlying short-term recognition. Visual processing for object recognition is assumed to be complete
when an object has entered a limited-capacity visual working memory, where the object becomes avail-
able for being reported. We investigated if encoding into visual working memory is not only required
for object recognition in the current episode, but also for short-term recognition in upcoming episodes.
Supporting this notion, we found that objects that supposedly had not reached visual working memory
were not available for later short-term recognition. This �nding argues that the initial steps of visual
processing before encoding into visual working memory are not suf�cient for short-term recognition
in later episodes. Therefore, visual working memory may contribute to the solution of the matching
problem by limiting the amount of information considered in a short-term recognition task.

Finally, in the �fth study (Poth & Schneider, 2016d, submitted), we investigated short-term recogni-
tion further, asking how short-term recognition in a later processing episode can be prepared in advance.
We assessed how prioritizing among objects represented in visual working memory impacts on two
distinct components of performance in an upcoming short-term recognition task. Our results showed
that such a prioritization improves memory-retention in visual working memory but also accelerates vi-
sual processing of objects for short-term recognition in a future episode. This indicates that changes in
processing priorities contribute to ongoing solutions of the matching problem of short-term recognition.

Taken together, the �ve studies show how mechanisms of object and short-term recognition address
speci�c problems arising from the dissection of visual processing into distinct episodes. As such, the
studies implicate visual processing episodes as a source of problems for object and short-term recog-
nition, which is neglected in most contemporary research. Conversely, however, the studies also invite
speculation about the functional value of visual processing episodes for visual cognition.
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Chapter 1

Introduction

1.1 Visual cognition: A cornerstone of human
goal-directed behavior

Any goal-directed and intelligent behavior requires
information about the environment it is situated in.
For humans, a great part of this information is ac-
quired visually, it is extracted from the light regis-
tered by the eyes (e.g., Marr, 1982; Palmer, 1999).
Using this information for controlling action re-
quires a great deal of further processing. An impor-
tant part of this processing consists in visual cog-
nition, creating and manipulating representations
of external surfaces and objects (Cavanagh, 2011)
from lower-level visual input (that is provided by
the lower levels of the brain's visual hierarchy, for
overviews, see Gilbert, 2013a; Meister & Tessier-
Lavigne, 2013; Gilbert, 2013b; Albright, 2013).

Once processed up to a certain level, the ob-
ject representations established by visual cognition
can be used to perform goal-directed actions and
they become accessible for report (e.g., Bundesen,
1990; Cavanagh, 2011; Schneider, 1995, 2013).
One may say that the object representations are
in a state of “access consciousness” (Block, 1995,
2011, cf. Dehaene, Changeux, Naccache, Sackur,
& Sergent, 2006). In this way, visual cognition
plays an essential role in most human goal-directed
behavior.

1.2 Functions and mechanisms of visual cogni-
tion

Visual cognition serves as a guide to human action.
How visual cognition ful�lls this purpose can be

understood at different levels of explanation (Marr,
1982). For the present considerations, it is impor-
tant to distinguish thefunctionsof visual cognition
from its mechanisms. The functions of visual cog-
nition can be thought of as the goals of visual pro-
cessing or computation, with respect to a given task
or given action requirements (cf. Neumann, 1987,
1990). This has been called the “computational”
level of explanation, because it dictates the overall
strategy of visual processing (Marr, 1982).

How the functions of visual cognition are pro-
vided can be explained in terms of the mechanisms
of visual cognition. Mechanisms specify input rep-
resentations that are processed (cf. Palmer, 1978),
output representations that result from processing,
and the transformation converting input into out-
put (the actual process). De�ned in this way, the
mechanisms are at what has been called the “algo-
rithmic” level of explanation (Marr, 1982).

1.3 Two central functions of visual cognition:
Object recognition and short-term recog-
nition

Two functions of visual cognition are central com-
ponents of most tasks humans perform to achieve
their behavioral goals. The �rst function is object
recognition: identifying external objects as belong-
ing to a certain category and having certain features
(Bundesen, 1990). Object recognition answers the
question of which objects are there in the environ-
ment, which is a necessary requirement of using
the objects to perform a task. The second function
is short-term recognition: recognizing whether ob-
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jects have been viewed recently (e.g., Kahana &
Sekuler, 2002; Zhou, Kahana, & Sekuler, 2004;
Poth & Schneider, 2016c). Short-term recognition
answers the question of whether an object is en-
countered �rstly in recent time or whether it has
occurred before. This function is implied in all
tasks in which speci�c object occurrences have to
be tracked or discriminated over time.

1.4 Distinct visual processing episodes in ob-
ject and short-term recognition

Object recognition and short-term recognition are
part of a great deal of human goal-directed behav-
ior, which is organized into tasks and subtasks of
distinct task steps (e.g., Duncan, 2013; Land &
Tatler, 2009; Norman & Shallice, 1986). While be-
ing engaged in a task, new processing demands can
arise from changes in the environment and from
the next task step (Schneider, 2013; cf. Duncan,
2013). This leads to a fundamental constraint of
both of the two functions of visual cognition: They
have to be accomplished across distinct visual pro-
cessing episodes, which are characterized by spe-
ci�c processing demands and processing settings
(Schneider, 2013).

The concept of the visual processing episode
has been introduced by Schneider's (2013) the-
ory of “Task-dRiven visual Attention and work-
ing Memory” (TRAM; note that visual processing
episodes are called “competition episodes” there).
In this theory, a new visual processing episode
arises whenever the visual input or the processing
demands of the current task change, and processing
must be adapted accordingly.

In human vision, one ubiquitous type of vi-
sual processing episode consists in a �xation of
relatively stable eye position, which is separated
from the next by a rapid saccadic eye movement
(for reviews, see Gegenfurtner, 2016; Rolfs, 2015;
Schütz, Braun, & Gegenfurtner, 2011). Saccades
are crucial for object recognition because they shift
the central foveal region of the eye's retina to-
ward potentially important objects, so that these are
viewed with the highest visual acuity (cf. Stras-

burger, Rentschler, & Juttner, 2011). During sac-
cades, however, vision is blurred and informa-
tion uptake is suppressed (Krock & Moore, 2014;
Wurtz, 2008). Sampling of visual information is
therefore largely restricted to the intervals of eye
�xations. In addition, each saccade drastically
changes visual input. It changes the location of ob-
jects on the eye's retina, and due to the inhomo-
geneous visual resolution of the retina, this leads
to changes in the visual acuity with which the ob-
jects are sampled (Curcio & Allen, 1990; Land &
Tatler, 2009; Strasburger et al., 2011). Therefore,
eye �xations constitute visual processing episodes,
which are bounded by saccades, and which are dis-
tinct from one another due to the saccade-induced
input changes (Schneider, 2013).

According to TRAM theory (Schneider, 2013),
several factors create visual processing episodes
in addition to saccadic eye movements. A new
episode starts when objects appear or disappear in
the visual �eld, or when object features change to
a suf�cient degree. Furthermore, visual processing
episodes commence when visual processing priori-
ties change, for instance when different objects be-
come relevant for the current task or the next task
step.

Taken together, there are a number of factors
giving rise to distinct episodes in visual process-
ing. It is an open question whether or not the visual
processing episodes caused by each of the different
factors are identical with respect to the mechanisms
of visual cognition. However, irrespective of this
question, it is clear that visual processing episodes
pose challenges that these mechanisms must over-
come.

1.5 Visual processing episodes as challenges
for object and short-term recognition

The mechanisms underlying object recognition
and short-term recognition operate over time and
require time for processing. Visual processing
episodes con�ne processing in time which leads to
contrasting problems for these two kinds of mech-
anisms.
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For the mechanisms underlying object recog-
nition, visual processing episodes lead to what I
call theselective integration problem. Successive
processing episodes must be integrated in order
to enable the cumulative acquisition of informa-
tion about objects for their recognition (e.g., De-
meyer, de Graef, Wagemans, & Verfaillie, 2009;
Kahneman, Treisman, & Gibbs, 1992; Rayner, Mc-
Conkie, & Zola, 1980). If this was not possible,
then each new visual processing episode would
force processing to start completely anew. This
would impair or even prevent object recognition
because new visual processing episodes may start
so often that the time left for a single episode is
less than needed for object recognition. For in-
stance, visual processing episodes consisting in eye
�xations are started anew by a saccade about ev-
ery 250-300 ms (Land & Tatler, 2009) but object
recognition can require that objects are viewed for
longer durations (e.g., Petersen & Andersen, 2012;
Shibuya & Bundesen, 1988). Likewise, new ob-
jects may appear or disappear and thereby start
new processing episodes very often (Schneider,
2013), so that the duration of each episode falls
short of what is necessary for object recognition.
Furthermore, object recognition could be impaired
because it relies on limited visual processing re-
sources that had to be split among object repre-
sentations if these were not integrated (Schneider,
2013). Thus, if there was no integration of process-
ing across successive processing episodes, object
recognition in active saccade-mediated vision, and
in dynamic environments would be strongly hin-
dered.

However, if object information was integrated
across processing episodes in any circumstance,
this would be likewise detrimental. Speci�cally,
it would conceal changes and events in the envi-
ronment that occur from one episode to the next
(cf. Deubel, Schneider, & Bridgeman, 1996; Tas,
Moore, & Hollingworth, 2012; Poth et al., 2015;
Poth & Schneider, 2016a). For instance, object
representations from the previous and the current
episode could be integrated by updating or replac-
ing the former with the latter (Schneider, 2013; cf.

Deubel et al., 1996), or by combining the two (e.g.,
Oostwoud Wijdenes, Marshall, & Bays, 2015; Wit-
tenberg, Bremmer, & Wachtler, 2008). In both
cases, changes of object features (e.g., color or
location changes) across episodes would be un-
detectable, because no two representations were
available for comparison (cf. Schneider, 2013).
This would impair goal-directed behavior, because
such changes of object features may be relevant to
the current task or may otherwise signal important
events in the environment (e.g., Rensink, 2002).
Therefore, the selective integration problem is, at
its core, that it must be decided whether object in-
formation should be integrated or separated across
visual processing episodes.

For the mechanisms underlying object recog-
nition, the current visual processing episode must
be reconciled with the previous one to establish the
object's features or object category. For the mech-
anisms underlying short-term recognition, visual
processing episodes pose a different problem, one
of matching. Short-term recognition means deter-
mining whether a currently present object has been
viewed recently. Hence, an object from the current
visual processing episode must be matched against
the objects of multiple recent episodes, irrespec-
tive of whether objects are categorized (as in ob-
ject recognition). Such a matching requires to dis-
tinguish the content of visual processing episodes,
especially if similar objects can appear in multiple
visual processing episodes. Therefore, the func-
tion of short-term recognition is intrinsically linked
to visual processing episodes. For this reason, we
also called the function “episodic short-term recog-
nition” (Poth & Schneider, 2016c).

To ful�ll their functions, the mechanisms
underlying object recognition and short-term
recognition must accommodate visual processing
episodes. It is unclear, however, how this is accom-
plished, how the mechanisms enable processing
across episodes, and whether and how they work
in concert to this end.
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1.6 The present dissertation

The present dissertation aims at shedding light on
how the mechanisms underlying object recognition
and short-term recognition operate across visual
processing episodes. Five empirical studies inves-
tigated issues that must be addressed as a �rst step
toward a theoretical account of such visual cogni-
tion across visual processing episodes. As such,
this dissertation is meant to be a starting point and
a call for research on the topic of episodic visual
cognition. The following chapters of the disser-
tation synopsis discuss the theoretical background
and the �ndings of the empirical studies. The origi-
nal studies are provided afterwards, as the �nal part
of the dissertation.

Chapter 2 provides the theoretical background
for studying how the mechanisms underlying ob-
ject recognition accommodate the challenges of vi-
sual processing episodes. To this end, the part
introduces theories of visual attention (Bundesen,
1990; Bundesen, Habekost, & Kyllingsbæk, 2005;
Desimone & Duncan, 1995) and visual work-
ing memory (VWM; e.g., Bundesen, Habekost,
& Kyllingsbæk, 2011; Eriksson, Vogel, Lansner,
Bergstrom, & Nyberg, 2015; Luck & Vogel, 2013;
Olivers, Peters, Houtkamp, & Roelfsema, 2011),
two heavily intertwined mechanisms that together
accomplish object recognition within a single pro-
cessing episode. On this basis, Schneider's (2013)
TRAM theory is presented, which extends the
mechanisms to processing across episodes.

Building on the theoretical background, Chap-
ter 3 discusses three empirical studies that inves-
tigated these mechanisms for the visual process-
ing episodes consisting in eye �xations, which are
separated by saccadic eye movements. In Study 1
(Poth et al., 2015) and Study 2 (Poth & Schneider,
2016a), we assessed a central proposal of TRAM
theory (Schneider, 2013), namely, that there is a
mechanism establishing correspondence between

representations of an external object before and af-
ter the intervening saccade, which impacts on sub-
sequent object recognition. In this way, the two
studies investigated TRAM's solution to the se-
lective integration problem of object recognition
across visual processing episodes. In Study 3 (Poth
& Schneider, 2016b, submitted), we went on to
study the limits of object recognition across sac-
cades. Object recognition can only be achieved for
a few objects at a time (for reviews, see Bundesen
& Habekost, 2008; Duncan, 2006). Therefore, we
examined how this limited capacity is distributed
across successive �xations for object recognition.

Chapter 4 asks about the relationship between
the mechanisms underlying object recognition and
those underlying short-term recognition. To ad-
dress this issue, in Study 4 (Poth & Schneider,
2016c) we investigated whether visual processing
for recognition of an object must have been com-
pleted for short-term recognition of the object in
a later processing episode. In Study 5 (Poth &
Schneider, 2016d, submitted) we then turned to the
question by what means such a short-term recogni-
tion in a later processing episode can be prepared
in advance. To this end, we assessed how priori-
tizing among object representations retained from
a previous episode impacts on two distinct com-
ponents of performance in an upcoming short-term
recognition task.

Finally, chapter 5 aims to offer a brief gen-
eral discussion of how the �ve studies contribute to
our understanding of object recognition and short-
term recognition across visual processing episodes.
Up to this point, visual processing episodes have
been regarded as a processing requirement and a
challenge. Abstracting from the mechanisms of
object and short-term recognition addressing this
challenge, Chapter 5 also presents some specula-
tions about the functional value of visual process-
ing episodes for visual cognition.
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Chapter 2

Theoretical background: Mechanisms for visual cognition
within and across visual processing episodes

2.1 Visual attention and working memory

Human capacity for object recognition is limited:
not all objects in the visual �eld can be recog-
nized at the same time (for reviews, see Bundesen
& Habekost, 2008; Duncan, 2006). As proposed
by the biased competitionframework (Desimone
& Duncan, 1995), the objects compete against each
other for object recognition (Desimone & Duncan,
1995). Object recognition for task-driven behavior
therefore requires to select currently relevant ob-
jects for being recognized, at the expense of irrel-
evant ones. This function is calledselection-for-
perception(Schneider, 1995; Schneider & Deubel,
2002).

Human capacity for acting upon objects is lim-
ited as well, because there are only a few effec-
tors (e.g., two hands) that can be used for this
purpose (Neumann, 1987, see also Allport, 1987;
Neumann, 1990). Again, the selection of rele-
vant over irrelevant objects is necessary. This
function is called selection-for-action(Allport,
1987). Selection-for-perception and selection-for-
action are assumed to be performed by common
mechanisms ofvisual attention(Deubel & Schnei-
der, 1996; Schneider, 1995; Schneider & Deubel,
2002).

A theory of how the mechanisms of visual at-
tention mediate object recognition within a sin-
gle processing episode has been provided by
Bundesen's (1990) “Theory of Visual Attention”
(TVA; for more recent reviews, see Bundesen &

Habekost, 2008; Bundesen, Vangkilde, & Petersen,
2015). This theory provides a widely-used frame-
work for studying visual attention, not only in ex-
perimental psychology (for reviews, see Bundesen
& Habekost, 2008; Bundesen et al., 2015), but
also neuropsychology (e.g., Duncan et al., 1999;
Finke et al., 2005; Finke, Bublak, Dose, Müller,
& Schneider, 2006; reviewed by Habekost, 2015),
and clinical diagnostics (e.g., Habekost, Petersen,
& Vangkilde, 2014; Foerster, Poth, Behler, Botsch,
& Schneider, 2016).

TVA (Bundesen, 1990; Bundesen et al., 2005)
assumes that external objects are recognized, when
the objects become represented in VWM (in TVA
called “visual short-term memory”). VWM retains
information about a limited number of objects over
short time-windows, so that this information can
be reported (Luck & Vogel, 1997, 2013; Eriksson
et al., 2015; Shibuya & Bundesen, 1988; but see
Bays, 2015; Ma, Husain, & Bays, 2014) or other-
wise used for action (e.g., Schneider, 2013).

Whether or not objects become represented in
VWM depends on visual processing. That is, in
TVA (Bundesen, 1990) objects enter VWM if there
is suf�cient retention space and if visual processing
of the objects has been completed. Visual process-
ing is assumed to proceed in two stages. In the
�rst stage, visual input is segmented into percep-
tual units corresponding to external objects. The
information provided by these perceptual units is
subsequently compared with visual features and
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categories that have been acquired with experience
and reside in visual long-term memory. This com-
parison yields values of sensory evidence that an
object has a certain feature or belongs to a certain
category. Importantly, the comparison proceeds for
all objects in the visual �eld and is thus unselective.

In contrast to the �rst stage, processing at the
second stage is selective. The categorizations of
objects in the visual �eld are assumed to partici-
pate in a competitive race toward VWM. The ob-
ject categorizations that �nish processing �rst are
encoded into VWM (if enough retention space is
available there) and this allows all other catego-
rizations of the same objects to become represented
there as well. Encoding into VWM only continues
until it is �lled up with categorizations of a lim-
ited number of different objects. On the neuronal
level (Bundesen et al., 2005), VWM is assumed to
consist in a topographically organized map repre-
senting objects, henceforth called theVWM map of
objects(following Schneider, 2013), and loops of
neuronal activity between these objects and neu-
rons coding for the visual features belonging to the
objects (Bundesen et al., 2005). By means of these
loops, the activity of the neurons representing vi-
sual object features is sustained and can outlast the
presence of the external object in the visual �eld.

Two mechanisms of visual attention jointly de-
termine the speed with which the categorization
of an object is processed, that is, the speed with
which the categorization races towards VWM. The
�rst is the pigeonholingmechanism. This mech-
anism consists in an internal perceptual decision
bias for categorizing any object as having a spe-
ci�c feature. That is, the bias multiplicatively
weights the sensory evidence for task-relevant fea-
tures, so that irrespective of which objects are actu-
ally viewed, categorizations of this feature are pro-
cessed faster. Neuronally, the pigeonholing may
be implemented as an increased �ring rate of all
those neurons preferentially coding for the feature
in question (Bundesen et al., 2005).

For a given object, the speed with which its
categorizations are processed is proportional to the

amount of visual processing resources allocated to
the object. This is where the second mechanism
comes into play, which is called�ltering . This
mechanism operates by assigning each object in
the visual �eld an attentional weight. The atten-
tional weight re�ects the current importance of the
object. The weight is computed at the �rst stage of
processing by summing up the sensory evidences
that the object has certain features, whereby the
evidence for a feature is multiplicatively weighted
by the current importance of the feature. In this
fashion, the attentional weight combines bottom-
up information consisting in sensory evidence for
a feature with top-down information consisting in
the importance of this feature (additional bottom-
up factors of attentional selection may also con-
tribute to �ltering, Nordfang, Dyrholm, & Bun-
desen, 2013, and attentional weights can be used
to monitor for object changes with low expected
bottom-up salience, Poth, Petersen, Bundesen, &
Schneider, 2014). Visual processing resources are
allocated to an object according to the object's at-
tentional weight relative to the sum of the atten-
tional weights of all objects in the visual �eld. As
a result, the categorizations of currently important
objects are processed fastest. In this way, the ob-
jects are selected for object recognition.

According to the neural interpretation of TVA
(NTVA; Bundesen et al., 2005), the attentional
weights are stored in a spatially organized priority
map (see also Bundesen et al., 2011). Priority maps
exist in several areas of the primate brain, such as
monkeys' frontal eye �eld (Schall, 2009), lateral
intraparietal area (Bisley & Goldberg, 2010), pul-
vinar (Kastner & Pinsk, 2004), and superior col-
liculus (Krauzlis, Lovejoy, & Zenon, 2013). In
general, they combine the bottom-up salience (in-
trinsic to external objects) with the top-down task-
relevance of objects or features (Fecteau & Munoz,
2006; Zelinsky & Bisley, 2015).

In NTVA, the attentional weights of the prior-
ity map set gates within the visual system's ventral
stream for object recognition. The receptive �elds
(the regions of the retina from which they receive
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input) of higher level neurons (e.g., in the inferior
temporal cortex) are dynamically remapped so that
they receive input from lower level neurons cod-
ing for visual features of a speci�c object. In this
manner, more neurons are allocated to objects with
high attentional weights than to those with lower
ones. Thus, these neurons are the visual process-
ing resources that are distributed across objects ac-
cording to their attentional weights.

The �ltering and pigeonholing mechanisms
proposed in TVA (Bundesen, 1990) explain how
visual attention selects objects and visual object
features for object recognition. The selection in
TVA is restricted to the situation of a single pro-
cessing episode. This is necessary to develop
a mechanistic account of the selection, but falls
short of situations with more than one processing
episode. This issue is addressed by Schneider's
(2013) TRAM theory, which extends the mecha-
nisms of visual attention (speci�cally the �ltering
mechanism) and of VWM to processing across vi-
sual processing episodes.

2.2 Visual attention and working memory
across visual processing episodes

As explained above, TRAM theory (Schneider,
2013) assumes that visual processing for ob-
ject recognition is structured in visual processing
episodes (“competition episodes”). In TRAM, a
single visual processing episode consists of three
processing phases, whereby the �rst two phases
correspond to the two processing stages of TVA
(Bundesen, 1990; Bundesen et al., 2005).

The �rst phase is the unselective stage of TVA
(Bundesen, 1990; Bundesen et al., 2005), in which
attentional weights of objects in the visual �eld
are computed. Extending TVA, however, TRAM
(Schneider, 2013) assumes that the attentional
weights in the priority map form part of so-called
proto-objects, candidate object representations for
object recognition (Wischnewski, Steil, Kehrer,
& Schneider, 2009; Wischnewski, Belardinelli,
Schneider, & Steil, 2010, cf. Rensink, 2000). Be-
sides an attentional weight, a proto-object repre-

sents the rough location and shape of an external
object, as these two features are coded by the pri-
ority map additionally. Furthermore, a proto-object
comprises visual object features, which are rep-
resented in the ventral and dorsal streams of the
brain's visual system (Wischnewski et al., 2009,
2010).

The second phase of TRAM (Schneider, 2013)
corresponds to the competitive race towards VWM
in TVA (Bundesen, 1990; Bundesen et al., 2005).
In TRAM, the proto-objects compete against each
other for encoding of their features into VWM and
for being recognized in this fashion. Proto-objects
are inaccessible for being reported. However, when
the features of a proto-object enter VWM, then the
proto-object is transformed into an object represen-
tation in VWM. If this has happened, the repre-
sented object can be reported.

In the third phase of processing, those ob-
ject representations in VWM that are task-relevant
are made available for controlling behavior be-
yond the current processing episode. As in
NTVA (Bundesen et al., 2005), retention in VWM
is assumed to consist in sustaining activity in
feature-coding neurons by looping neuronal ac-
tivity between them and the VWM map of ob-
jects (Bundesen et al., 2005). TRAM assumes that
with ongoing retention in VWM, the retained ob-
ject representations are consolidated into apassive
state that does not require such a looping of ac-
tivity any more (Larocque, Lewis-Peacock, & Pos-
tle, 2014; Stokes, 2015; and may rely on changes
in synaptic connectivity, e.g., Mongillo, Barak, &
Tsodyks, 2008; Rose et al., 2016). In this passive
state, the represented information can be retained
across the several visual processing episodes with-
out taking up retention space in capacity-limited
VWM. This is important because retained infor-
mation would otherwise block encoding of new
objects into VWM in the next episodes. Such a
blocking would impair or even prevent the per-
formance of tasks requiring visual guidance over
multiple episodes, such as multi-step sensorimotor
tasks (e.g., Hayhoe & Ballard, 2005; Foerster, Car-
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bone, Koesling, & Schneider, 2011).

After TRAM's (Schneider, 2013) third phase
of processing has �nished, the next visual process-
ing episode starts with its �rst phase. Importantly,
visual processing episodes are linked by the inter-
play of VWM and the attentional weights that me-
diate encoding into VWM. More speci�cally, the
task-relevant objects that are represented in VWM
remain connected to their attentional weights (cf.
Petersen, Kyllingsbæk, & Bundesen, 2012, 2013).
Consequently, the attentional weights of these ob-
jects from the previous episode persist in the cur-
rent episode. Both, the attentional weights and
the object representations in VWM are linked to
the representations of visual features. These links
are critical for integrating information across visual
processing episodes. For a given external object,
the attentional weight in a new visual processing
episode matches the one from the previous episode
(or a prediction of this attentional weight, respec-
tively). New visual input that arrives at the repre-
sentations of visual features can therefore be routed
by the attentional weight to the respective object
in VWM. As a result, the object representation in
VWM is updatedby new visual information.

Importantly, if this updating refers to a feature
that has already been represented as part of the ob-
ject in VWM, then the representation of this feature
is overwritten (or combined) with the new informa-
tion about it (Schneider, 2013; cf. Poth et al., 2015;
Poth & Schneider, 2016a). In contrast, if the updat-
ing refers to a feature that has not been part of the
object in VWM, then this feature can be attached to
the object in VWM additionally (the VWM object
is said to be “re-categorized” with a new feature,
Schneider, 2013, p. 8-9).

The described updating mechanism provides a
means for integrating information about external
objects sampled in successive processing episodes.
Importantly, however, this does not yet solve the
selective integration problem of object recognition
across visual processing episodes. At the heart
of this problem is the decision whether integra-
tion should take place or whether objects from suc-

cessive episodes should be represented separately.
As solution to this problem, TRAM (Schneider,
2013) proposes a mechanism that tests for corre-
spondence (“object continuity”) between objects in
VWM from the previous episode and the objects of
the current episode. This test consists in a compar-
ison of the objects retained in VWM with objects
of the current episode in terms of their features in a
priority map, namely their attentional weights, lo-
cations, and rough shapes (or more precisely, pre-
dictions derived from these priority map features).

If the test for object correspondence is posi-
tive for an object, then this implies that the object
is processed with an identical attentional weight
across the visual processing episodes. In this case,
the attentional weight is used to update the repre-
sentation of the object in VWM with new visual
input. In contrast, if the test for object correspon-
dence is negative (i.e. object correspondence is
broken), then the attentional weight of the object
from the previous episode isencapsulated, mean-
ing that it is retained in its current state. This
shields the associated object in VWM from be-
ing updated with new visual input. Thus, new vi-
sual input is then treated as belonging to a new
external object and has to pass through all pro-
cessing phases (even if the input actually stems
from the same external object that resulted in the
VWM representation with the encapsulated atten-
tional weight).

Encapsulating an object's attentional weight
has attentional costs. The neuronal processing re-
sources belonging to the attentional weights cannot
be used for processing other, subsequent objects
(see Petersen et al., 2012 for related ideas). Fewer
resources are thus available for processing new ob-
jects, so that these are processed more slowly and
their object recognition is impaired.

Critically, the encapsulation of attentional
weights is assumed to happen only for task-
relevant objects in VWM. Furthermore, the encap-
sulation happens only as long as these objects are
in the third phase of processing which ends when
they have been consolidated into the passive state
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of VWM. Thus, once the objects are in the passive
state, they can be made available for action control
(by retrieval into VWM) without permanently re-
quiring retention space in VWM and without caus-
ing attentional costs for object recognition of sub-
sequent objects.

In sum, two of TRAM's proposals are essen-
tial for object recognition across visual processing
episodes. First, the proposal that there is a mech-
anism that tests for object correspondence across
visual processing episodes. This mechanism im-

pacts on subsequent object recognition by decid-
ing whether attentional weights are encapsulated or
used for updating. As such, this mechanism offers
a hypothetical solution to the selective integration
problem for object recognition across visual pro-
cessing episodes. Second, the proposal that only
those attentional weights are encapsulated that be-
long to task-relevant objects in VWM. This pro-
posal implies that attentional competition across
episodes is limited to task-relevant objects, pre-
venting that object recognition in general suffers
with each new visual processing episode.
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Chapter 3

Object recognition across visual processing episodes

3.1 Object correspondence linking the visual
processing episodes of successive eye �xa-
tions

TRAM theory (Schneider, 2013) presents a func-
tional view on object correspondence, assuming
that it serves object recognition across visual pro-
cessing episodes (Schneider, 2013). Tradition-
ally, however, object correspondence mechanisms
have mostly been held to explain phenomena of vi-
sual perception (which may also support behavior
by carrying information about regularities in the
world, e.g., Flombaum, Scholl, & Santos, 2009).
Among the most prominent examples is the percept
that one and the same object is present at succes-
sive locations in apparent motion (e.g., Kahneman
et al., 1992; Mitroff & Alvarez, 2007) and across
occlusion by another object (e.g., Hollingworth
& Franconeri, 2009). Most importantly to visual
processing across episodes, object correspondence
has recently been taken to explain visual stabil-
ity across the episodes of eye �xations separated
by saccadic eye movements (Tas et al., 2012; Tas,
2015; cf. Hollingworth, Richard, & Luck, 2008).

Visual stability is the phenomenon that exter-
nal objects are perceived as stable in their loca-
tions across a saccade, despite the fact that the sac-
cade changes their locations on the eye's retina and
their visual resolution (for reviews, see Higgins &
Rayner, 2015; Mathôt & Theeuwes, 2011; Rolfs,
2015; Wurtz, 2008). Interestingly, the perception
of visual stability arises even despite actual ob-
ject displacements: Displacing an object while a

saccade is made towards it is hard to notice, even
for relatively large displacements (of up to about a
third of saccade amplitude, Bridgeman, Hendry, &
Stark, 1975, on the saccade axis, Wexler & Collins,
2014). The extent of this insensitivity to transsac-
cadic displacements provides an often used mea-
sure of visual stability in laboratory experiments
(e.g., Deubel et al., 1996; Deubel, Bridgeman,
& Schneider, 1998; for a review, see Higgins &
Rayner, 2015)

For a long time, it has been assumed that the
inability to detect (or discriminate) transsaccadic
displacements stems from a reset of visual process-
ing after a saccade, which leads to the loss of pre-
saccadic location information (Bridgeman, van der
Heijden, & Velichkovsky, 1994). This hypothe-
sis was, however, falsi�ed with theblanking effect
(Deubel & Schneider, 1994; Deubel et al., 1996,
1998). That is, the insensitivity to transsaccadic
displacements is ameliorated when the object is
brie�y blanked after the saccade and then reappears
at its displaced location. Under such conditions,
the direction of the displacement can be reported
accurately. This �nding reveals that there is infor-
mation about the presaccadic object location after
the saccade, but that this information is usually in-
accessible, in the absence of the blank.

In the light of TRAM (Schneider, 2013), the
blanking effect may be interpreted as follows (see
also Poth et al., 2015; Poth & Schneider, 2016a).
After eye-landing, the visual system tests for cor-
respondence (“object continuity”) between the pre-
saccadic object and the postsaccadic object (the
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discussion in terms ofobject correspondencewas
initiated by Tas et al., 2012). If the test for transsac-
cadic object correspondence is positive, the VWM
representation of the presaccadic object is updated
after the saccade with input from the postsaccadic
object. As a result, only a combined representa-
tion of the presaccadic and postsaccadic object is
available in VWM. This prevents any comparison
between the presaccadic and postsaccadic location.
Transsaccadic location changes (and visual feature
changes, Deubel, Schneider, & Bridgeman, 2002;
Weiß, Schneider, & Herwig, 2015) are therefore in-
discriminable and visual stability is perceived.

In contrast, if the eye lands on an empty dis-
play because the object is blanked, then the test
for transsaccadic object correspondence is nega-
tive (because there is a mismatch between the at-
tentional weight of the object from before the sac-
cade and from the blank display after the saccade,
see also section 2.2). Consequently, the attentional
weight of the presaccadic object that is now in
VWM is encapsulated. The object representation
is therefore maintained as is, rather than updated
with new input. A new representation is then cre-
ated for the postsaccadic object after the blank.
The two distinct representations can be compared,
which improves the discrimination of transsaccadic
displacements and prevents the perception of vi-
sual stability. However, encapsulating the atten-
tional weight of the presaccadic object represen-
tation means that the representation takes up vi-
sual processing resources required for processing
the postsaccadic object. Therefore, TRAM pre-
dicts that it should impair recognition of the post-
saccadic object.

The goal ofStudy 1 (Poth et al., 2015) was to
test the hypothesis that breaking object correspon-
dence across the saccade improves perception of
transsaccadic displacements but at the same time
impairs postsaccadic object recognition. For this
purpose, Experiment 1 of Study 1 combined the
classic blanking paradigm (Deubel & Schneider,
1994; Deubel et al., 1996) with an object recog-
nition task. Participants made saccades to a pe-

ripheral saccade target object containing an irrel-
evant special character. During the saccade, the
object was displaced, and after eye-landing a let-
ter was shown in the object and terminated by a
pattern mask. The postsaccadic object and the let-
ter in it were visible either immediately after eye-
landing, or after a brief blank display. Critically, in
one block of trials, participants discriminated the
direction of the object displacement. However, in
another block of trials, they reported the identity of
the postsaccadic letter.

Replicating the blanking effect, participants'
displacement discrimination was more accurate
when there was a postsaccadic blank compared
with when the object was shown immediately after
the saccade. Thus, breaking object correspondence
by blanking improved the perception of transsac-
cadic displacements and reduced perceived visual
stability. In contrast, however, participants' letter
reports were less accurate when there was a post-
saccadic blank than when there was none. Thus,
breaking object correspondence by blanking im-
paired postsaccadic object recognition. Experi-
ment 2 followed up on this latter result to rule out
a number of alternative explanations based on the
object displacement and the delayed onset of the
postsaccadic object in case of a blank. In this ex-
periment, participants only reported the letter that
was shown in the postsaccadic object, and there
were no object displacements across the saccade.
In contrast to Experiment 1, object correspondence
was broken by changing the contrast-polarity (and
luminance) of the object across the saccade (this
manipulation followed Tas et al., 2012). A black
object on a gray background was changed into a
white one during the saccade and vice versa. Par-
ticipants' letter report performance was compared
between conditions with and without such contrast-
polarity changes. Thus, here the time-course of
object appearances was identical in all experimen-
tal conditions, because there was no blank de-
laying the onset of the postsaccadic object. De-
spite the different manipulation of object corre-
spondence across the saccade, the results of Exper-
iment 2 were consistent with those of Experiment
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1. Recognition of the postsaccadic object was im-
paired when object correspondence was broken by
the contrast-polarity change, compared with when
no such change occurred. Thus, taken together,
the results of Study 1 offer evidence that breaking
object correspondence across saccadic eye move-
ments impairs postsaccadic object recognition.

Study 1 manipulated transsaccadic object cor-
respondence by means of blanking and changes
of the contrast-polarity of achromatic objects.
Both manipulations have strong perceptual effects
(Deubel et al., 1996, 1998; Tas et al., 2012). This
may imply especially strong effects on object cor-
respondence, because of a substantial contribution
to the priority map features on whose basis ob-
ject correspondence is tested for (Schneider, 2013).
One may therefore ask whether the �ndings of im-
paired object recognition generalize to other object
features and more subtle feature changes.

One of the most important surface features for
human object recognition is color (Gegenfurtner,
2003; Gegenfurtner & Kiper, 2003; Moutoussis,
2015). However, testing object correspondence
across saccades based on color may be problem-
atic. Speci�cally, the color of an object is repre-
sented with strikingly different quality and reso-
lution at the fovea of the retina, corresponding to
gaze center, compared with the retinal periphery
(e.g., Hibino, 1992; Johnson, 1986; Livingstone &
Hubel, 1987; Nagy & Wolf, 1993). Every saccade
displaces an object's image on the retina, so that the
presaccadic and postsaccadic object image differ in
color quality. Thus, every saccade induces an ob-
ject change in terms of its color input. According
to TRAM (Schneider, 2013) and based on our pre-
vious �ndings (Poth et al., 2015), if such naturally
occurring color changes broke transsaccadic object
correspondence, then postsaccadic object recogni-
tion would be impaired with every saccade. There-
fore, one may hypothesize that color is ignored in
the test for transsaccadic object correspondence in
order to salvage postsaccadic object recognition.

The goal ofStudy 2(Poth & Schneider, 2016a)
was therefore to test whether breaking object cor-

respondence with color changes, and thus with
more subtle surface feature changes, also impairs
postsaccadic object recognition. Study 2 adopted
the paradigm of the second experiment of Study
1 (Poth et al., 2015). In Experiment 1 of Study
2, transsaccadic object correspondence was bro-
ken by changing the object's color-and-luminance
across the saccade, that is, by changing between
red and green of different luminances. In Ex-
periment 2, transsaccadic object correspondence
was broken by changing the object's color alone,
by changing between blue and yellow of about
the same luminance. In both experiments, break-
ing object correspondence across the saccade im-
paired postsaccadic object recognition. These re-
sults show that the surface features of color-and-
luminance as well as the one of color alone con-
tribute to object correspondence and thereby im-
pact on object recognition.

Taken together, the �ndings of Study 1 (Poth et
al., 2015) and Study 2 (Poth & Schneider, 2016a)
reveal that the mechanism establishing object cor-
respondence across the saccade not only deter-
mines the perception of visual stability but also im-
pacts on object recognition. Thus, the �ndings sup-
port the prediction of TRAM theory (Schneider,
2013) that object recognition across visual pro-
cessing episodes, here successive eye �xations, de-
pends on a mechanism that tests for object corre-
spondence.

Such a mechanism for object correspondence
presents one solution to the selective integration
problem of object recognition across visual pro-
cessing episodes. Speci�cally, the mechanism de-
cides whether object information should be inte-
grated across the saccade or whether presaccadic
and postsaccadic object representations should be
kept separate (cf. Deubel et al., 1996; Tas et al.,
2012). The integration of object information across
saccades may enhance object recognition, by pre-
venting attentional competition between represen-
tations (i.e. their attentional weights, Schneider,
2013) and by enabling a cumulative visual pro-
cessing (Demeyer et al., 2009; Henderson & Anes,
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1994; Kahneman et al., 1992). In contrast, the
separation of object representations may enhance
comparisons across the saccade and thus help
discriminate transsaccadic object changes (e.g.,
Deubel et al., 1996, 2002; Weiß et al., 2015).

3.1.1 Object correspondence for object recogni-
tion based on multiple object features

Besides revealing a link between object correspon-
dence across the saccade and object recognition,
the results of Study 1 and 2 also shed some light
on the object correspondence mechanism itself.
Speci�cally, they show that the mechanism takes
multiple object features into account. The ques-
tion which features are used to establish object
correspondence is also hotly debated in the liter-
ature on object correspondence across occlusion
(Hollingworth & Franconeri, 2009) and apparent
motion (Kahneman et al., 1992; Mitroff & Alvarez,
2007). Some accounts maintain that object cor-
respondence is based on spatiotemporal features
only (Kahneman et al., 1992) or at least primar-
ily (Flombaum et al., 2009; Scholl, 2007). This
is consistent with the view that object correspon-
dence across saccades is broken by blanking, be-
cause blanking implies a mismatch between pre-
saccadic and postsaccadic objects in space and (ex-
pected) time.

However, we also found postsaccadic ob-
ject recognition impaired when transsaccadic ob-
ject correspondence was broken by changes of
contrast-polarity (and luminance) of achromatic
objects, changes of color-and-luminance, and of
color alone. Thus, such surface features contribute
to the test for transsaccadic object correspondence
as well. Converging evidence for this proposal
comes from two earlier studies. The �rst one
showed that changing contrast-polarity and more
complex visual features (pictures of real-world ob-
jects) improved the discrimination of transsaccadic
displacements and thus diminished the perception
of visual stability (Tas et al., 2012). The second
study induced transsaccadic object displacements
that caused a saccade to land between two objects

(Hollingworth et al., 2008). Corrective saccades
in response to these displacements were guided by
the objects' color-and-luminance, which offers in-
direct evidence that the features contribute to ob-
ject correspondence.

As our �ndings, the ones of the two studies ar-
gue that surface features and not only spatiotempo-
ral features contribute to transsaccadic object cor-
respondence. A similar contribution of surface fea-
tures has been observed for object correspondence
across occlusion and motion as well (Hollingworth
& Franconeri, 2009). Thus, we may now conclude
that object correspondence across visual process-
ing episodes generally takes spatiotemporal as well
as surface features into account.

3.1.2 Object correspondence based on atten-
tional weights and predictive remapping of
receptive �elds

How could a test for transsaccadic object corre-
spondence be implemented? According to TRAM,
transsaccadic object correspondence is tested for
by comparing the attentional weight of the object
(and other characteristics in the priority map) af-
ter the saccade with a prediction that has been
derived from the presaccadic attentional weight
(Schneider, 2013). This prevents that predictable
changes of sensory input due to the saccade-
induced shift of the object's retinal image impact
on object correspondence (cf. Herwig & Schnei-
der, 2014). For the spatial location of an ob-
ject, this prediction may be implemented bypre-
dictive remapping(Duhamel, Colby, & Goldberg,
1992; for reviews, see Wurtz, 2008; Wurtz, Joiner,
& Berman, 2011; but see, Zirnsak, Steinmetz,
Noudoost, Xu, & Moore, 2014). Just before a sac-
cade is made, neurons in some retinotopically or-
ganized brain areas become responsive to the lo-
cations their receptive �elds will be brought to
by the saccade. These brain areas include the
ones assumed to implement priority maps (mon-
keys' frontal eye �elds, Umeno & Goldberg, 1997;
lateral intraparietal areas, Duhamel et al., 1992,
and superior colliculi, Walker, Fitzgibbon, & Gold-
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berg, 1995). The predictive remapping of recep-
tive �elds is based on a corollary discharge (ef-
ference copy) signal from saccade-generating neu-
rons in the superior colliculus, which informs about
the amplitude and direction of the impending sac-
cade (Sommer & Wurtz, 2006). This may allow
to track the approximate location of objects across
saccades. Speci�cally, predictive remapping may
make a given neuron receive input from one and
the same object before and after a saccade (Wurtz
et al., 2011) and this seems to contribute to the
perception of visual stability (Cavanaugh, Berman,
Joiner, & Wurtz, 2016; which should, however, tol-
erate transsaccadic object displacements to a de-
gree, cf. Bridgeman et al., 1975).

However, predictive remapping of receptive
�elds is limited to object locations, it does not al-
low to track surface features of objects (Cavanagh,
Hunt, Afraz, & Rolfs, 2010). A speci�cation of
TRAM theory's (Schneider, 2013) object corre-
spondence mechanism may address this problem
(see, also Poth & Schneider, 2016a). That is, pre-
dictive remapping may con�gure the attentional
weights in a priority map for the impending ob-
ject correspondence test after the saccade. Ac-
cording to NTVA (Bundesen et al., 2005), the at-
tentional weights control the dynamic remapping
of neuron's receptive �elds in the higher ventral
stream. The attentional weights set gates in the
ventral stream, so that higher level neurons re-
ceive input from the lower level neurons coding
for the visual features of a speci�c external ob-
ject. Predictive remapping may now recon�gure
the attentional weights, so that they already set the
gates in accordance with the retinal locations ob-
jects will fall on after the saccade (see, Cavanagh
et al., 2010 for a related idea of remapping of “at-
tention pointers”). Then, after the saccade, the
higher level neurons should receive feature input
from the objects at the locations dictated by the at-
tentional weights. This feature input may in turn
retain the attentional weights, because it sets the
sensory evidence values from which the attentional
weights are computed (see the above description of
TVA, Bundesen, 1990) in this �xation (Schneider,

2013). Thus, when the same object is present be-
fore and after the saccade, the attentional weight
remains unchanged. In TRAM, the test for object
correspondence is then positive and the feature in-
put is routed through the gates set by the atten-
tional weights to update the presaccadically created
VWM representation of the object.

In contrast, when the object is blanked after the
saccade or when its surface features change, then
the feature input to the attentional weight is miss-
ing. This results in a negative test for object cor-
respondence. As proposed by TRAM (Schneider,
2013), the attentional weight should then be encap-
sulated. As a consequence, the higher level neu-
rons whose gates are set by the attentional weight
cannot be redistributed to receive input from new
objects. This cuts the resources for processing
these objects which offers one explanation for the
impaired object recognition that we observed in
Study 1 and 2, when object correspondence was
broken across the saccade (Poth et al., 2015; Poth
& Schneider, 2016a). Besides this explanation,
TRAM also provides another, not mutually ex-
clusive explanation of this effect. Namely, ob-
ject recognition could have been impaired because
breaking object correspondence prevented the in-
tegration and updating of the representation of the
object in VWM (for a discussion, see Poth et al.,
2015; Poth & Schneider, 2016a). That is, the post-
saccadic object would not have been processed by
using the same attentional weight as the presac-
cadic one, preventing that the postsaccdic features
are routed to the presaccadically created object rep-
resentation in VWM. Consequently, a new atten-
tional weight and a new representation in VWM
would have to be created for the postsaccadic ob-
ject. This would delay processing and should im-
pair postsaccadic object recognition, especially if
the object was terminated by a mask as in our
present studies.
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3.2 Attentional competition for object recogni-
tion across the visual processing episodes
of successive eye �xations

Object correspondence may determine whether or
not processing of an object is integrated across vi-
sual processing episodes. As we have seen so far,
this should decide whether visual processing re-
sources are allocated to one integrated object repre-
sentation (using one attentional weight) or two sep-
arate object representations from each episode (us-
ing two attentional weights; Schneider, 2013). In
most situations and visually-guided tasks, a num-
ber of objects are present in the visual �eld and
may appear, disappear, or change from one pro-
cessing episode to the next. Therefore, another
question of fundamental importance is how pro-
cessing resources for object recognition are dis-
tributed across different external objects in succes-
sive visual processing episodes.

Within a visual processing episode, such as an
eye �xation, different objects must compete for
the limited visual processing resources (Bundesen,
1990; Duncan, 2006, such as neurons, Bundesen
et al., 2005). Mechanisms of visual attention bias
this competition, so that currently important ob-
jects receive more resources than unimportant ones
(Desimone & Duncan, 1995). The �ltering mech-
anism of TVA (Bundesen, 1990; see section 2.1)
is a speci�cation of such a mechanism. As de-
scribed above, it operates by distributing resources
across objects according to attentional weights re-
�ecting the objects' current importance. However,
this mechanism does not allow a differential allo-
cation of processing resources for objects of equal
importance. Therefore, the more equally impor-
tant objects enter the visual �eld, the smaller is the
amount of processing resources allocated to each
individual object, slowing down the objects' pro-
cessing for object recognition (Bundesen, 1990).

Surprisingly, while a great deal of research has
been devoted to understanding attentional competi-
tion for object recognition within eye �xations, it is
unclear whether it also extends from one �xation to
the next. In other words, it is unclear whether ob-

jects from one �xation compete with those in the
next �xation for object recognition.

Three hypotheses can be advanced as answers
to the question of whether objects compete for
recognition from one �xation to the next. The
�rst is that successive �xations are entirely separate
episodes with no competition between the objects
in them. This is in line with the proposal that to sur-
vive the saccade, objects have to be encoded into
VWM (Irwin, 1992; Irwin & Gordon, 1998). The
competition for object recognition is, however, as-
sumed to rely on object representations created be-
fore encoding into VWM (Bundesen, 1990; Bun-
desen et al., 2005). Therefore, these object rep-
resentations before VWM should not exist beyond
the current �xation and there should be no atten-
tional competition across the saccade per se.

However, some object information outside
VWM seems to persist across the saccade, al-
though it is largely bound to the retinal object lo-
cations which are changed by the saccade (Irwin,
Brown, & Sun, 1988). This argues against the
�rst hypothesis, because the competition for ob-
ject recognition includes all objects in the visual
�eld and should thus include these persisting ob-
ject representations (Bundesen, 1990; Bundesen et
al., 2005; Desimone & Duncan, 1995). Therefore,
the second hypothesis predicts that these persist-
ing object representations should compete with and
impair processing of objects in the next �xation.

The third hypothesis directly follows from
TRAM theory (Schneider, 2013), objects should
compete for object recognition across saccades, but
only if they are relevant to the task at hand. That is,
there should be competition between objects from
the current �xation and the objects from the previ-
ous �xation that are now in VWM and whose atten-
tional weights are encapsulated to ensure their con-
solidation into passive VWM. This encapsulation
should, however, only take place for objects that
have been encoded into VWM and that are task-
relevant (see the above description of TRAM).

The aim ofStudy 3 (Poth & Schneider, 2016b,
submitted) was to distinguish between the three hy-
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potheses and thus to investigate whether objects
compete for recognition across saccades. For this
purpose, we performed two experiments. In both
experiments, participants made saccades to an ob-
ject (a red circle) in the visual periphery. Their
task was to report a letter that was presented af-
ter the saccade within this object and terminated
by a mask. The letter was shown for different du-
rations. This allowed us to assess the processing
speed of this letter by modeling report performance
as a function of letter presentation duration (for a
recent overview, see Bundesen et al., 2015). Before
the saccade, either no, two, or four additional non-
target objects (digits) were shown until the saccade
was initiated. The non-target objects were in a sim-
ilar color than the saccade target object.

In Experiment 1, the non-target objects were
task-irrelevant. Under such conditions, the speed
with which the postsaccadic letter was processed
did not differ depending on the number of presac-
cadic non-target objects. This result argues against
the second hypothesis, which predicted that objects
per se compete across the saccade for object recog-
nition.

In Experiment 2, the presaccadic non-target ob-
jects were task-relevant because they had to be
matched against a probe at the end of a trial. Here,
the processing speed of the postsaccadic letter now
decreased with increasing number of presaccadic
non-targets. Cross-experiment analyses con�rmed
that the effect of the number of presaccadic non-
targets on the processing speed of the postsaccadic
letter was indeed greater in Experiment 2 than in
Experiment 1. These �ndings provide evidence
against the �rst hypothesis, stating that objects can-
not compete for recognition across saccades. In-
stead, they lend support to the third hypothesis that
was based on TRAM theory (Schneider, 2013),
holding that objects compete for recognition across
saccades, but only if they are task-relevant.

In TRAM (Schneider, 2013), the �ndings of
Study 3 can be explained as follows. Before the
saccade, the saccade target object was the most
relevant object in the visual �eld, with the high-

est attentional weight, and should thus have en-
tered VWM (cf. Deubel & Schneider, 1996; Wis-
chnewski et al., 2009, 2010). However, as VWM
allows to retain more than one object, some of the
presaccadic non-target objects should have been
encoded into VWM as well. In particular, the
presaccadic non-target objects were of a similar
color than the saccade target and they appeared
with a sharp onset, which implies a high bottom-
up salience (cf. Yantis, 1993). According to TVA
(Bundesen, 1990), their attentional weights should
thus have been relatively high, supporting their en-
coding into VWM. After the saccade, the saccade
target object remained as it was, only that the letter
appeared in it. For this object, object correspon-
dence should have been established across the sac-
cade (as in Study 1 and 2, Poth et al., 2015; Poth
& Schneider, 2016a). However, this should not
have been the case for the presaccadic non-target
objects. These objects were extinguished across
the saccade, which should have drastically changed
their attentional weights. Therefore, for the rep-
resentations of these objects in VWM, object cor-
respondence across the saccade should have been
broken. This should have lead to the encapsula-
tion of attentional weights, but only if the objects
in VWM connected to the attentional weights had
been task-relevant. The reason for this is that en-
capsulation of attentional weights happens only for
objects in VWM that are task-relevant, in order to
ensure only their consolidation into passive VWM.
As a consequence of the encapsulation of atten-
tional weights, there should have been fewer re-
sources available for processing the postsaccadic
letter. This explains that the letter was processed
more slowly.

As an alternative to encapsulation, one might
suppose that the lower postsaccadic processing
speed was solely due to the higher attentional
weights of task-relevant presaccadic non-target ob-
jects compared to irrelevant ones. Arguing against
this, however, one may assume that even though ir-
relevant non-target objects should have had lower
attentional weights than task-relevant ones, their
attentional weights should not have been close to
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zero. As mentioned above, they appeared with a
sharp onset and shared features with the saccade
target, implying relatively high attentional weights
(Bundesen, 1990). Therefore, if attentional com-
petition took place across the saccade irrespective
of encapsulation, one should expect an effect of the
number of presaccadic non-target objects on post-
saccadic processing speed also for irrelevant ones.
That there was no such effect (in fact, it was more
likely that the effect was absent, see Poth & Schnei-
der, 2016b, submitted), might thus argue against
this hypothesis.

In conclusion, the �ndings of Study 3 (Poth

& Schneider, 2016b, submitted) reveal that ob-
jects compete for object recognition across sac-
cadic eye movements, but only if the objects are
task-relevant. This argues that the current task de-
cides how processing resources for object recogni-
tion are allocated to different objects in successive
visual processing episodes. Attentional competi-
tion between objects across processing episodes
seems limited to task-relevant objects. This may
re�ect an intelligent compromise: The risk of im-
paired object recognition in the current processing
episode is only taken for those objects whose con-
tinued processing serves the current task.
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Chapter 4

Short-term recognition across visual processing episodes

4.1 Short-term recognition requires encoding
into visual working memory in previous
processing episodes

The previous chapter focused on the mechanisms
that link the current visual processing episode to
the immediately preceding one, in order to sup-
port object recognition. In contrast to object recog-
nition, short-term recognition requires to estab-
lish links from the current to several processing
episodes in the recent past, not only to the im-
mediately preceding one. More speci�cally, short-
term recognition across visual processing episodes
bears the matching problem (see section 1.5). It re-
quires to match an object from the current episode
to object representations that have been acquired
in several recent episodes. It is an open question
whether short-term recognition is based on mecha-
nisms that are also involved in object recognition.
For instance, one may ask whether object recogni-
tion in one episode has to be accomplished for an
object in order for it to be available for short-term
recognition in later episodes.

In Study 4 (Poth & Schneider, 2016c), we
aimed to make a �rst approach to this issue. As
argued above, VWM is one of the most important
mechanisms for object recognition. Particularly,
objects are assumed to be recognized and become
available for report and other actions with their en-
coding into VWM (Bundesen, 1990; Bundesen et
al., 2005; Schneider, 2013). In contrast to the func-
tion of object recognition, short-term recognition is
not recognizing that an object belongs to a certain

category but that it has been viewed recently (in
a previous processing episode, for which we also
called it “episodic short-term recognition”, Poth &
Schneider, 2016c). Here, we asked whether short-
term recognition of an object requires that it has en-
tered VWM at the time it was encountered. Alter-
natively, it could be suf�cient to activate visual fea-
tures and categories in visual long-term memory,
which should happen for all objects in the visual
�eld as an initial processing step (Bundesen, 1990;
Cowan, 1988; Henderson & Anes, 1994; Oberauer,
2002).

For instance, in the �rst and unselective stage of
processing in TVA (Bundesen, 1990), the objects
in the visual �eld are assumed to activate repre-
sentations of visual features and categories in long-
term memory. Thereby, the sensory evidence that
the objects have certain features or belong to cer-
tain categories is computed as the basis of further
processing. Only afterwards, in the second and se-
lective stage of processing, these categorizations
can be encoded into VWM (i.e. this is TVA's race
towards VWM, see section 2.1).

To investigate whether it is necessary to en-
code objects into VWM for their later short-term
recognition, we developed a paradigm combin-
ing letter report and probe recognition (Poth &
Schneider, 2016c). In Experiment 1, participants
viewed displays of ten different letters in circular
arrangement. They memorized them over a reten-
tion interval and then reported as many of them
as they could. Ten letters were displayed because
this number exceeds estimates of VWM capacity
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(e.g., Dyrholm, Kyllingsbæk, Espeseth, & Bunde-
sen, 2011; Luck & Vogel, 1997; Poth et al., 2014;
Shibuya & Bundesen, 1988) and ensures that par-
ticipants could not report all letters. After the let-
ter report, a single probe letter was shown. Short-
term recognition was assessed as participants' per-
formance in indicating whether or not the probe
matched one of the preceding ten letters. To assess
whether the probed letter had been encoded into
VWM, the identity of the probe was conditional-
ized on the letters participants had reported. There
were three conditions. The probe either matched
one of the ten letters and had also been reported,
it matched one of the ten letters but had not been
reported, or it did not match any of the ten let-
ters. In general, objects are assumed to be available
for report and the control of other actions only if
they have entered VWM (Bundesen, 1990; Bunde-
sen et al., 2005; Martens & Wyble, 2010; Schnei-
der, 2013). Therefore, we assumed that the let-
ters participants reported had been encoded into
VWM, whereas the letters they did not report had
not reached VWM.

It is important to note that short-term recogni-
tion here referred to letters not from the immedi-
ately preceding visual processing episode, but from
several processing episodes ago. The reason for
this is that the display of the ten letters was fol-
lowed by a retention interval (without letters) and
by the action of reporting letters. Both of these
phases of the task should have triggered a new vi-
sual processing episode due to changes in process-
ing demands (Schneider, 2013).

The results of Experiment 1 of Study 4 (Poth &
Schneider, 2016c) showed that participants' probe
recognition performance was higher for reported
letters than for those that had not been reported or
not been shown. This is consistent with the hypoth-
esis that short-term recognition presupposes en-
coding into VWM. However, reporting the letters
could itself have effects on a later short-term recog-
nition irrespective of encoding into VWM. For in-
stance, reporting letters itself could interfere with
visual features and categories in long-term memory

that had been activated by other letters. Without
an intervening report, short-term recognition based
on these initially activated features and categories
might still be possible.

Additional analyses of letter reports in Exper-
iment 1 revealed that participants predominantly
reported letters that had been close to each other
within the displays of the ten letters. This suggests
that letters were encoded into VWM in a spatially-
clustered manner. Experiment 2 made use of this
�nding to address the alternative explanation of the
higher probe recognition performance for reported
letters in Experiment 1.

The paradigm of Experiment 2 was similar to
the one of Experiment 1. In contrast to Experi-
ment 1, however, the ten letters were placed in col-
ored frames, whereby the frame of one letter dif-
fered from the other frames. Participants only re-
ported this highlighted letter. The probe letter ei-
ther referred to this letter, to one of the two let-
ters next to it, or two one of two letters on the
other side of the letter display. Based on the spa-
tially clustered encoding into VWM in Experiment
1, we assumed that letters next to the highlighted
letter should have a higher probability of entering
VWM than those on the other side of the display.
Therefore, if short-term recognition required en-
coding into VWM, probe recognition performance
should be higher for the letters near compared with
those far away from the highlighted letter. The
results supported this prediction. Probe recogni-
tion was higher for letters that had been near to
compared with far away from the highlighted let-
ter. Importantly, probe recognition performance
was at chance level for these far away letters. This
indicates that short-term recognition could be per-
formed for letters that had been probable to enter
VWM, but was impossible for letters with a lower
probability of reaching VWM.

In sum, these �ndings argue that short-term
recognition is restricted to those objects that have
reached VWM. As such, the activation of features
and categories in long-term memory seems insuf-
�cient to enable this function. This means that
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VWM contributes to the solution of the match-
ing problem of short-term recognition across vi-
sual processing episodes. That is, VWM seems to
restrict the amount of information that has to be
considered by the mechanisms performing the ac-
tual matching, the comparison of objects from the
current and from recently past episodes. Further-
more, the �ndings indicate that VWM not only un-
derlies the function of object recognition but also
plays a crucial role for short-term recognition. This
also implies that object recognition and short-term
recognition share a common limit: Information
about only a small number of objects can be en-
coded into capacity-limited VWM per visual pro-
cessing episode to accomplish the two functions of
visual cognition.

4.2 Priority in visual working memory im-
pacts on distinct components of short-term
recognition

As we have just seen, VWM seems to play an im-
portant role in both, object recognition and short-
term recognition. As described before (see section
2.1), encoding into VWM is mediated by mecha-
nisms of visual attention, selecting among all avail-
able object those that are important to the cur-
rent task, thus prioritizing the objects for recogni-
tion (e.g., Bundesen, 1990; Duncan, 2006; Schnei-
der, 1995; for an overview, see Poth & Schneider,
2013). There has been extensive research on such
a prioritization of object information up to the time
of VWM encoding (as reviewed by Bundesen et al.,
2015; Duncan, 2006). However, a �exible use and
application of visual information in task-driven be-
havior, requires that processing priorities can also
be changed after VWM encoding. This may be es-
pecially important for accommodating and prepar-
ing for the requirements of upcoming visual pro-
cessing episodes, such as an impending short-term
recognition.

Prioritization of objects within VWM can
be studied by means of the so-calledretro-
cuing paradigm(Grif�n & Nobre, 2003, see also
Landman, Spekreijse, & Lamme, 2003). In this

experimental paradigm, participants memorize a
set of visual objects over a retention interval, af-
ter which a probe object is shown. Participants
then indicate whether the probe matches one of
the objects that had been shown before. Short-
term recognition is then assessed as performance
in the probe recognition task (cf. Study 4, Poth
& Schneider, 2016c). Importantly, aretro-cue(i.e.
a “retrodictive cue”) is presented after the display
of objects but before the probe. In the variants of
the paradigm that are of current interest, the retro-
cue is either valid or neutral (e.g., Astle, Sum-
mer�eld, Grif�n, & Nobre, 2012; Kuo, Stokes, &
Nobre, 2012). Valid retro-cues predict which of
the memorized objects is going to be relevant for
the upcoming comparison with the probe. Neutral
retro-cues do not provide any information about the
comparison. The main �nding of this paradigm is
that probe recognition performance is improved by
valid as compared to neutral retro-cues. Short-term
recognition thus bene�ts from the valid retro-cues.

Fueling a constant debate, retro-cues may im-
pact on a number of different mechanisms to sup-
port performance in an upcoming short-term recog-
nition task (for a review, see Souza & Oberauer,
2016). Most accounts assume that retro-cues af-
fect memory-retention, by interacting with repre-
sentations of the memorized objects in VWM (e.g.,
Kuo, Yeh, Chen, & D'Esposito, 2011; Lepsien,
Thornton, & Nobre, 2011; Matsukura, Luck, &
Vecera, 2007; Murray, Nobre, Clark, Cravo, &
Stokes, 2013; Nobre, Grif�n, & Rao, 2008, for
a more extensive discussion, see Poth & Schnei-
der, 2016d, submitted). In contrast to this view,
one may, however, also hypothesize that retro-cues
exert their effects by interacting with processing
of the probe, improving its utility for short-term
recognition. Moreover, the two hypotheses are not
mutually exclusive, retro-cues could well in�uence
memory-retention and processing of the probe.

In Study 5 (Poth & Schneider, 2016d, submit-
ted), we investigated these hypotheses in an exper-
iment modifying the retro-cuing paradigm (and in
a near-exact replication experiment). Participants
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viewed two objects (colored squares) and memo-
rized them over a retention interval. Afterwards, a
probe was shown that either did or did not match
one of the preceding objects. Short-term recogni-
tion was assessed as participants' performance in
indicating if the probe did or did not match a pre-
ceding object. A retro-cue was presented in be-
tween the retention interval and the probe. The
retro-cue was either valid or neutral. A valid retro-
cue pointed at the location of the one of the pre-
ceding objects that was going to be relevant for
the upcoming comparison with the probe. Specif-
ically, if the probe matched a preceding object, it
was always the one highlighted by the retro-cue.
A neutral retro-cue did not contain such location
information. Critically, the presentation duration
of the probe was varied and it was terminated by
a mask. This allowed us to assess performance
in the short-term recognition task as a function of
the presentation duration of the probe. We �t this
data with an exponential model (Bundesen, 1990;
Wickelgren, 1977) that disentangled two compo-
nents of performance (among an additional compo-
nent that is not relevant here, see Poth & Schneider,
2016d, submitted). The �rst component is the level
of asymptotic performance which is reached when
the probe is shown for a relatively long duration.
Based on a number of �ndings, we can assume
that perceptual processing of the probe improves
with increasing presentation duration (e.g., Bunde-
sen & Harms, 1999; Petersen & Andersen, 2012;
Shibuya & Bundesen, 1988). At the asymptote,
however, performance stops to increase with in-
creasing presentation duration of the probe. At this
point, perceptual processing of the probe should
be over. Therefore, variations of the asymptote
should not re�ect processing of the probe but mea-
sure the performance in retaining the objects in
VWM. The second component is the rate at which
performance increases with increasing presentation
duration of the probe (toward asymptotic perfor-
mance). This is a well-established measure of pro-
cessing speed (Bundesen, 1990; Wickelgren, 1977;
see also Study 3, Poth & Schneider, 2016b, sub-
mitted). Here, it should represent the speed with

which the probe is processed for comparison with
the objects in VWM in order to accomplish short-
term recognition of the probe.

The results of Study 5 (Poth & Schnei-
der, 2016d, submitted) showed that both of the
two components were affected by the retro-cues.
Valid retro-cues improved memory-retention, as
assessed by the asymptotic level of performance.
This is well in line with several accounts from the
literature, assuming that retro-cues modulate object
representations in VWM (Kuo et al., 2011; Lep-
sien et al., 2011; Matsukura et al., 2007; Murray
et al., 2013; Nobre et al., 2008). However, valid
retro-cues also accelerated processing of the probe,
which is a �nding that calls for an extension of cur-
rent accounts. One interpretation of this effect is
that briefer presentations of the probe caused it to
be represented with low quality. The valid retro-
cue may have compensated for this low quality. For
instance the valid retro-cue could have strength-
ened of the cued object in VWM (Kuo et al., 2011;
Lepsien et al., 2011; Nobre et al., 2008), so that
the comparison could still be conducted. Shorter
presentation durations of the probe (after exceed-
ing a minimum presentation duration, see Poth &
Schneider, 2016d, submitted) would still be suf�-
cient for short-term recognition. Thus, function-
ally, this would be equivalent to an increase in the
processing speed of the probe in the context of this
task.

Alternatively, valid retro-cues may have accel-
erated processing of the probe by engaging a mon-
itoring mechanism (see Poth & Schneider, 2016d,
submitted, for further discussion). That is, once
the valid retro-cue indicated which of the objects
in VWM was going to be relevant for the upcom-
ing short-term recognition task, the display could
have been monitored for the appearance of the fea-
tures of the cued object. This could have increased
visual processing speed by means of the pigeon-
holing mechanism of TVA (Bundesen, 1990; see
section 2.1). The perceptual decision bias for cate-
gorizing the upcoming probe as having the features
of the cued object could have been set high. This
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would have increased processing of these catego-
rizations. However, such a monitoring by pigeon-
holing only works on trials on which the probe in-
deed matched the cued object. This problem may
be solved by a setting a deadline for processing the
probe. If the probe was not categorized as having
the features of the cued object until this deadline,
it would be decided that the probe did not match
the cued object. Since valid retro-cues speeded up
processing of the probe, the deadline could be set
shorter compared with neutral retro-cues.

Together, the �ndings of Study 5 (Poth &
Schneider, 2016d, submitted) demonstrate that pri-
oritizing information in VWM can prepare the
use of this information in an upcoming short-term
recognition task. This seems to involve both, en-
hanced memory-retention in VWM and acceler-
ated processing of the probe on which short-term
recognition has to be performed. This suggests
that priorities in VWM contribute to the solution

of the matching problem of short-term recogni-
tion. They in�uence the retention of informa-
tion from recently past episodes and the acquisi-
tion of new information in upcoming episodes. In
this way, priorities in VWM may determine which
and how much information from different process-
ing episodes is taken into account by the mecha-
nisms performing the actual matching of objects
for short-term recognition.

The �ndings may add an interesting avenue
to short-term recognition across visual processing
episodes. They may suggest that task-driven in-
formation processing continues after information
has entered VWM and that it takes new informa-
tion (such as from a retro-cue) into account. Im-
portantly, this may then prepare processing in the
next visual processing episode, at least when this
episode belongs to the same short-term recognition
task.
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Chapter 5

Episodic visual cognition: Discussion and outlook

The central question of this dissertation was
how the two functions of visual cognition, ob-
ject recognition and short-term recognition, are
ful�lled across visual processing episodes. More
speci�cally, the dissertation asked how the mecha-
nisms underlying the two functions solve particular
problems arising from the dissection of visual pro-
cessing into episodes.

5.1 Mechanisms of episodic visual cognition
for object and short-term recognition

It was argued that visual processing episodes pose
two contrasting problems for the two functions
of visual cognition. For object recognition, vi-
sual processing episodes lead to the problem of
selective integration. That is, it must be decided
whether object representations from two succes-
sive episodes should be integrated into a com-
mon or separated into distinct representations. In-
tegration enables a cumulative processing of ex-
ternal objects across visual processing episodes
(see e.g., Demeyer et al., 2009; Kahneman et al.,
1992; Rayner et al., 1980). This is necessary for
object recognition in situations where processing
episodes are shorter than the processing time re-
quired for object recognition (see section 1.5). In
addition, integration may support object recogni-
tion by preventing a competition for object recog-
nition that would arise between two separate rep-
resentations (Schneider, 2013). Separation is nec-
essary to notice and discriminate changes of ob-
jects across episodes (cf. Deubel et al., 1996, 2002;
Weiß et al., 2015). Such change perception is also

required in many situations of visually-guided be-
havior (e.g., Rensink, 2002).

In contrast to object recognition, for short-term
recognition visual processing episodes lead to a
problem of matching. While the selective inte-
gration problem refers to object recognition across
one and the next episode, the matching problem of
short-term recognition requires links between the
current and (potentially) multiple episodes of the
recent past (and irrespective of object recognition
in the sense of categorization).

In our studies, we investigated components of
the mechanisms underlying object and short-term
recognition that may play key roles in solving the
problems of visual processing episodes.

Our �rst three studies focused on object recog-
nition across processing episodes of eye �xations
separated by saccadic eye movements, because �x-
ations are a type of episode ubiquitous in human vi-
sion (e.g., Gegenfurtner, 2016; Rolfs, 2015; Schütz
et al., 2011).

In Study 1 (Poth et al., 2015) and Study 2
(Poth & Schneider, 2016a), we investigated a
mechanism testing for object correspondence (“ob-
ject continuity”) across visual processing episodes,
which has been put forward in TRAM theory
(Schneider, 2013). Our �ndings indicated that such
a test for correspondence between objects across
saccades impacts on the perception of transsac-
cadic object displacements as well as on postsac-
cadic object recognition. That is, breaking ob-
ject correspondence across the saccade improved
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discrimination of transsaccadic object displace-
ments but impaired postsaccadic object recogni-
tion. Moreover, we found that object recogni-
tion was impaired when object correspondence was
broken by changing spatiotemporal object features
across the saccade (by brie�y blanking the ob-
ject), but also by changing multiple surface fea-
tures (contrast-polarity and associated luminance,
color-and-luminance, and color alone). Based on
TRAM (Schneider, 2013), we interpreted the �nd-
ings as evidence that breaking object correspon-
dence across the saccade causes presaccadic and
postsaccadic representations of an external object
to be kept as separate entities. This should al-
low comparisons between them, explaining the im-
proved displacement perception. However, the
separate representations should also compete for
visual processing resources necessary for object
recognition, explaining why object recognition was
impaired. Conversely, establishing object corre-
spondence across the saccade should lead to the in-
tegration of the presaccadic and postsaccadic ob-
ject representations. Besides (or in addition to)
preventing a competition for visual processing re-
sources, this could improve object recognition by
enabling the cumulative processing of the object
across the saccade. Thus, taken together, the object
correspondence mechanism proposed by TRAM
theory may solve the selective integration problem
of object recognition across saccades and thereby
impact on object recognition in several ways.

An object correspondence mechanism may link
successive episodes for visual processing of a sin-
gle external object. For different external objects,
however, visual processing episodes create another
problem. Namely, limited visual processing re-
sources (e.g., neurons; Bundesen et al., 2005; Desi-
mone & Duncan, 1995) that are required for object
recognition must be allocated intelligently to dif-
ferent objects in successive processing episodes.

In Study 3 (Poth & Schneider, 2016b, submit-
ted), we examined how visual processing resources
are distributed across different objects of succes-
sive episodes of eye �xations. Here, we found that

objects compete for visual processing resources
across the saccade separating the �xations, but only
if they are task-relevant. Currently relevant objects
of one �xation seem to cut the resources for object
recognition in the next �xation, which becomes
manifest in slower visual processing. These �nd-
ings offer support for a key prediction of TRAM
theory (Schneider, 2013), namely that the task-
relevance of objects determines the distribution of
visual processing resources not only within a �x-
ation (as in classic attention theories Bundesen,
1990; Duncan & Humphreys, 1989; Wolfe, 1994)
but also across intervening saccadic eye move-
ments. In sum, this suggests that the distribution of
processing resources for object recognition within
and across processing episodes is likewise con-
trolled by the current task. In this fashion, process-
ing of different objects within and across episodes
is reconciled in accordance with the task, which in
turn implies that the task (or task-step) unites suc-
cessive episodes under one roof of common pro-
cessing goals (cf. Duncan, 2013).

Within a visual processing episode, process-
ing for object recognition is assumed to end with
the encoding of objects into VWM (e.g., Bun-
desen, 1990; Bundesen et al., 2005). Once en-
coded into VWM, objects are available for being
reported (e.g., Bundesen, 1990; Luck & Vogel,
2013; Eriksson et al., 2015) or used for controlling
goal-directed action (e.g., Schneider, 2013).

In Study 4 (Poth & Schneider, 2016c), we
asked whether such an encoding of object infor-
mation into VWM is also required beyond the cur-
rent episode. More speci�cally, we asked if ob-
ject information must have been processed up to
the level of VWM in the episode it was acquired,
in order to be available for short-term recognition
in later episodes. Our results seem to support this
notion. We found that objects that supposedly did
not reach VWM (i.e. had not been reported or
were unlikely to be reported) were not available
for performing a subsequent short-term recognition
task. Therefore, encoding object information into
VWM seems to be a processing step that prepares
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and is necessary for short-term recognition in later
processing episodes. In this manner, VWM con-
tributes to the solution of the matching problem
of short-term recognition across visual processing
episodes. That is, VWM seems to limit the amount
of information that has to be considered by the
mechanisms performing the actual matching, the
comparison of objects from the current and from
recently past episodes.

Study 5 (Poth & Schneider, 2016d, submitted)
continued the investigation of VWM as a mecha-
nism underlying short-term recognition across pro-
cessing episodes. Here, we examined how pri-
oritizing objects within VWM can prepare for
short-term recognition in an upcoming processing
episode. In particular, we used a paradigm that al-
lowed to disentangle two components of short-term
recognition performance. The �rst component is
memory-retention in VWM. The second one is the
processing speed of a probe object that had to be
matched against objects held in VWM, in order to
perform the short-term recognition. Prioritization
in VWM was studied by retro-cues, which did or
did not indicate the object in VWM that was go-
ing to be relevant for short-term recognition. We
found both of the two components affected by the
prioritization. Prioritizing an object in VWM im-
proved its memory-retention, but also accelerated
the processing of a probe object in the upcoming
short-term recognition task. This suggests that the
matching problem of short-term recognition across
visual processing episodes is solved in a dynamic
and task-driven fashion. That is, current process-
ing priorities contribute to the problem solution in
two ways. First, by in�uencing the retention of in-
formation of recently past episodes, and second,
by guiding the acquisition of new information in
upcoming episodes. In this fashion, the priorities
determine which and how much information from
different processing episodes is used by the mech-
anisms performing the actual matching for short-
term recognition.

Taken together, the �ndings of the discussed
studies reveal speci�c mechanisms that contribute

to object recognition and short-term recognition
across visual processing episodes. The mechanism
of object correspondence seems to link one pro-
cessing episode to the next for encoding into VWM
and thus for object recognition. The mechanism
of VWM seems implied in both, object recogni-
tion in the current episode, and in the preparation
of short-term recognition in later episodes. Mech-
anisms that set priorities within VWM seem to im-
pact on the next processing episodes by in�uencing
memory-retention as well as the acquisition of new
information in service of short-term recognition.

However, by introducing these mechanisms in
the context of visual processing episodes, the stud-
ies also raise a number of new questions for future
research.

5.2 Open questions of episodic visual cognition

As explained in the Introduction (see section 1.4),
visual processing episodes arise due to a number
of different factors (Schneider, 2013). We here ex-
amined the mechanisms of object and short-term
recognition across different types of visual pro-
cessing episodes.

Our �rst three studies (Poth et al., 2015; Poth
& Schneider, 2016a, 2016b, submitted) focused on
eye �xations as episodes that must be overcome for
object recognition. Fixations are separated by sac-
cadic eye movements, which might make them spe-
cial in the sense that information about their onset-
time and direction is available in advance. For in-
stance, the saccade-eliciting signals can be made
available to brain centers for visual processing by
corollary discharges (see e.g., Wurtz, 2008; Wurtz
et al., 2011), and this information may contribute
to the linking of successive �xations (e.g., by spec-
ifying a time-window in which the test for transsac-
cadic object correspondence, Poth et al., 2015;
Poth & Schneider, 2016a, should be conducted).
Such predictive information would be missing for
visual processing episodes triggered by the appear-
ance or disappearance of objects in the visual �eld
(for a discussion, see Schneider, 2013), or by the
occlusion or movement of objects (Hollingworth &
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Franconeri, 2009; Kahneman et al., 1992).

In addition, a different kind of predictive infor-
mation about upcoming processing episodes may
be available when the episode is embedded in a
known task, such as in the presented studies (cf.
Duncan, 2013). For these reasons, an interesting
avenue for future research may be to investigate
how the factors eliciting and predicting visual pro-
cessing episodes impact on the solutions put for-
ward by mechanisms of visual cognition to over-
come them.

5.3 Is episodicness a principle of visual cogni-
tion?

Up to this point, we have considered visual pro-
cessing episodes as a problem that must be over-
come for visual cognition, speci�cally for its func-
tions of object and short-term recognition. How-
ever, the �nal part of this dissertation synopsis
aims to take a different view and speculate about
the functional value that processing episodes might
have for visual cognition.

The object correspondence mechanism pro-
posed by TRAM theory (Schneider, 2013) presents
a solution to the selective integration problem
of object recognition across visual processing
episodes. At the beginning of each visual process-
ing episode, the mechanism tests whether current
external objects correspond to objects from the pre-
vious episode (that are now in VWM). Depend-
ing on the outcome of this test, information about
an external object is either integrated or separated
across the visual processing episodes.

Integrating information about an object over
time into one representation may be a strategy for
fast information processing, because it can proceed
cumulatively (e.g., Demeyer et al., 2009; Kahne-
man et al., 1992). It should also prevent attentional
competition for object recognition, which arose if
separate representations were formed (Schneider,
2013). Integration may also provide the most
robust object representations (e.g., by capitaliz-
ing on potential information redundancy, as sup-
posed for information from different senses, Ernst

& Bülthoff, 2004). It may also allow a sparse
and computationally ef�cient processing (cf. Ol-
shausen & Field, 2004), because only one instead
of two (or more) representations has to be dealt
with. However, if information about two actually
different states of an object or two different objects
is integrated, then the differences would be missed.
This may be the case because there are no two rep-
resentations that can be compared to detect the dif-
ference (as discussed for the perception of visual
stability, see section 3.1).

Whether it is more important to have robust and
sparse object representations or to be able to de-
tect and discriminate object changes over time de-
pends on the current task and environmental cir-
cumstances. Critically, whether the one or the
other requirement prevails may change quickly.
This thought may lead to the new view that hav-
ing visual processing episodes can also support vi-
sual cognition and not only challenge it. That is,
dissecting visual processing into distinct episodes
offers temporally regular and controllable check-
points at which it can be decided whether ob-
ject information should be integrated or separated.
Therefore, having episodes rather than a continu-
ous stream of visual processing may re�ect a com-
promise between the representational robustness
provided by integration and the temporal resolution
for detecting object changes provided by separa-
tion.

In addition to such a compromise between ro-
bustness and temporal resolution of representa-
tions, visual processing episodes may enhance pro-
cessing by limiting processing demands. Speci�-
cally, they may restrict the amount of information
that is carried forward in time. For instance, Study
4 (Poth & Schneider, 2016c) suggested that initial
processing steps that activate for all object in the
visual �eld speci�c visual features and categories
in long-term memory are not suf�cient for an ob-
ject's later short-term recognition. Instead, pro-
cessing the object up to the level of VWM seems
to be required. This might hint at that the linger-
ing activation of visual features and categories is
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not sustained over time (and hence cannot be used
for short-term recognition). As a consequence,
there may be less interference between features and
lower processing demands at the initial steps of
processing (e.g., the formation of proto-objects that
is proposed by TRAM theory, Schneider, 2013, see
also Wischnewski et al., 2009, 2010). Dissecting
processing into episodes and clearing initial stages
of processing at their beginning may be more ef-
�cient than resolving con�icts of current and past
feature activations. This should support object as
well as short-term recognition. In addition, this
proposal is also in line with the older idea that
carrying only a limited amount of information for-
ward in time is bene�cial for action control (as in
the selection-for-action view of attention, Allport,
1987; see also Neumann, 1987). That is, the pa-
rameters for controlling action may be obtained

faster (cf. Neumann, 1987), because they can be
extracted from pre-restricted (e.g., in VWM) infor-
mation instead of all available information (e.g., at
the retina).

To conclude, visual processing episodes can be
regarded from two points of view. On the one
hand, there are a number of external factors and
task-requirements that result in visual processing
episodes (Schneider, 2013) and that must be ad-
dressed by mechanisms of visual cognition. Other-
wise functions such as object and short-term recog-
nition were not realizable. On the other hand, how-
ever, “episodicness” may also constitute a princi-
ple of processing that �nds expression in differ-
ent mechanisms, and reconciles representational
robustness, temporal resolution, and potential in-
terference of information.
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Visual perception is based on information processing during periods of eye
Þxations that are interrupted by fast saccadic eye movements. The ability to
sample and relate information on task-relevant objects across Þxations implies
that correspondence between presaccadic and postsaccadic objects is established.
Postsaccadic object information usually updates and overwrites information on the
corresponding presaccadic object. The presaccadic object representation is then lost.
In contrast, the presaccadic object is conserved when object correspondence is
broken. This helps transsaccadic memory but it may impose attentional costs on
object recognition. Therefore, we investigated how breaking object correspondence
across the saccade affects postsaccadic object recognition. In Experiment 1, object
correspondence was broken by a brief postsaccadic blank screen. Observers made a
saccade to a peripheral object which was displaced during the saccade. This object
reappeared either immediately after the saccade or after the blank screen. Within the
postsaccadic object, a letter was brießy presented (terminated by a mask). Observers
reported displacement direction and letter identity in different blocks. Breaking object
correspondence by blanking improved displacement identiÞcation but deteriorated
postsaccadic letter recognition. In Experiment 2, object correspondence was broken
by changing the objectÕs contrast-polarity. There were no object displacements
and observers only reported letter identity. Again, breaking object correspondence
deteriorated postsaccadic letter recognition. These Þndings identify transsaccadic
object correspondence as a key determinant of object recognition across the saccade.
This is in line with the recent hypothesis that breaking object correspondence results in
separate representations of presaccadic and postsaccadic objects which then compete
for limited attentional processing resources (Schneider, 2013). Postsaccadic object
recognition is then deteriorated because less resources are available for processing
postsaccadic objects.

Keywords: saccade, visual stability, attention, object correspondence, transsaccadic memory

INTRODUCTION

Accurate vision is spatially and temporally limited. Spatially, it is limited to the fovea, the center
part of the eye•s retina which provides the highest visual resolution (e.g.,Findlay and Gilchrist,
2003). The low resolution in the retinal periphery places a fundamental constraint on the visual
exploration of the world: To view a potentially interesting object in the periphery with high acuity,
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one must bring it onto the fovea by making a fast saccadic
eye movement. Temporally, online visual processing is limited
to “xations, discrete episodes in which the eyes stand relatively
still. Every saccade interrupts useful visual input and changes the
retinal position and resolution of external objects. Nevertheless,
humans perceive the visual world as stable across saccades (for
reviews, seeBridgeman et al., 1994; Wurtz, 2008). Moreover,
coping with most natural tasks demonstrates that humans
sample and relate information on task-relevant objects across
eye movements (Land and Tatler, 2009; Schneider, 2013). This
implies that the visual system assessesobject correspondence
across “xations (Hollingworth et al., 2008; also called object
continuity, Schneider, 2013), it assesses whether input from
postsaccadic and presaccadic objects (apparently) comes from the
same external object (Kahneman et al., 1992; Irwin and Andrews,
1996). Object correspondence is a prerequisite for updating
presaccadic low-quality information on a peripheral object with
postsaccadic foveal information on the same object (Henderson
and Anes, 1994; Demeyer et al., 2009; Herwig and Schneider,
2014).

Transsaccadic object correspondence and updating are
considered elementary for building a task-relevant representation
of the visual environment, as they tie together the samples
obtained from successive “xations (Schneider, 2013; Ganmor
et al., 2015; Herwig, 2015a; Wolf and Schütz, 2015; Wurtz, 2015).
However, it appears that signaling of object correspondence and
updating can also strikingly impair perception. An object can be
displaced during a saccade for up to a third of saccade amplitude
without this being noticeable (Bridgeman et al., 1975). This form
of transsaccadic change-blindness suggests that the postsaccadic
object location updates and overwrites the presaccadic object
location (Deubel et al., 1996). As a consequence, displacement
perception su�ers because only the postsaccadic object location
remains available (Deubel et al., 1996).

How does the visual system assess object correspondence?
Object correspondence is signaled if a test of the presaccadic
object against the object after the saccade results in a match
(Deubel et al., 1996; Tas et al., 2012). This notion is supported by
a number of studies using theblanking paradigm, which breaks
object correspondence by blanking a saccade target object during
the saccade and delaying its reappearance until shortly after
eye-landing (Deubel and Schneider, 1994; Deubel et al., 1996,
1998, 2002; the discussion in terms of object correspondence
comes fromTas et al., 2012). Blanking improves accuracy in
reporting transsaccadic displacements of the saccade target object
considerably (Deubel and Schneider, 1994;Deubel et al., 1996). In
addition, blanking improves accuracy in reporting transsaccadic
changes of visual object features besides location (such as spatial
frequency,Weiß et al., 2015; see, alsoDeubel et al., 2002).
Together, these results indicate that blanking prevents updating
and overwriting of the presaccadic object with the postsaccadic
one. Both objects are compared and this allows to identify
displacements (Deubel and Schneider, 1994; Deubel et al., 1996,
2002) and changes of other visual features (Weiß et al., 2015).
Brie”y occluding the postsaccadic object (Deubel et al., 2002) and
changing its contrast-polarity (Tas et al., 2012) helps reporting
displacements in a similar way as blanking. This suggests that

breaking object correspondence in general prevents transsaccadic
updating. Instead of one updated object representation, separate
representations of the presaccadic and postsaccadic object should
emerge (Deubel et al., 1996; Tas et al., 2012; Schneider, 2013).

Critically, the bene“cial e�ects of breaking object
correspondence for perceiving transsaccadic displacements
and feature changes may come at costs in terms of postsaccadic
object recognition. This hypothesis is based on the theory of
•Task-dRiven visual Attention and working MemoryŽ (TRAM,
Schneider, 2013). TRAM follows the biased competition
approach to attention (Desimone and Duncan, 1995) and the
•Theory of Visual AttentionŽ (Bundesen, 1990), assuming that
visual objects compete for object recognition. Speci“cally, an
object is recognized and becomes accessible (e.g., for report) if
it enters capacity-limited visual working memory. An object can
enter visual working memory if enough attentional processing
resources (e.g., neurons,Bundesen et al., 2005) have been
allocated to it. Object recognition is competitive because
these processing resources are limited and have to be split
among objects (Bundesen, 1990; Desimone and Duncan, 1995;
Bundesen et al., 2005). Thus, the more objects take part in
the competition, the less attentional processing resources are
available for processing each individual object in service of object
recognition. A central idea of TRAM is that the competition
for object recognition is organized in discrete competition
episodes of which eye “xations are a prominent case. Two kinds
of objects participate in the competition. First, objects from the
current episode, including those objects that have updated their
corresponding counterparts from the preceding episode. Second,
objects from the preceding episode for which no corresponding
object was found in the current episode. Therefore, an object
that has not been updated due to broken object correspondence
introduces an additional competitor into the current competition
episode. As a consequence, attentional processing resources must
be split among more objects. This then cuts the resources for
processing each individual object and thereby imposes costs on
object recognition.

The present study aimed at testing the hypothesis that
breaking object correspondence across the saccade deteriorates
postsaccadic object recognition. Two experiments each
used a di�erent manipulation to break transsaccadic object
correspondence and examined its e�ects on performance in a
postsaccadic letter recognition task.

EXPERIMENT 1

In Experiment 1, blanking was used to break transsaccadic
object correspondence (Deubel et al., 1996; cf. Tas et al., 2012).
Observers made a saccade to a peripheral object which was
displaced during the saccade. The postsaccadic object appeared
either immediately after the saccade (no-blank condition) or
after a brief blank (blank condition). A single letter was
presented simultaneously to andwithin the postsaccadic object
and was terminated by a pattern mask. Both, displacement
identi“cation and postsaccadic object recognition performance
were assessed. Observers reported displacement direction and
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FIGURE 1 | Paradigm of Experiment 1. Observers made a saccade to an elliptic object containing an irrelevant special character. The object was displaced during
the saccade. The postsaccadic object contained a letter. It was shown for 80 ms (pattern-masked), either immediately after the saccade (no-blank condition) or after
a 100 ms blank (blank condition). Displacement direction was reported in one report block, letter identity in the other. Ellipses of broken lines provide reference
positions (they were not shown on the screen): A black ellipse of broken lines indicates the location of a previous object, a green ellipse of broken lines indicates the
location of an upcoming object.

letter identity in two di�erent blocks of trials. If breaking object
correspondence by blanking imposes costs on object recognition,
then performance in reporting the postsaccadic letter should
su�er in the blank condition compared to the no-blank condition.
This predicted deterioration in object recognition is diametrical
to the expected performance improvement for displacement
identi“cation (Deubel and Schneider, 1994; Deubel et al., 1996,
2002).

Method
Observers
Sixteen observers (eight males, eight females) between 20
and 32 years (Mdn = 27 years) were paid to participate in
Experiment 1. All had normal or corrected-to-normal vision
(contact lenses) and gave written informed consent before the
experiment. The type of experiment was approved by Bielefeld
University•s ethics committee.

Apparatus and Stimuli
The experiment took place in a dimly lit room. Eye behavior
was recorded by a video-based tower-mounted eye-tracker
(Eyelink 1000, SR Research, Mississauga, ON, Canada) which
was calibrated using a nine-point grid procedure and sampled
observers• right eyes at 1000 Hz. Observers• heads were stabilized
by forehead and chin rests, 71 cm from the 19Ž-CRT-screen
(G90FB, ViewSonic, Brea, CA, USA) which ran with a resolution
of 1024× 768 pixels (at physical dimensions of 36 cm× 27 cm)
and a refresh rate of 100 Hz.

The experiment was controlled by Experiment Builder
(v1.10.1025). Stimulus luminance was measured using a
MAVOLUX-digital luminance meter (Gossen, Nuremberg,
Germany). Stimuli were black (< 1 cd × mŠ 2) special
characters (§$&}/[µ � ) and letters (ABDGHJKLMNPRSTVX;

0.48� × 0.56� ) in Arial font and a black plus-character
(0.28� × 0.28� ) was used as “xation cross. The saccade target
object was a gray ellipse (29 cd× mŠ 2; 0.7� × 1.26� ). The
white background had a luminance of 89 cd× mŠ 2. Four
di�erent pattern masks were used, which consisted of rectangles
(1.01� × 1.5� ) “lled with black scrambled lines of di�erent
widths.

Design and Procedure
Figure 1 illustrates the experimental paradigm. Each trial began
with “xation of a central “xation cross (at least 490 ms continuous
“xation plus a variable delay between 0 and 500 ms; trials
were aborted and repeated if the “xation cross was not “xated).
Afterward, the “xation cross wasextinguished and an ellipse was
shown as saccade target object, 6� or 8� from screen center in
horizontal direction. This ellipse contained an irrelevant special
character and was presented until the observer made a saccade
to it (detected using velocity and acceleration thresholds of
30� × sŠ 1 and 8000� × sŠ 2). In the no-blank condition, the now
empty ellipse was displaced for 1� during the saccade (with the
next screen refresh after saccade detection). Initial position of the
ellipse (6� or 8� , left or right to screen center) and displacement
direction (left or right) were randomized across trials with equal
numbers of occurrence in each condition. At the next screen
refresh after eye-landing, a letter was shown within the ellipse for
80 ms and terminated by a pattern mask lasting for 300 ms. The
letter was randomly drawn from the set of used letters (each letter
occurred equally often in each blanking condition and report
block; special characters were drawn analogously). The mask was
drawn randomly from the set of used masks. After 500 ms, a
response screen prompted observers to report letter identity or
displacement direction using the keyboard (unspeeded forced
choice; letter-keys or •F1Ž and •F12Ž, respectively). The next
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FIGURE 2 | Performance in Experiment 1. Letter report performance(left) and displacement report performance(right) . Error-bars indicate 95% conÞdence
intervals for within-subjects designs (Morey, 2008). Broken lines indicate chance level.

trial started after the report was made. The blank condition
was identical to the no-blank condition except that an empty
screen was shown during the saccade and lasted for another
100 ms from the screen refresh after the eye-landing. Trials of
the two blanking conditions occurred in random order within
report blocks. All observers performed two report blocks (order
counterbalanced across sample) of 152 trials, the half of which
belonging to the no-blank and the other to the blank condition. In
these blocks, they either only reported displacement direction or
only letter identity. Observers performed 16 training trials before
each report block.

Results
Trials were excluded from the analyses, if no saccade was made
until 400 ms after onset of the saccade target object, saccade
latency was below 100 ms (anticipatory saccades), or the saccade
target object was missed by more than 2.5� . A total of 4.3% of the
trials was discarded. Letter and displacement reports were each
pooled across trials on which saccade target objects appeared 6�

or 8� to the left or right of “xation (Deubel et al., 1996). They
were also pooled across orders of displacement and letter report
blocks because mixed analyses of variances (ANOVAs) showed
that neither order nor the interaction of order and blanking
conditions a�ected letter or displacement report performance, all
Fs< 3.167, allps> 0.096.

Accuracy was assessed as the proportion of correct responses.
A paired-samplest-test with dz (Cohen, 1988) as e�ect size
showed that letter reports were signi“cantly more accurate in
the no-blank (M = 0.89,SD = 0.11) compared to the blank
condition (M = 0.75,SD = 0.17), t(15) = 4.671,p < 0.001,
dz = 1.17, Bayes Factor (BF) = 108.271, (Figure 2, left; Bayes
Factors were computed using the BayesFactor (0.9.10-2) package
for R (3.0.3), cf.Rouder et al., 2009, values greater one support
the alternative and values smaller one the null hypothesis). In
contrast, displacement reports were signi“cantly less accurate
in the no-blank (M = 0.64, SD = 0.12) than in the blank

FIGURE 3 | Effects of blanking on letter and displacement reports for
individual observers. Differences between the no-blank and blank condition
for both, displacement report (x-axis) and letter report (y-axis). Each point
represents the value of one observer. The gray quadrant indicates the region
in which points should fall if the effect of blanking on displacement report
performance is in the opposite direction of the effect of blanking on letter
report performance.

condition (M = 0.75,SD = 0.16),t(15) = Š 5.238,p < 0.001,
dz = Š 1.31,BF = 284.724, (Figure 2, right). As evident from
Figure 3, the e�ects of blanking on letter report performance and
on displacement report performance were in opposite direction
for most observers.

Not surprisingly, observers• mean saccade latencies (i.e., the
time between the onset of the saccade target object and saccade
detection) did not di�er signi“cantly between the blanking
conditions, both in the letter report block (no-blank:M = 132 ms,
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SD= 11 ms, blank:M = 133 ms,SD= 10 ms),t(15) = Š 1.756,
p = 0.100,dz = Š 0.44,BF = 0.893 and in the displacement
report block (no-blank:M = 166 ms,SD = 21 ms, blank:
M = 168,SD= 22 ms),t(15) = Š 0.858,p = 0.404,dz = Š 0.21,
BF = 0.352. The blanking conditions did not signi“cantly di�er
in deviations of gaze positions from the postsaccadic object in
the eye tracker•s “rst sample after the onset of the postsaccadic
object (observers• mean distance between gaze position and
postsaccadic object), neither in the letter report block (no-blank:
M = 1.14� , SD = 0.13� , blank: M = 1.18� , SD = 0.13� ),
t(15) = Š 1.730,p = 0.104,dz = Š 0.43,BF = 0.864, nor in the
displacement report block (no-blank:M = 1.16� , SD = 0.14� ,
blank: M = 1.18� , SD = 0.14� ), t(15) = Š 0.545,p = 0.594,
dz = Š 0.14,BF = 0.291. Likewise, the blanking conditions did
not signi“cantly di�er in variability of gaze positions in these
samples of the eye tracker (observers• standard deviation of
distances between gaze position and postsaccadic object), neither
in the letter report block (no-blank:M = 0.45� , SD = 0.09� ,
blank: M = 0.47� , SD = 0.08� ), t(15) = Š 1.397,p = 0.183,
dz = Š 0.35,BF = 0.579, nor in the displacement report block
(no-blank:M = 0.53� ,SD= 0.11� , blank:M = 0.54� ,SD= 0.10� ),
t(15)= Š 0.437,p = 0.669,dz = Š 0.11,BF= 0.278.

Discussion
Experiment 1 provides “rst support for the hypothesis that
breaking object correspondence across the saccade impairs
postsaccadic object recognition (Schneider, 2013). Recognition
of a postsaccadic letter was deteriorated in the blank condition,
where object correspondence was broken, compared to the
no-blank condition, where it was not broken. In stark
contrast, breaking object correspondence by blanking was
bene“cial for identifying transsaccadic object displacements.
This bene“cial e�ect of blanking on perception of transsaccadic
object displacements replicates previous work and shows that
the present blanking manipulation was e�ective (Deubel and
Schneider, 1994; Deubel et al., 1996, 2002).

It is well-established that blanking breaks transsaccadic object
correspondence (Tas et al., 2012) and prevents the updating
and overwriting of presaccadic object information (Deubel
and Schneider, 1994; Deubel et al., 1996, 2002; Weiß et al.,
2015). However, some issues must be considered before we can
conclude that the present deterioration in postsaccadic letter
recognition was in fact due to broken object correspondence.
First, the deterioration might have been due to the di�erent
temporal intervals between eye-landing and onset of the
postsaccadic object in the two blanking conditions. Visual
processing has been claimed to be enhanced immediately after
saccades (Ibbotson and Krekelberg, 2011). Thus, processing of
the postsaccadic letter might have been enhanced when the
object was immediately visible after the saccade in the no-
blank condition compared to when it appeared later in the
blank condition. Second, the onset of the postsaccadic object
was visible in the blank condition but was concealed by the
saccade in the no-blank condition (e.g.,Krock and Moore, 2015).
Therefore, the deterioration might also stem from interference
of this onset with recognition of the letter (as a form of
masking; e.g.,Enns and Di Lollo, 2000). Third, objects were

always displaced during the saccade and this may have a�ected
postsaccadic object recognition di�erently in the two blanking
conditions. In line with these alternative explanations, one might
suppose that object correspondence was broken in both blanking
conditions, meaning it cannot account for the deteriorated
postsaccadic letter recognition. This might have been the case
because in both conditions a special character in the presaccadic
object changed into a letter in the postsaccadic object (cf.
Demeyer et al., 2010). To rule out these alternative explanations,
Experiment 2 examined how postsaccadic letter recognition was
a�ected by manipulating transsaccadic object correspondence in
conditions with identical time courses and without any object
displacements.

EXPERIMENT 2

In Experiment 2, a change of contrast-polarity was used to break
transsaccadic object correspondence (Tas et al., 2012). Observers
made a saccade to a peripheral object which was black or
white. The contrast-polarity of this object either stayed the same
(no-change condition) or changed during the saccade (change
condition) so that a black presaccadic object changed into a white
postsaccadic one and vice versa. Similar to Experiment 1, a single
letter appeared simultaneously to and within the postsaccadic
object and was terminated by a pattern mask. In contrast to
Experiment 1, however, both of these polarity-change conditions
were identical in time course and there were no intrasaccadic
object displacements. Observers• only task was to report the
postsaccadic letter. Now, if breaking object correspondence by
changing contrast-polarity imposes costs on postsaccadic object
recognition, then performance in reporting the postsaccadic
letter should su�er in the change compared to the no-change
condition.

Method
Observers
Twelve observers (2 males, 10 females) were paid to take part
in Experiment 2. They were between 21 and 31 years old
(Mdn = 27), all had normal or corrected-to-normal vision
(contact lenses) and gave written informed consent before the
experiment. The type of experiment was approved by Bielefeld
University•s ethics committee.

Apparatus and Stimuli
The apparatus and testing conditions in Experiments 1 and
2 were identical but not the same (i.e., the monitors were
of the same model but were two di�erent ones). Besides, a
desktop-mounted video-based eye-tracker (Eyelink 1000, SR
Research, Mississauga, ON, Canada) recorded eye behavior in
Experiment 2.

Experiment 2 was controlled by the Psychophysics Toolbox
(3.0.12;Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) and
Eyelink Toolbox (3.0.12;Cornelissen et al., 2002) extensions for
MATLAB R2014b (The MathWorks, Natick, MA, USA). Stimuli
were gray (67 cd× mŠ 2) special characters (%#§&; 0.4� × 0.4� )
and letters (ABDEFGHJKLMNOPRSTVXZ; 0.32� × 0.4� ) in
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FIGURE 4 | Paradigm of Experiment 2. Observers made a saccade to an elliptic object containing an irrelevant special character. The postsaccadic object was
either of the same (no-change condition) or of the opposite contrast-polarity (change condition). It contained a letter and was visible for approximately 30 ms after
the saccade (pattern-masked). Observers reported letter identity.

Arial font and saccade target objects were black (1 cd× mŠ 2)
or white (135 cd× mŠ 2) ellipses (0.65� × 1.05� ). The gray
background had a luminance of 67 cd× mŠ 2. A black square
(0.1� × 0.1� ) was used as central “xation stimulus. Ninety-nine
pattern masks were algorithmically created for each observer and
for both, black and white ellipses. This relatively large number
of masks was chosen to minimize adaptation to the masks.
The masks consisted of black or white rectangles (2� × 2� ),
each containing nine letters that were drawn randomly without
replacement from the set of used letters. These letters were
mirror-reversed and upside-down, they overlapped partially, and
together covered an area of about 1� × 1� within a rectangle. For
black rectangles the letters were white and for white rectangles
they were black.

Design and Procedure
The experimental paradigm is illustrated inFigure 4. Observers
started each trial by pressing the space-bar. In the beginning of a
trial, observers “xated a central “xation stimulus for a random
interval ranging from 500 to 1000 ms. Afterward, the “xation
stimulus was extinguished and an ellipse was presented as saccade
target object 8� to the left or right of screen center (randomized
across trials with equal numbers of occurrence in each condition).
The ellipse contained an irrelevant special character (randomly
drawn from the set of used special characters) and stayed
on screen until the observer made a saccade to it (detected
using velocity and acceleration thresholds of 35� × sŠ 1 and
9500� × sŠ 2). This presaccadic ellipse was either black or white.
The postsaccadic ellipse contained a letter (randomly drawn from
the set of used letters) and appeared during the saccade, that is,
on the next screen refresh after detection of saccade onset. In the
no-change condition, the postsaccadic ellipse and the presaccadic
ellipse were identical in their contrast-polarity. In the change
condition, the postsaccadic ellipse was of the opposite contrast-
polarity of the presaccadic ellipse. That is, a black presaccadic

ellipse changed into a white postsaccadic one and vice versa.
Whether presaccadic ellipses were black or white was randomized
across trials but the number of occurrences was equal in the two
polarity-change conditions. The postsaccadic ellipse was followed
by a pattern mask of the same polarity. The mask was presented
two or three screen refreshes after detection of saccade end so that
the postsaccadic ellipse was visible after the saccade for 31 ms on
average (SD= 3 ms). The mask was drawn randomly from the
set of created masks and lasted for 300 ms. After that, the screen
went blank and observers reported the letter using the keyboard
(unspeeded forced-choice). They could start the next trial after
100 ms.

Observers performed 64 trials of each polarity-change
condition in randomized order. Trials were aborted and repeated
on a randomly chosen subsequent trial if observers failed to “xate
the central “xation stimulus or if they missed the saccade target
object by more than 2.5� . In this way, a total of 22.5% of the trials
was repeated. Observers performed 32 training trials before the
experiment.

Results
Seven trials were excluded from analysis because saccade latency
was below 100 ms or above 400 ms. Letter reports were pooled
across trials on which saccade target objects appeared to the left
or right of screen center (as for Experiment 1). They were also
pooled across trials with di�erent presaccadic ellipse polarities
because a repeated-measures ANOVA indicated that neither
presaccadic ellipse polarity nor its interaction with the two
polarity-change conditions (i.e., no-change or change) a�ected
letter report performance, bothFs < 0.099, bothps > 0.758
(although distributions of proportions of correct responses were
negatively skewed for both presaccadic ellipse polarities in the
no-change condition).

Accuracy was measured as the proportion of correct
responses. Letter reports were signi“cantly more accurate in
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FIGURE 5 | Letter report performance in Experiment 2. Error-bars
indicate 95% conÞdence intervals for within-subjects designs (Morey, 2008).
The broken line indicates chance level.

the no-change condition (M = 0.91,SD = 0.15) than in the
change condition (M = 0.72, SD = 0.20), t(11) = 3.989,
p = 0.002,dz = 1.15; BF = 21.223 (Figure 5). As can be
expected, the two polarity-change conditions did not di�er
signi“cantly in observers• mean saccade latencies (no-change
condition: M = 155 ms, SD = 20 ms; change condition:
M = 155 ms,SD = 21 ms), t(11) = Š 0.494,p = 0.631,
dz = Š 0.14, BF = 0.319. Likewise, the conditions did not
di�er signi“cantly in deviations of saccade landing positions
from saccade target objects (observers• mean distances between
saccade landing positions and saccade target objects; no-change
condition:M = 0.77� , SD= 0.19� ; change condition:M = 0.79� ,
SD = 0.19� ), t(11) = Š 1.665, p = 0.124, dz = Š 0.48,
BF = 0.846. Also, they did not di�er signi“cantly in variability
of deviations of saccade landing positions from saccade target
objects (observers• standard deviations of distances between
saccade landing positions and saccade target objects; no-change
condition:M = 0.35� , SD= 0.07� ; change condition:M = 0.35� ,
SD = 0.07� ), t(11) = Š 0.216, p = 0.833, dz = Š 0.06,
BF= 0.293.

Discussion
Experiment 2 provides further evidence that breaking
transsaccadic object correspondence impairs postsaccadic
object recognition (Schneider, 2013). Recognition of a
postsaccadic letter was deteriorated in the change condition,
where object correspondence was broken, compared with the
no-change condition, where it was not broken. As such, the
“ndings of Experiment 2 perfectly replicate and extend the
“ndings from Experiment 1. Moreover, Experiment 2 also
controlled for alternative interpretations of the “ndings of
Experiment 1.

In Experiment 2, transsaccadic object correspondence was
broken by changing contrast-polarity rather than by blanking.
This allowed to keep the temporal interval between eye-landing
and onset of the postsaccadic object constant in the two polarity-
change conditions. Therefore, in contrast to Experiment 1,
there were no di�erences in time course between conditions
which could account for the di�erences in postsaccadic letter
recognition. For this reason, two alternative explanations
of the “ndings of Experiment 1 can be dismissed for the
ones of Experiment 2. First, the di�erences in postsaccadic
letter recognition did not result from enhanced processing
immediately after saccades (Ibbotson and Krekelberg, 2011),
because letter recognition would have been enhanced in
both polarity-change conditions. Second, the di�erences did
not result from interference of the onset of the postsaccadic
object with letter recognition, because this onset happened
during the saccade and likewise in both polarity-change
conditions. Furthermore and again contrasting Experiment
1, there were no object displacements in Experiment 2. This
excludes any di�erential e�ects of displacements between
conditions. Both experiments had in common, however,
that the presaccadic object contained an irrelevant special
character which changed into a letter in the postsaccadic
object. Although this change might have broken object
correspondence (Demeyer et al., 2010), this cannot refer to
the results of Experiment 2. The character change occurred
in both polarity-change conditions and notwithstanding
there was a pronounced e�ect of the polarity change on
postsaccadic letter recognition. It has been shown previously
that changing contrast-polarity is an e�ective tool to break
transsaccadic object correspondence (Tas et al., 2012). Thus,
even if the e�ect of changing contrast-polarity only added to
the e�ect of changing the special character into the letter, it
still demonstrates an e�ect of object correspondence on object
recognition. Taken together, the “ndings of Experiment 2
therefore strongly argue that breaking object correspondence
across the saccade deteriorates postsaccadic object
recognition.

GENERAL DISCUSSION

We asked whether breaking object correspondence across the
saccade impairs postsaccadic object recognition. The present
“ndings indicate that this is the case. In both of our experiments,
recognition of a postsaccadic letter was deteriorated when
transsaccadic object correspondence was broken, compared with
when it was not broken. Now we can ask which cognitive
mechanisms might underlie these e�ects.

One possible interpretation of the present “ndings is
that breaking transsaccadic object correspondence increases
locational uncertainty of task-relevant information after the
saccade. The precision of saccades is limited so that there
is always variation in saccade landing positions. Therefore,
to sample information on a saccade target object after a
saccade, this object must be re-located (Hollingworth et al.,
2008), even if it remained at its location across the saccade.
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Breaking transsaccadic object correspondence may hinder
this re-location (and this might already happen during the
saccade,Panouillères et al., 2013). Information on where
to “nd task-relevant information after the saccade would
then be less speci“c. This could impair postsaccadic object
recognition, for instance because less attentional processing
resources would be devoted to the location of the postsaccadic
object.

Alternatively, intact transsaccadic object correspondence may
provide computational savings which are lost in case object
correspondence is broken. Speci“cally, new high-resolution
foveal information on a postsaccadic object updates the
representation of the corresponding presaccadic object (Tas
et al., 2012; cf. Deubel and Schneider, 1994; Deubel et al.,
1996, 2002). In contrast, if transsaccadic object correspondence
is broken, then there is no presaccadic representation that
can (or should) be updated with postsaccadic information. An
entirely new representation must be created for the postsaccadic
object. This additional requirement may delay processing of
the postsaccadic object (suchdelays have for instance been
found when monkeys had to adapt their smooth pursuit
eye movements to postsaccadic motion patterns,Fallah and
Reynolds, 2012). Such processing delays then deteriorate the
postsaccadic recognition of objects and this is most prominent
when postsaccadic objects are only brie”y available (as in the
current experiments).

These two interpretations suggest a close link between
transsaccadic object correspondence and postsaccadic object
recognition. However, they do not provide a mechanistic
theory of the relationship between these processes. In contrast,
TRAM (Schneider, 2013) may deliver a “rst step toward such
a theory by proposing thatattentional weights(Bundesen,
1990) are not only mediating competition for access to visual
working memory across saccades but that they should also
establish correspondence between presaccadic and postsaccadic
objects.

Attentional weights represent the processing priority of
objects by combining the task-driven and the intrinsic relevance
of object features (Bundesen, 1990). Neuronally, attentional
weights are assumed to exist in spatially organized priority maps
in several brain areas (Bundesen et al., 2005; cf. Fecteau and
Munoz, 2006; Cavanagh et al., 2010; Zelinsky and Bisley, 2015).
Thus, attentional weights code for the feature-derived attentional
priority of objects but also for their spatial location. With
this combination of priority and location, attentional weights
can provide a number of functions fundamental for human
active vision. Within priority maps, attentional weights control
saccade target selection (•where-to-look-next?Ž,Wischnewski
et al., 2009, 2010;Schneider, 2013). This is a form of selection-for-
action (Allport, 1987; Neumann, 1987). In addition, attentional
weights govern the allocation of neuronal processing resources
to objects in order to accomplish object recognition (Bundesen
et al., 2005). This is selection-for-perception (covert visual
attention). Selection-for-action and selection-for-perception are
assumed to be tightly coupled (Schneider, 1995; Schneider and
Deubel, 2002; cf. Irwin and Gordon, 1998) and attentional
weights in priority maps may establish this coupling (Schneider,

2013; Herwig, 2015b). Furthermore, attentional weights (in this
context called •attentional pointersŽ) can align presaccadic and
postsaccadic information by keeping track of object locations
across saccades (Cavanagh et al., 2010). This proposal is based
on studies showing that the location sensitivity of neurons
in some priority maps (i.e., the maps assumed to implement
attentional weights, cf.Bundesen et al., 2005) is updated before
saccades to accommodate impending saccade-induced changes
of retinal locations (Duhamel et al., 1992). Along these lines,
TRAM proposes that the attentional weight of a presaccadic and
a postsaccadic object is used to test for object correspondence
across saccades (Schneider, 2013). Object correspondence is then
signaled if the attentional weight of the postsaccadic object
matches the attentional weight that is predicted based on the
presaccadic object. Thereby, the attentional weight could spatially
route postsaccadic feature input to presaccadically created object
representations in the process of transsaccadic updating. This
may give rise to visual stability: the perception of a stable world
despite the retinal image changes induced by saccades (e.g.,
Mathôt and Theeuwes, 2011).

In contrast, if object correspondence is broken, the visual
system signals that a new object has appeared after the
saccade (Kahneman et al., 1992; Irwin and Andrews, 1996).
According to TRAM, the attentional weight of the presaccadic
object is then encapsulated (i.e., retained with its current
connection to presaccadic features) to protect the presaccadic
object against being updated and overwritten by the new
(non-corresponding) postsaccadic object. This encapsulated
attentional weight competes with the attentional weights
of postsaccadic objects. Neuronal processing resources are
normalized over all presentattentional weights (e.g.,Bundesen
et al., 2005; Poth et al., 2014). Instead of having all neuronal
resources available for processing objects of the postsaccadic
competition episode, some amount of resources is again
(Schneider, 2013) or still (Petersen et al., 2012) allocated to
the presaccadic object. In sum, TRAM proposes that breaking
object correspondence across the saccade provokes attentional
competition between presaccadic and postsaccadic objects. This
attentional competition hypothesis provides one explanation why
breaking object correspondence impaired postsaccadic object
recognition in the present experiments. Testing the hypothesis
may be an interesting avenue for future studies aiming to
bridge research on transsaccadic object correspondence and on
mechanisms of visual attention and object recognition.

CONCLUSION

The present study shows for the “rst time that breaking object
correspondence across the saccade deteriorates postsaccadic
object recognition. This reveals a crucial role of object
correspondence for vision across successive “xations and
saccades. Natural human vision consists of a succession of
“xations and saccadic eye movements. Therefore, classical
theories of task-driven object recognition (and visual attention;
Bundesen, 1990; Wolfe, 1994) should now take mechanisms of
transsaccadic object correspondence into account.
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Rapid saccadic eye movements bring the foveal region
of the eye’s retina onto objects for high-acuity vision.
Saccades change the location and resolution of
objects’ retinal images. To perceive objects as visually
stable across saccades, correspondence between the
objects before and after the saccade must be
established. We have previously shown that breaking
object correspondence across the saccade causes a
decrement in object recognition (Poth, Herwig, &
Schneider,2015). Color and luminance can establish
object correspondence, but it is unknown how these
surface features contribute to transsaccadic visual
processing. Here, we investigated whether changing
the surface features color-and-luminance and color
alone across saccades impairs postsaccadic object
recognition. Participants made saccades to peripheral
objects, which either maintained or changed their
surface features across the saccade. After the saccade,
participants briefly viewed a letter within the saccade
target object (terminated by a pattern mask).
Postsaccadic object recognition was assessed as
participants’ accuracy in reporting the letter.
Experiment A used the colors green and red with
different luminances as surface features, Experiment B
blue and yellow with approximately the same
luminances. Changing the surface features across the
saccade deteriorated postsaccadic object recognition
in both experiments. These findings reveal a link
between object recognition and object
correspondence relying on the surface features colors
and luminance, which is currently not addressed in
theories of transsaccadic perception. We interpret the
findings within a recent theory ascribing this link to
visual attention (Schneider, 2013).

Introduction

Human vision is based on a reiterating cycle of
saccadic eye movements and intervals of relatively
stable eye position, the so-called “xations. Saccades
shift the eye rapidly, directing its foveal high-acuity
region at potentially interesting parts of the environ-
ment. Fixations provide clear visual snapshots of
objects, snapshots that are not corrupted by the
suppression of information uptake or by the motion
blur, which occur during saccades (e.g., Krock &
Moore, 2014; Wurtz, 2008). However, snapshot-like
sampling also poses a problem for perception and
action. Perceiving objects as continuously present
across saccades and to act based on this perception
require that the snapshots of objects from successive
“xations are linked (e.g., Higgins & Rayner, 2015;
Schneider, 2013). This linkage is complicated by the
fact that every saccade displaces an object•s image on
the retina and changes its resolution (e.g., Herwig &
Schneider, 2014; Wurtz, 2008, 2015). How, then, does
the visual system achieve coherent representations of
external objects across saccades?

Current theories propose that coherent transsaccadic
object representations depend on a test for object
correspondence across saccades (Hollingworth, Rich-
ard, & Luck, 2008; Tas, Moore, & Hollingworth, 2012).
This means the visual system tests whether postsaccadic
and presaccadic object representations likely stem from
the same external objects. If the test for object
correspondence is positive (i.e., object correspondence
is established), presaccadic object representations are
updated with postsaccadic information (Demeyer, De
Graef, Wagemans, & Verfaillie, 2009; Henderson &
Anes, 1994), leaving only one postsaccadic representa-
tion (Tas et al., 2012; see also Schneider, 2013). Having
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only one object representation may entail visual
stability, the perception of a continuous and stable
visual world despite the saccade-induced changes of
retinal images (for reviews on visual stability, see
Bridgeman, Van der Heijden, & Velichkovsky, 1994;
Math ôt & Theeuwes, 2011; Wurtz, 2008; Wurtz, Joiner,
& Berman, 2011). However, this also means that
presaccadic and postsaccadic objects cannot be com-
pared, which explains why object displacements
(Bridgeman, Hendry, & Stark, 1975) and changes of
visual object features (Deubel, Schneider, & Bridge-
man, 2002; Weiß, Schneider, & Herwig, 2015) are hard
to perceive when they occur during saccades. In
contrast, if the test for object correspondence is
negative (i.e., object correspondence is broken), pre-
saccadic and postsaccadic objects are assumed to be
represented separately (Deubel, Schneider, & Bridge-
man, 1996; Schneider, 2013; Tas et al., 2012). This
diminishes the perception of visual stability but helps to
discriminate intrasaccadic object changes, presumably
because the two representations can be compared
(Deubel & Schneider, 1994; Deubel et al., 2002; Deubel
et al., 1996; Tas et al., 2012; Weiß et al., 2015).

Transsaccadic object correspondence not only is
important for visual stability but also has recently been
shown to affect object recognition (Poth et al.,2015; see
also Schneider, 2013). In this study, participants made
saccades to a peripheral object. After the saccade, a
letter was shown in this object and terminated by a
pattern mask. Correspondence between the presaccadic
and the postsaccadic object was broken with two
different manipulations: “rst, by introducing a blank
screen after eye landing and before onset of the
postsaccadic object (see Deubel & Schneider, 1994;
Deubel et al., 1996) and, second, by a large change of
the luminance and the contrast polarity of the object
during the saccade (see Tas et al., 2012). In both cases,
recognition of the postsaccadic letter was deteriorated.
This shows that breaking transsaccadic object corre-
spondence impairs postsaccadic object recognition.
Two explanations of this effect rely on the idea that the
presaccadic and postsaccadic object are represented
separately if object correspondence is broken. First, the
theory of Task-dRiven visual Attention and working
Memory (TRAM; Schneider, 2013) proposes that
broken object correspondence (object continuity)
across “xations results in two different object repre-
sentations. Limited attentional resources must be split
between the two representations, cutting the resources
available to each individual object representation. This
loss of attentional resources per object explains the
deteriorated recognition of the postsaccadic object.
Second, the creation of a separate postsaccadic
representation in addition to the presaccadic one may
delay (or hinder) processing of the postsaccadic object.
Because the postsaccadic object was terminated by a

mask, this delay would have become manifest in
deteriorated recognition of the object (Poth et al.,
2015).

Postsaccadic object recognition depends on trans-
saccadic object correspondence (Poth et al.,2015), but
the mechanisms underlying this effect remain elusive.
To shed light on these mechanisms, it is important to
clarify which object features contribute to the test for
object correspondence. Two classes of features are
distinguished in the literature on object correspondence
across occlusion (Hollingworth & Franconeri, 2009)
and movement (Kahneman, Treisman, & Gibbs, 1992;
Mitroff & Alvarez, 2007): spatiotemporal and surface
features. Classical theories proposed that object corre-
spondence was established solely (Kahneman et al.,
1992) or primarily (Flombaum, Scholl, & Santos, 2009;
Scholl, 2007) on the basis of spatiotemporal features. In
stark contrast, however, more recent research revealed
that object correspondence across occlusion can also be
established based on surface features (such as color
and/or luminance), even when it con”icts with the
spatiotemporal feature location (Hollingworth &
Franconeri, 2009). Along the same lines, object
correspondence across saccades seems to rely on both
spatiotemporal (Demeyer, De Graef, Wagemans, &
Verfaillie, 2010; Deubel, Bridgeman, & Schneider,
1998; Deubel et al., 1996; Deubel et al., 2002) and
surface features (Tas et al., 2012). As explained above,
there is “rst evidence (Poth et al., 2015) that
postsaccadic object recognition is deteriorated both
when transsaccadic object correspondence is broken by
blanking, which is a violation of spatiotemporal
correspondence, and by introducing large changes of
luminance and contrast polarity, which is a strong
violation of surface feature correspondence. Critically,
however, it remains to be clari“ed whether this holds
also for surface features other than luminance and
contrast polarity and less intense feature changes.

The surface feature of color is generally considered
vital for human vision (e.g., Gegenfurtner & Kiper,
2003; Moutoussis, 2015), but it is unknown whether
color is used for establishing object correspondence
across saccades. Changing the apparent color of an
object is a common manipulation to study how surface
features contribute to object correspondence across
occlusion (Hollingworth & Franconeri, 2009) and
movement (Kahneman et al., 1992; Mitroff & Alvarez,
2007). However, such changes of apparent color may
coincide with changes in luminance and contrast
polarity (e.g., Mitroff & Alvarez, 2007), as these surface
features are usually not distinguished from color.
Therefore, the role of color for object correspondence
across occlusion and movement remains unclear. The
role of color may even be less clear for object
correspondence across saccades. On the one hand, the
color of a given object is represented with much lower
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quality in the visual periphery than in the fovea (e.g.,
Hibino, 1992; Johnson, 1986; Livingstone & Hubel,
1987; Nagy & Wolf, 1993). Thus, if color was used to
establish transsaccadic object correspondence, the
natural differences between an object•s peripheral
presaccadic and its foveal postsaccadic color could
erroneously break object correspondence. This would
impair postsaccadic object recognition (Poth et al.,
2015). One may therefore hypothesize that trans-
saccadic color changes are ignored. On the other hand,
there is evidence that at least large changes in apparent
color, which may include changes in luminance, can
break transsaccadic object correspondence and per-
ceived visual stability (Tas, 2015; cf. Hollingworth et
al., 2008, for evidence from corrective saccades).

Here, we investigated whether breaking object
correspondence across the saccade by changing the
surface feature of color impairs postsaccadic object
recognition. To retain the link to previous studies of
object correspondence, we examined the effects of
changes in apparent color (color, luminance, and
contrast polarity) on transsaccadic object correspon-
dence (Experiment A). In addition, we examined the
effects of changes between approximately equiluminant
colors on transsaccadic object correspondence (Exper-
iment B). Both experiments employed the experimental
paradigm by Poth et al. (2015; Experiment 2).
Participants made saccades to a peripheral object, a
letter was shown in this object after eye landing, and
the letter presentation was terminated by a pattern
mask. Participants• task was to report the identity of
the postsaccadic letter. Transsaccadic object corre-
spondence was manipulated in two conditions: The
surface features of the object either stayed the same
across the saccade (no-change condition) or they were
changed during the saccade (change condition). Ex-
periment A used the opponent colors green and red as
surface features, each coinciding with a different
physical luminance and contrast polarity. Experiment
B used the colors blue and yellow with approximately
the same luminance and contrast polarity. If breaking
transsaccadic object correspondence by changing these
surface features impairs postsaccadic object recogni-
tion, then letter report performance should be lower in
the change compared with the no-change conditions of
both experiments.

Method

Participants

Ten participants took part in Experiment A. They
were between 20 and 30 years old (MD ¼25 years), “ve
were male, and “ve female. Ten different participants

performed Experiment B. Their ages ranged from 21 to
26 years (MD ¼ 23.5 years), and two were male and
eight were female. All participants of both experiments
reported normal color vision and normal or corrected-
to-normal (contact lenses) visual acuity. All partici-
pants were paid and gave written informed consent
before participation, and the experiments were ap-
proved by Bielefeld University•s ethics committee.

Apparatus and stimuli

Participants performed the experiments in a dimly lit
room. They viewed the 19-inch CRT screen (G90fB,
ViewSonic, Brea, CA) from a distance of 71 cm while
their head position was “xed by forehead and chin
rests. The screen had a resolution of 1,0243 768 pixels
(at physical dimensions of 363 27 cm) and a refresh
rate of 100 Hz, and it was controlled by a GeForce GT
640 (NVIDIA, Santa Clara, CA) graphics card. A
video-based desktop-mounted eye tracker sampled
participants• right eyes at 1000 Hz (Eyelink 1000, SR
Research, Mississauga, Ontario, Canada). The eye
tracker was calibrated using a nine-point grid proce-
dure. Calibration was performed in the beginning of
the experiment, after training trials, after a pause in
about the middle of the experiment (and after
participants had made 50 “xation or saccade errors in
total). Saccades were detected online using velocity and
acceleration thresholds of 358(degrees of visual angle)
3 s� 1 and 95008 3 s� 2. Responses were collected using a
standard QWERTZ computer keyboard. The experi-
ment was programmed using the Psychophysics tool-
box (3.0.12; Brainard,1997; Kleiner, Brainard, & Pelli,
2007; Pelli, 1997) and Eyelink toolbox (3.0.12; Corne-
lissen, Peters, & Palmer, 2002) extensions for MAT-
LAB (R2014b; The MathWorks, Natick, MA).

Color and luminance were measured using an X-Rite
i1 Pro spectrophotometer (Munich, Germany), and
measurements are provided as CIE Lxy coordinates. A
black (L ¼ 0.228 cd/m2, x ¼ 0.290, y¼ 0.286) square
(0.18 3 0.18) was used as central “xation stimulus. In
Experiment A, saccade target objects were green (L¼
90.871 cd/m2, x ¼0.279, y¼0.591) and red (L¼30.664
cd/m2; x ¼ 0.599, y¼ 0.327) ellipses (0.658 3 1.058).
Note that the objects differed in luminance and
contrast polarity. In Experiment B, saccade target
objects had approximately the same luminance, and
they were blue (L¼37.113 cd/m2; x ¼0.194; y¼0.143)
and yellow (L ¼ 36.887 cd/m2; x ¼ 0.415; y¼ 0.479).
Letters (ABDEFGHJKLMNOPRSTVXZ; 0.32 8 3
0.48) and special characters (%#§&; 0.48 3 0.48) were
written in Arial font and matched the gray background
(L ¼ 47.687 cd/m2; x ¼ 0.283, y¼ 0.291) in both
experiments. In each experiment, 99 pattern masks
were algorithmically produced for each individual
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participant and for both colors. A large number of
masks was used to minimize adaptation to them. The
masks consisted of colored squares (28 3 28), “lled with
nine black letters that were drawn randomly without
replacement from the set of letters. The nine letters
were mirror reversed and upside down and overlapped
partially, and all letters together covered an area of
about 18 3 18within a square.

Procedure and design

Figure 1a illustrates the experimental paradigm,
which is based on the paradigm by Poth et al. (2015).
The participant pressed the space bar to start a trial. A
central “xation stimulus was shown, and the partici-
pant “xated it for a random interval between 500 and
1000 ms. Next, an elliptic saccade target object
appeared 88horizontally from screen center. Whether
the object appeared to the left or right of screen center
was randomized across trials, whereby each side
occurred equally often for each of the postsaccadic
surface features and each condition. The object
contained an irrelevant special character, which was
randomly drawn from the set of special characters, and
it was presented until the participant made a saccade to
it. Figure 1b illustrates the surface features and
experimental conditions of both experiments. In
Experiment A, the presaccadic object was either green
or red (coincident with different luminances and
contrast polarities), and in Experiment B, it was either
blue or yellow (with approximately the same lumi-
nances and contrast polarities). These surface features
were randomized across trials, each occurring equally

often in each condition. The postsaccadic object
contained a letter that was randomly drawn from the
set of letters1 and was shown during the saccade (on the
next screen refresh after detection of saccade onset).
The presaccadic and the postsaccadic object had the
same surface features in the no-change condition and
different surface features in the change condition. Thus,
in the change condition of Experiment A, green objects
changed into red ones and vice versa. In the change
condition of Experiment B, blue objects changed into
yellow ones and vice versa. After the postsaccadic
object, a pattern mask of the same surface feature was
presented. This mask was shown two or three screen
refreshes (frames) after the online detection of saccade
end (and its registration by the experimental software),
so that the postsaccadic object was visible after the
saccade end detection for 31 ms on average (SD ¼ 3
ms). The mask was randomly drawn from the set of
produced masks and was shown for 300 ms. It was
followed by a blank screen, and participants reported
the identity of the letter using the keyboard. There was
no time limit for the report. The next trial could be
started after an intertrial interval of 100 ms. Partici-
pants did not receive any instructions regarding the
surface features or changes.

Participants performed 64 trials of each condition in
randomized order. Trials were aborted and repeated on
a randomly selected subsequent trial if observers did
not “xate the central “xation cross or missed the
saccade target object by more than 2.58. In Experiment
A, 24.3% of the trials were repeated, in Experiment B
31.11%. Participants performed 32 training trials before
each experiment.

Figure 1. (a) Schematic illustration of the experimental paradigm. Participants fixated a central fixation stimulus, which was followed
by an elliptic saccade target object, displaying one of two surface features (green and red with different luminances in Experiment A,
blue and yellow with approximately the same luminance in Experiment B). This object appeared in the periphery and contained an
irrelevant special character. Participants made a saccade to the object. In the no-change condition, the object displayed the same
surface feature after the saccade. In the change condition, the postsaccadic object displayed different surface features than the
presaccadic one. In both conditions, the postsaccadic object contained a letter and was terminated by a pattern mask. Participants
reported the identity of the letter. Special characters, letters, and the background were gray (here drawn in black and white for better
visibility). (b) Employed surface features and experimental conditions of Experiment A and Experiment B.
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Results and discussion

Trials were excluded from analysis if saccade latency
(the time from onset of the saccade target object until
saccade onset detection) was less than 100 ms
(anticipatory saccades) or greater than 400 ms. Two
trials were excluded from Experiment A and four trials
from Experiment B. Table 1 provides descriptive
statistics of all dependent variables in both experi-
ments.

Letter report performance in Experiment A

Letter report performance was assessed as the
proportion of correctly reported letters for each
individual participant. Because of the truncated range
proportions take, all analyses were also performed on
acrsine-squareroot-transformed proportions in addi-
tion to original proportions. Both sets of analyses
yielded consistent results, and therefore, only analyses
of original proportions are reported.

Figure 2a depicts the mean proportion of correctly
reported letters across participants of Experiment A.
The effects of condition and postsaccadic surface
features on letter report performance were analyzed
using a 23 2 (no-change vs. change3 green vs. red)
repeated-measures analysis of variance (ANOVA; with
type III sums of squares andg2

G as effect size; Bakeman,
2005). The ANOVA revealed a signi“cant main effect
of condition, F(1, 9)¼ 15.607,p ¼ 0.003,g2

G ¼ 0.181.
Performance was higher in the no-change (M ¼ 0.90,
SD ¼ 0.13) compared with the change condition (M ¼
0.73, SD ¼ 0.19). Thus, breaking transsaccadic object
correspondence by changing the combination of the
surface features color, luminance, and contrast polarity
impaired recognition of the postsaccadic letter. As
argued previously (Poth et al., 2015), one might suspect
that the change of the special character in the
presaccadic object into the letter in the postsaccadic
object also broke transsaccadic object correspondence.
It is important, however, that even if this were the case,
the present results would still demonstrate an effect of
breaking object correspondence by changing color,
luminance, and contrast polarity in addition to the
possible effect of changing the presaccadic special
character.

Letter report
performance
(proportion

correct)

Saccade
latency

(ms)

Saccade
landing error
(distance in8)

Experiment A
No-change, green 0.96 (0.08) 149 (12) 0.80 (0.13)
No-change, red 0.83 (0.20) 153 (12) 0.74 (0.13)
Change, green 0.86 (0.16) 153 (12) 0.74 (0.16)
Change, red 0.60 (0.27) 148 (10) 0.76 (0.19)

Experiment B
No-change, blue 0.80 (0.25) 168 (19) 0.93 (0.29)
No-change, yellow 0.72 (0.27) 159 (16) 0.90 (0.25)
Change, blue 0.71 (0.26) 159 (14) 0.88 (0.28)
Change, yellow 0.63 (0.31) 167 (16) 0.91 (0.27)

Table 1. Means of letter report performance, saccade latency,
and saccade landing errors across participants for Experiment A
and B. Values are provided for cells formed by the two
conditions (no-change and change) and the two postsaccadic
surface features (green and red in Experiment A, and blue and
yellow in Experiment B). Standard deviations are in parenthe-
ses.

Figure 2. Letter report performance. Depicted are mean proportions of correct letter reports in the two conditions (change vs. no
change) and for both postsaccadic surface features (green and red in Experiment A, blue and yellow in Experiment B). Error-bars
indicate6 1 standard error of the mean for within-subjects designs (Loftus & Masson,1994); the dashed line indicates chance level.
(a) Experiment A. (b) Experiment B.
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There was also a signi“cant main effect of post-
saccadic surface featuresF(1, 9)¼12.751,p¼0.006,g2

G
¼0.227, showing that performance was higher for green
(M ¼ 0.91, SD ¼ 10.10) than for red (M ¼ 0.72, SD ¼
0.22) postsaccadic objects. Postsaccadic object color,
luminance, and contrast polarity may have affected the
visibility and hence recognition of the postsaccadic
letter (as has been shown for luminance contrast by
Petersen & Andersen,2012). The interaction between
the two factors was signi“cant as well,F(1, 9)¼9.895,p
¼0.012,g2

G ¼0.028. Speci“cally, the difference between
performance in the no-change compared with the
change condition was smaller for the green postsacca-
dic objects (M ¼ 0.11, SD ¼ 0.14) compared with the
red ones (M ¼ 0.23, SD ¼ 0.16).

Saccade latencies and landing errors in Experiment A

Saccade latencies were assessed as each participant•s
mean interval (in ms) between the onset of the saccade
target object and detection of the saccade. Table 1
provides descriptive statistics for saccade latencies in
the two conditions in conjunction with the postsaccadic
surface features. Saccade latency was affected neither
by condition, F(1, 9)¼0.067,p¼0.801,g2

G , 0.001, nor
by postsaccadic surface features,F(1, 9)¼ 0.214,p ¼
0.655,g2

G , 0.001. However, there was a disordinal
interaction between the two factors,F(1, 9)¼21.152,p
¼ 0.001,g2

G ¼ 0.036. Note that this interaction effect
corresponds to a main effect of presaccadic surface
features if the presaccadic rather than the postsaccadic
surface features entered the ANOVA as second factor
besides condition. Saccade latencies were shorter when
presaccadic objects were green (M ¼ 148 ms;SD ¼ 11
ms) rather than red (M ¼ 153 ms;SD ¼ 12 ms). This
may indicate that green saccade target objects were
perceptually more salient, which implies they were
easier to detect and localize than red ones, leading to
faster saccades for the former compared with the latter.

Saccade landing errors were assessed as each
participant•s mean Euclidian distance (in8) between
saccade landing sites and saccade target objects (i.e.,
the center coordinates of these objects). Neither
condition, F(1, 9)¼ 0.362,p ¼ 0.562,g2

G ¼ 0.003, nor
postsaccadic surface features,F(1, 9)¼1.399,p¼0.267,
g2

G ¼0.007, nor the interaction between the two factors,
F(1, 9)¼ 2.346,p ¼ 0.160,g2

G ¼ 0.015, had signi“cant
effects on saccade landing errors.

Letter report performance in Experiment B

As for Experiment A, letter report performance was
analyzed based on the original and the arcsine-square-
root-transformed proportions of correct reports. Only
the analyses of the original proportions are reported

because both sets of analyses delivered consistent
results.

Figure 2b depicts the mean proportion of correctly
reported letters across participants of Experiment B.
The ANOVA showed a signi“cant main effect of
condition, F(1, 9)¼ 13.514,p ¼ 0.005,g2

G ¼ 0.031.
Thereby, performance was higher in the no-change (M
¼ 0.76; SD ¼ 0.26) than in the change condition (M ¼
0.67; SD ¼ 0.28). This indicates that breaking trans-
saccadic object correspondence by changing between
the approximately equiluminant object colors impaired
recognition of the postsaccadic letter.

There was also a signi“cant main effect of post-
saccadic color,F(1, 9)¼ 7.902,p ¼ 0.020,g2

G ¼ 0.023,
whereby letter report performance was higher for blue
(M ¼ 0.75; SD ¼ 0.25) than for yellow postsaccadic
objects (M ¼ 0.67; SD ¼ 0.29). This may suggest that
the postsaccadic color affected the visibility and
recognition of the letter. The interaction between
condition and postsaccadic color was not signi“cant,
F(1, 9)¼ 0.013,p ¼ 0.912,g2

G , 0.001.

Saccade latencies and landing errors in Experiment B

Saccade latency was unaffected by condition,F(1, 9)
¼0.079,p ¼0.785,g2

G , 0.001, and postsaccadic color,
F(1, 9)¼ 0.026,p ¼ 0.876,g2

G , 0.001. However, there
was an interaction between these two factors,F(1, 9)¼
45.035,p , 0.001,g2

G ¼ 0.067. This interaction effect
corresponds to a main effect of presaccadic color if this
was included in the ANOVA instead of the postsacca-
dic color. Saccades were faster when presaccadic
objects were yellow (M ¼ 159 ms;SD ¼ 15 ms) rather
than blue (M ¼167 ms;SD¼17 ms). This effect may be
due to a higher perceptual saliency of the yellow
compared with the blue objects, which may have sped
up the detection and localization of saccade target
objects (see Experiment A).

Saccade landing errors were neither affected by
condition, F(1, 9)¼0.377,p¼0.554,g2

G ¼0.001, nor by
postsaccadic color,F(1, 9) , 0.001,p ¼ 0.987,g2

G ,
0.001, nor by the interaction of the two factorsF(1, 9)¼
0.949,p ¼ 0.355,g2

G ¼ 0.003.

General discussion

We tested the hypothesis that breaking object
correspondence across the saccade by changing surface
features impairs postsaccadic object recognition. The
results of two experiments support this hypothesis.
Experiment A revealed that transsaccadic changes
between the combined surface features color, lumi-
nance, and contrast polarity deteriorate postsaccadic
object recognition. Experiment B yielded similar
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“ndings for colors of approximately the same physical
luminance and the same contrast polarity. Together,
the results indicate that postsaccadic object recognition
depends on mechanisms establishing transsaccadic
object correspondence on the basis of these surface
features. Although it has been shown before that
luminance and contrast polarity contribute to trans-
saccadic object correspondence, the effects of color
with approximate equiluminance may be surprising.
That is, the presaccadic peripheral and the postsaccadic
foveal retinal images of an object provide color
information of substantially different quality (e.g.,
Hibino, 1992; Johnson, 1986; Nagy & Wolf, 1993; and
possibly perceived luminance, Livingstone & Hubel,
1987). Therefore, color might not be an ideal feature
for establishing object correspondence across the
saccade. Nevertheless, color seems to be used for this
purpose in concert with luminance and contrast
polarity, together paving the way for object recogni-
tion.

Hitherto, the dependency of postsaccadic object
recognition on transsaccadic object correspondence has
only been studied using two correspondence-breaking
manipulations: blanking and changing the contrast
polarity of achromatic objects, which coincided with
large luminance changes (Poth et al.,2015). The present
“ndings extend these results to chromatic objects. In
Experiment A, transsaccadic object correspondence
was broken by changing between colors with different
physical luminances and contrast polarities. Experi-
ment B replicated the results using colored objects of
about the same physical luminance. The perceived
luminance of a given color differs at different retinal
locations (and this might depend on individual
participants; Livingstone & Hubel, 1987), so that
saccades might always imply a change of an object•s
perceived luminance. Consequently, transsaccadic
changes of object color may change perceived lumi-
nance, even for physically equiluminant objects. This
means that perceived luminance could still have
contributed to the effect of Experiment B. Hence, this
effect may either be due to changes of the object•s
chromaticity and/or the associated luminance changes.
In either way, this demonstrates that the changes are
not ignored when transsaccadic object correspondence
is determined, so that they affect postsaccadic object
recognition. The present “ndings indicate that post-
saccadic object recognition depends on mechanisms of
transsaccadic object correspondence that use informa-
tion from surface features in general or at least from the
surface features of contrast polarity and luminance and
of color, whereby the latter might inherently include a
contribution of luminance. As such, these “ndings
con”ict with the view that transsaccadic object
correspondence relies exclusively on spatiotemporal
features (Kahneman et al., 1992; with respect to effects

on postsaccadic object recognition). In sum, our
experiments demonstrated that postsaccadic object
recognition is deteriorated when transsaccadic object
correspondence is broken by changes of spatiotemporal
features (blanking) and of surface features such as
contrast polarity and luminance (Poth et al., 2015),
combined color, luminance, and contrast polarity
(Experiment A) and of color (Experiment B).

Presaccadic and postsaccadic objects are assumed to
be represented as separate entities if transsaccadic
object correspondence is broken (e.g., Tas et al.,2012;
see also Deubel et al., 1996; Schneider, 2013).
Consequently, the deteriorated object recognition can
be interpreted in at least two ways, which need not be
mutually exclusive. First, creating a separate represen-
tation for the postsaccadic object may delay or hinder
processing of this object. Recognition of this object
would then be deteriorated, especially if the object is
terminated by a mask (Poth et al., 2015). Second,
having separate representations of the presaccadic and
the postsaccadic object may introduce attentional
competition between them (Schneider, 2013). That is,
limited attentional resources are split between the two
representations. Fewer resources are available for
processing each individual object representation, which
then deteriorates object recognition (Bundesen, 1990;
Desimone & Duncan, 1995). We assessed postsaccadic
object recognition as performance in reporting a letter,
which participants viewed after the saccade in the
saccade target object. The letter should have been
processed as part of the surface of this object, so that
letter report performance re”ects recognition of this
object (cf. Henderson & Anes, 1994; Kahneman et al.,
1992; Mitroff & Alvarez, 2007). However, it might be
possible that the letter has been processed as a separate
object. Letter report performance would then re”ect
recognition of a newly appearing object at the spatial
location of the saccade target object rather than
recognition of this object itself. This would still be in
line with the two explanations, following the assump-
tion of competitive object recognition (e.g., Bundesen,
Habekost, & Kyllingsbæk, 2005; Desimone & Duncan,
1995). Either the creation of a representation for the
letter at this very location would be delayed or it would
suffer from greater attentional competition if trans-
saccadic object correspondence was broken and led to
two rather than one representation of the saccade
target object.

The present “ndings argue that the surface features
of combined color, luminance, and contrast polarity, as
well as color alone, are used by object correspondence
mechanisms, which track objects across saccade-
induced shifts of retinal images. Moreover, they argue
that these object correspondence mechanisms affect
mechanisms of object recognition. Based on TRAM
(Schneider,2013), we suggest that this may be due to an
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interface between the two sets of mechanisms, which is
provided by visual attention (see also Poth et al., 2015).
We elaborate this hypothesis in the following.

Which mechanism tracks objects across the saccade-
induced changes of retinal images? The tracking of
object locations across saccades may be accomplished
by retinotopically organized brain areas (as, e.g.,
monkeys• lateral intraparietal area, Duhamel, Colby, &
Goldberg, 1992; superior colliculus, Walker, Fitzgib-
bon, & Goldberg, 1995; and frontal eye “elds, Umeno
& Goldberg, 1997). Shortly before a saccade, neurons
in these areas respond to stimuli at the locations where
their receptive “elds (the retinal regions from which
they receive information) will be after the saccade. This
has been interpreted as apredictive remappingof the
neurons• receptive “elds to these locations (Duhamel et
al., 1992; but see Zirnsak, Steinmetz, Noudoost, Xu, &
Moore, 2014). The necessary information about the
amplitude and direction of the saccade seems to come
from a corollary discharge (efference copy) of the
motor signals eliciting the saccade (Sommer & Wurtz,
2006). When the receptive “eld of a neuron is
predictively remapped, the neuron responds to a
particular object before the saccade. The following
saccade-induced shift of the neuron•s receptive “eld
makes the neuron respond to the same object again
after the saccade. An additional process comparing the
presaccadic and postsaccadic activity of such neurons
might then allow one to infer the presence of an object
before and after the saccade. Therefore, such a
comparison has been hypothesized to underlie the
perception of visual stability of object locations across
saccades (Cavanaugh, Berman, Joiner, & Wurtz, 2016;
Duhamel et al., 1992; Wurtz et al., 2011). The
comparison may be part of the neuronal implementa-
tion of the test for transsaccadic object correspondence,
the test that is assumed to govern visual stability (Poth
et al., 2015; Tas et al., 2012). One problem remains,
however. The comparison provides information about
whether an object is present at a given location before
and after the saccade. It does not provide information
about the (surface) features of the object (e.g.,
Cavanagh, Hunt, Afraz, & Rolfs, 2010). Surface
features clearly contribute to visual stability (Tas, 2015;
Tas et al., 2012), which argues that the test for
transsaccadic object correspondence cannot be accom-
plished based on the described comparison alone. A
potential solution to this problem is provided by
TRAM (Schneider, 2013).

TRAM proposes a mechanism that tests for object
correspondence (object continuity) across interruptions
of visual input in between “xations (as due to the
suppression of input during saccades, e.g., Krock &
Moore, 2014) and across changes of visual objects
within a “xation. Critically, this test for object
correspondence allows us to take into account the

(surface) features of objects. Correspondence between
objects of successive “xations should be tested on the
basis of the objects• attentional weights (Schneider,
2013). The concept of attentional weight comes from
Bundesen•s (1990) theory of visual attention. The
attentional weight of an object indicates its current
relevance in a spatially organized fashion. It is
computed as the sum of the sensory evidences that the
object has certain features, whereby the sensory
evidence for each feature is weighted by the current
relevance of this feature. According to TRAM, the
attentional weight that an object will have after the
saccade should be predicted before the saccade is
executed. This counteracts the changes of attentional
weights due to predictable changes of sensory evidence,
for example, due to saccade-induced shifts of retinal
images of objects, which change their resolution (cf.
Herwig & Schneider, 2014). After the saccade, the
predicted attentional weight is compared with the
current attentional weight of the object. The test for
object correspondence is positive if the two agree and
negative if they disagree. Evidence that prediction
affects attentional weights has been provided recently
(Poth, Petersen, Bundesen, & Schneider, 2014). In this
study, participants increased the attentional weight of
an object that was monitored for a luminance change in
order to compensate for a low predicted (expected)
salience of this change.

Attentional weights are proposed to be implemented
in priority maps (Bundesen et al.,2005): spatially
organized (retinotopic) brain areas whose neurons seem
to code for the relevance and physical salience of
objects (Bisley & Goldberg, 2010; Fecteau & Munoz,
2006; Zelinsky & Bisley, 2015). Interestingly, the brain
areas supposed to contain priority maps are among the
ones whose neurons seem to predictively remap their
receptive “elds before saccades (e.g., monkeys• lateral
intraparietal area, Duhamel et al., 1992; superior
colliculus, Walker et al., 1995; frontal eye “elds,
Umeno & Goldberg, 1997; note that some extrastriate
areas show remapping as well, Nakamura & Colby,
2002). Extending TRAM (Schneider, 2013), we there-
fore hypothesize that predictive remapping contributes
to the prediction of attentional weights.

Now that we have sketched a mechanism using
attentional weights to test for transsaccadic object
correspondence, we can ask how transsaccadic object
correspondence is linked to the object recognition
system. An answer to this question may reside in the
attentional weights as well. In fact, attentional weights
have originally been introduced to explain how relevant
objects are selected for object recognition at the
expense of irrelevant ones (Bundesen,1990). To be
recognized, an object has to be processed with enough
processing resources, which might mean by enough
neurons (Bundesen et al., 2005; to eventually enter
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visual working memory where recognition is complete
and report possible). Attentional weights control the
allocation of processing resources to objects; each
object is assumed to receive processing resources in
proportion to its attentional weight relative to the
summed attentional weights of all objects in the visual
“eld. More neurons are allocated to relevant than
irrelevant objects by virtue of a gating mechanism:
Gates in between the lower and higher cortical levels of
the ventral object recognition pathway are opened and
closed so that the receptive “elds of neurons are
dynamically remappedto locations of relevant objects
(Bundesen et al., 2005; Desimone & Duncan, 1995).
Importantly, which gates are opened and which are
closed is determined by the attentional weights from
spatially organized priority maps (Bundesen et al.,
2005).

Taken together, following TRAM (Schneider, 2013;
see also Poth et al., 2015), transsaccadic object
correspondence and object recognition should be
linked by attentional weights. In this view, postsaccadic
object recognition may be impaired because of broken
transsaccadic object correspondence for (at least) two
reasons. First, a negative test for object correspondence
means that an object•s predicted attentional weight and
its actual postsaccadic attentional weight mismatch.
Therefore, after the saccade, there are two discrepant
attentional weights present. Postsaccadic object recog-
nition may be impaired because the postsaccadic object
is allocated neuronal processing resources according to
its attentional weight divided by the sum of the two
present attentional weights. In contrast, if the test for
object correspondence is positive, this means that the
object•s predicted and postsaccadic attentional weight
match. In this case, there is only one postsaccadic
attentional weight. Hence, the postsaccadic object is
allocated all available neuronal processing resources
(i.e., according to its attentional weight divided by only
itself). Compared with the situation of a negative test
for object correspondence, the object receives more
processing resources, which consequently improves
object recognition. In addition, the state of the gates in
the ventral object recognition pathway that is dictated
by the predicted postsaccadic attentional weight is then
the same as the one dictated by the actual postsaccadic
attentional weight. This may provide a basis for
transsaccadic updating processes (cf. Demeyer et al.,
2009; Henderson & Anes, 1994; and transsaccadic
integration, Ganmor, Landy, & Simoncelli, 2015;
Herwig, 2015; Wolf & Schütz, 2015; but see Witten-
berg, Bremmer, & Wachtler, 2008). The lower- or mid-
level (surface) features of the postsaccadic object may
be routed to presaccadically created object representa-
tions through a consistent state of gates (cf. Poth et al.,
2015). As a consequence, representations from the
presaccadic and postsaccadic retinal images of objects

are combined within a common postsaccadic object
representation. This leads to the second reason why
breaking transsaccadic object correspondence affects
postsaccadic object recognition. We suggest that
combining presaccadic and postsaccadic representa-
tions may provide computational savings: The pro-
cessing of the object in question that started before the
saccade can be continued after the saccade. In contrast,
if object correspondence is broken and updating is
blocked, then processing of the postsaccadic object
might have to start completely anew. As a consequence,
object recognition might be delayed, leading to
performance decrements (especially when postsaccadic
objects are terminated by masks; Poth et al., 2015).

In sum, extending TRAM (Schneider,2013), we
hypothesize that the dynamic remapping of receptive
“elds in the ventral stream for object recognition (for
reviews, see Bundesen et al., 2005; Desimone &
Duncan, 1995) and the predictive remapping of
receptive “elds in dorsal and frontal areas (for a
review, see Wurtz et al., 2011) is accomplished by
common attentional weights. In this vein, attentional
weights allow us to keep track of objects across
saccades, they establish correspondence between
presaccadic and postsaccadic objects, and they dis-
tribute neuronal resources across these objects for
object recognition.

Conclusion

The present study investigated whether breaking
object correspondence across the saccade by changing
the surface features of combined color, luminance, and
contrast polarity and the surface feature of color impair
postsaccadic object recognition. The “ndings from two
experiments indicate that this is the case. As such, they
provide new evidence for an interface between mech-
anisms of transsaccadic object correspondence relying
on surface features and mechanisms of object recogni-
tion. Based on the TRAM theory (Schneider,2013), we
propose that this interface is provided by visual
attention.

Keywords: saccadic eye movements, visual attention,
visual stability, object recognition, transsaccadic memory
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Footnote
1 Letters and special characters were drawn ran-

domly with a unique random sequence per participant.
v2 tests indicated that the presentation frequencies of
speci“c letters (Experiment A:v2[57]¼ 65.578,p ¼
0.204; Experiment B:v2[57]¼56.006,p¼0.512) and of
the combination of special characters and letters
(Experiment A: v2[237]¼238.86,p¼0.454; Experiment
B: v2[237]¼ 215.84,p ¼ 0.834) did not signi“cantly
depend on the cells formed by the two experimental
conditions (no-change and change) and the two
postsaccadic surface features (green and red in Exper-
iment A and blue and yellow in Experiment B).

References

Bakeman, R. (2005). Recommended effect size statistics
for repeated measures designs.Behavior Research
Methods, 37, 379…384, doi:10.3758/BF03192707.

Bisley, J. W., & Goldberg, M. E. (2010). Attention,
intention, and priority in the parietal lobe. Annual
Review of Neuroscience, 33, 1…21, doi:10.1146/
annurev-neuro-060909-152823.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10, 433…436, doi:10.1163/
156856897X00357.

Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure
to detect displacement of the visual world during
saccadic eye movements.Vision Research, 15, 719…
722, doi:10.1016/0042-6989(75)90290-4.

Bridgeman, B., Van der Heijden, A. H. C., &
Velichkovsky, B. M. (1994). A theory of visual
stability across saccadic eye movements.Behavioral
and Brain Sciences, 17, 247…292, doi:10.1017/
S0140525X00034361.

Bundesen, C. (1990). A theory of visual attention.
Psychological Review, 97, 523…547, doi:10.1037/
0033-295X.97.4.523.

Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005).
A neural theory of visual attention: Bridging

cognition and neurophysiology.Psychological Re-
view, 112, 291…328, doi:10.1037/0033-295X.112.2.
291.

Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M.
(2010). Visual stability based on remapping of
attention pointers. Trends in Cognitive Sciences, 14,
147…153, doi:10.1016/j.tics.2010.01.007.

Cavanaugh, J., Berman, R. A., Joiner, W. M., &
Wurtz, R. H. (2016). Saccadic corollary discharge
underlies stable visual perception.Journal of
Neuroscience, 36, 31…42, doi:10.1523/
JNEUROSCI.2054-15.2016.

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002).
The Eyelink Toolbox: Eye tracking with MATLAB
and the Psychophysics Toolbox.Behavior Research
Methods, Instruments, & Computers, 34, 613…617,
doi:10.3758/BF03195489.

Demeyer, M., & De Graef, P., Wagemans, J., &
Verfaillie, K. (2009). Transsaccadic identification of
highly similar artificial shapes. Journal of Vision,
9(4):28, 1…14, doi:10.1167/9.4.28. [PubMed]
[Article]

Demeyer, M., & De Graef, P., Wagemans, J., &
Verfaillie, K. (2010). Object form discontinuity
facilitates displacement discrimination across sac-
cades.Journal of Vision, 10(6):17, 1…14, doi:10.
1167/10.6.17. [PubMed] [Article]

Desimone, R., & Duncan, J. (1995). Neural mecha-
nisms of selective visual attention.Annual Review of
Neuroscience, 18, 193…222, doi:10.1146/annurev.ne.
18.030195.001205.

Deubel, H., Bridgeman, B., & Schneider, W. X. (1998).
Immediate post-saccadic information mediates
space constancy.Vision Research, 38, 3147…3159,
doi:10.1016/S0042-6989(98)00048-0.

Deubel, H., & Schneider, W. X. (1994). Perceptual
stability and postsaccadic visual information: Can
man bridge a gap?Behavioral and Brain Sciences,
17, 259, doi:10.1017/S0140525X00034397.

Deubel, H., Schneider, W. X., & Bridgeman, B. (1996).
Postsaccadic target blanking prevents saccadic
suppression of image displacement.Vision Re-
search, 36, 985…996, doi:10.1016/
0042-6989(95)00203-0.

Deubel, H., Schneider, W. X., & Bridgeman, B. (2002).
Transsaccadic memory of position and form.
Progress in Brain Research, 140, 165…180, doi:10.
1016/S0079-6123(02)40049-0.

Duhamel, J.-R., Colby, C. L., & Goldberg, M. E.
(1992). The updating of the representation of visual
space in parietal cortex by intended eye movements.
Science, 255, 90…92, doi:10.1126/science.1553535.

Journal of Vision(2016) 16(11):1, 1–12 Poth & Schneider 10



Fecteau, J. H., & Munoz, D. P. (2006). Salience,
relevance, and firing: A priority map for target
selection.Trends in Cognitive Sciences, 10, 382…390,
doi:10.1016/j.tics.2006.06.011.

Flombaum, J. I., Scholl, B. J., & Santos, L. R. (2009).
Spatiotemporal priority as a fundamental principle
of object persistence. In B. Hood & L. Santos
(Eds.), The origins of object knowledge(pp. 135…
164). Oxford, UK: Oxford University Press.

Ganmor, E., Landy, M. S., & Simoncelli, E. P. (2015).
Near-optimal integration of orientation informa-
tion across saccades.Journal of Vision, 15(16):8, 1…
12, doi:10.1167/15.16.8. [PubMed] [Article]

Gegenfurtner, K. R., & Kiper, D. C. (2003). Color
vision. Annual Review of Neuroscience, 26, 181…206,
doi:10.1146/annurev.neuro.26.041002.131116.

Henderson, J. M., & Anes, M. D. (1994). Roles of
object-file review and type priming in visual
identification within and across eye fixations.
Journal of Experimental Psychology: Human Per-
ception and Performance, 20, 826…839, doi:10.1037/
0096-1523.20.4.826.

Herwig, A. (2015). Transsaccadic integration and
perceptual continuity. Journal of Vision, 15(16):7,
1…6, doi:10.1167/15.16.7. [PubMed] [Article]

Herwig, A., & Schneider, W. X. (2014). Predicting
object features across saccades: Evidence from
object recognition and visual search.Journal of
Experimental Psychology: General, 143, 1903…1922,
doi:10.1037/a0036781.

Hibino, H. (1992). Red-green and yellow-blue oppo-
nent-color responses as a function of retinal
eccentricity. Vision Research, 32, 1955…1964, doi:
10.1016/0042-6989(92)90055-N.

Higgins, E., & Rayner, K. (2015). Transsaccadic
processing: Stability, integration, and the potential
role of remapping. Attention, Perception & Psy-
chophysics, 77, 3…27, doi:10.3758/
s13414-014-0751-y.

Hollingworth, A., & Franconeri, S. L. (2009). Object
correspondence across brief occlusion is established
on the basis of both spatiotemporal and surface
feature cues.Cognition, 113, 150…166, doi:10.1016/j.
cognition.2009.08.004.

Hollingworth, A., Richard, A. M., & Luck, S. J. (2008).
Understanding the function of visual short-term
memory: Transsaccadic memory, object corre-
spondence, and gaze correction.Journal of Exper-
imental Psychology: General, 137, 163…181, doi:10.
1037/0096-3445.137.1.163.

Johnson, M. A. (1986). Color vision in the peripheral
retina. American Journal of Optometry & Physio-
logical Optics, 63, 97…103.

Kahneman, D., Treisman, A., & Gibbs, B. J. (1992).
The reviewing of object files: Object-specific inte-
gration of information. Cognitive Psychology, 24,
175…219, doi:10.1016/0010-0285(92)90007-O.

Kleiner, M., Brainard, D., & Pelli, D. (2007). What•s
new in Psychtoolbox-3?Perception, 36(Abstract
Supplement).

Krock, R. M., & Moore, T. (2014). The influence of
gaze control on visual perception: Eye movements
and visual stability. Cold Spring Harbor Symposia
on Quantitative Biology, 79, 123…130, doi:10.1101/
sqb.2014.79.024836.

Livingstone, M. S., & Hubel, D. H. (1987). Psycho-
physical evidence for separate channels for the
perception of form, color, movement, and depth.
Journal of Neuroscience, 7, 3416…3468.

Loftus, G. R., & Masson, M. E. (1994). Using
confidence intervals in within-subject designs.
Psychonomic Bulletin & Review, 1, 476…490, doi:10.
3758/BF03210951.
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Wolf, C., & Schütz, A. C. (2015). Trans-saccadic
integration of peripheral and foveal feature infor-
mation is close to optimal. Journal of Vision,
15(16):1, 1…18, doi:10.1167/15.16.1. [PubMed]
[Article]

Wurtz, R. H. (2008). Neuronal mechanisms of visual
stability. Vision Research, 48, 2070…2089, doi:10.
1016/j.visres.2008.03.021.

Wurtz, R. H. (2015). Brain mechanisms for active
vision. Daedalus, 144, 10…21, doi:10.1162/
DAED_a_00314.

Wurtz, R. H., Joiner, W. M., & Berman, R. A. (2011).
Neuronal mechanisms for visual stability: Progress
and problems.Philosophical Transactions of the
Royal Society B: Biological Sciences, 366, 492…503,
doi:10.1098/rstb.2010.0186.

Zelinsky, G. J., & Bisley, J. W. (2015). The what,
where, and why of priority maps and their
interactions with visual working memory. Annals of
the New York Academy of Sciences, 1339, 154…164,
doi:10.1111/nyas.12606.

Zirnsak, M., Steinmetz, N. A., Noudoost, B., Xu, K.
Z., & Moore, T. (2014). Visual space is compressed
in prefrontal cortex before eye movements.Nature,
507, 504…507, doi:10.1038/nature13149.

Journal of Vision(2016) 16(11):1, 1–12 Poth & Schneider 12



Study 3

Attentional competition across saccadic eye movements
(submitted to the Journal of Experimental Psychology:
Human Perception and Performance)

62



Running head: ATTENTIONAL COMPETITION ACROSS EYE MOVEMENTS 1 

 

 1 

 2 

 3 

Attentional competition across saccadic eye movements 4 

Christian H. Poth & Werner X. Schneider 5 

Bielefeld University 6 

 7 

 8 

Author note 9 

Christian H. Poth, Neuro-cognitive Psychology, Department of Psychology, and 10 

Cluster of Excellence Cognitive Interaction Technology, Bielefeld University. P.O. box 11 

100131, 33501 Bielefeld, Germany. 12 

Werner X. Schneider, Neuro-cognitive Psychology, Department of Psychology, and 13 

Cluster of Excellence Cognitive Interaction Technology, Bielefeld University. P.O. box 14 

100131, 33501 Bielefeld, Germany. 15 

Correspondence concerning this article should be addressed to Christian H. Poth, 16 

Neuro-cognitive Psychology, Department of Psychology, and Cluster of Excellence Cognitive 17 

Interaction Technology, Bielefeld University. P.O. box 100131, 33501 Bielefeld, Germany. 18 

E-mail: c.poth@uni-bielefeld.de 19 

This research was supported by the Cluster of Excellence Cognitive Interaction 20 

Technology 'CITEC' (EXC 277) at Bielefeld University, which is funded by the German 21 

Research Foundation (DFG). 22 

CHP designed the research, programmed the experiments, analyzed the data, 23 

interpreted the results, and wrote the paper. WXS supervised the research design, interpreted 24 

the results, and revised the paper. 25 

Words: 5539, figures: 3, tables: 1 26 



ATTENTIONAL COMPETITION ACROSS EYE MOVEMENTS 2 

 

Abstract 27 

Human behavior is guided by visual object recognition. For being recognized, objects 28 

compete for limited attentional processing resources. The more objects compete, the lower is 29 

�H�D�F�K���R�E�M�H�F�W�V�¶ processing speed. Here, we ask whether this competition is confined to eye 30 

fixations, periods of relatively stable gaze, or whether it extends from one fixation to the next, 31 

across the saccadic eye movements. Participants made saccades to a peripheral saccade target. 32 

They reported a letter that was shown after the saccade within the saccade target and for 33 

different durations (mask-terminated). Processing speed of this letter was measured by 34 

modeling report performance as a function of letter duration. Either no, two, or four additional 35 

non-target objects appeared before the saccade. In Experiment 1, presaccadic non-targets were 36 

task-irrelevant and had no effects on postsaccadic processing speed. In Experiment 2, 37 

presaccadic non-targets were task-relevant because participants matched them against a probe 38 

at trial end. Here, postsaccadic processing speed decreased with increasing number of 39 

presaccadic non-targets. These findings show that objects compete for recognition across 40 

saccades, but only if they are task-relevant. This reveals an attentional mechanism of task-41 

driven object recognition that is interlaced with active saccade-mediated vision (Schneider, 42 

2013; Poth, Herwig, & Schneider, 2015).  43 

  44 

  45 
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Attentional Competition across Saccadic Eye Movements 46 

Human goal-directed behavior heavily relies on the ability to recognize objects in the 47 

environment visually. The capacity for visual object recognition, however, is severely limited 48 

(for reviews, see Bundesen, Vangkilde, & Petersen, 2015; Duncan, 2006; Schneider, 1995). 49 

Objects in the visual field must compete for limited attentional neuronal processing resources 50 

(Desimone & Duncan, 1995). The more resources are allocated to an object, the faster it is 51 

processed (Bundesen, 1990). Visual attention biases the resource allocation so that currently 52 

important objects receive more resources than unimportant ones (Bundesen, 1990; Bundesen, 53 

Habekost, & Kyllingsbaek, 2005). This directly impacts on object recognition. Only the first 54 

few objects of a multi-object scene whose processing had been finished are encoded into a 55 

limited-capacity visual working memory (VWM, also called visual short-term memory; 56 

Bundesen, 1990; Bundesen et al., 2005, 2011). Once this has happened, the objects have been 57 

recognized and become available for report and action (Bundesen, 1990; Schneider, 2013). 58 

Importantly, the more equally relevant objects are present in the visual field, the smaller is 59 

their share of neuronal resources and the slower are they processed (Bundesen, 1990; 60 

Bundesen et al., 2005). Thus, visual object recognition increasingly suffers from attentional 61 

competition between objects as more and more objects enter the visual field (Desimone & 62 

Duncan, 1995). 63 

There is extensive evidence that objects compete for object recognition within eye 64 

fixations (e.g., Duncan, 2006; Poth, Petersen, Bundesen, & Schneider, 2014; Shibuya & 65 

Bundesen, 1988; Vangkilde, Bundesen, & Coull, 2011), which are the periods in which the 66 

eyes remain relatively stable (Findlay & Gilchrist, 2003; Land & Tatler, 2010). However, a 67 

fundamental hallmark of human vision is thereby neglected: the active sampling of the visual 68 

environment using rapid saccadic eye movements (for recent reviews, see Gegenfurtner, 69 

2016; Rolfs, 2015; Schütz, Braun, & Gegenfurtner, 2011). Visual acuity is highest only at the 70 

center of gaze, which falls on the central f�R�Y�H�D���R�I���W�K�H���H�\�H�¶s retina (e.g., Cowey & Rolls, 1974; 71 
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Curcio & Allen, 1990). Therefore, humans make saccadic eye movements that move the 72 

fovea from one object to the next, so that the object is sampled in detail in the next fixation 73 

(e.g., Findlay & Gilchrist, 2003; Land & Tatler, 2010). It is unclear whether attentional 74 

competition between objects is constrained to a given eye fixation, or whether objects from 75 

one fixation can compete with and thus impair the processing of objects in the next fixation.  76 

One may hypothesize that there is no such transsaccadic attentional competition and 77 

assume that successive eye fixations are entirely distinct visual processing episodes. This 78 

visual separation hypothesis has intuitive appeal, because the retinal image is blurred and 79 

visual information uptake is suppressed during saccades, which indeed separates one fixation 80 

from the next (Krock & Moore, 2014; Wurtz, 2008). Moreover, only a limited number of 81 

objects shown before a saccade can be reported after the saccade in accordance with a spatial 82 

cue (Irwin, 1992; Irwin & Gordon, 1998). This has led to the proposal that only those objects 83 

survive the saccade that are represented in limited-capacity VWM (or a similar transsaccadic 84 

memory, respectively, for reviews, see Irwin, 1996; Mathôt & Theeuwes, 2011). The 85 

competition between objects takes place before their encoding into VWM, and must hence 86 

rely on object representations created prior to VWM encoding (Bundesen, 1990; Bundesen et 87 

al., 2005). Therefore, if only representations in VWM survive the saccade, the competing 88 

representations outside VWM should be lost across the saccade, so that there is no 89 

transsaccadic competition. 90 

What argues against the visual separation hypothesis is evidence that visual object 91 

information outside VWM partially persists across the saccade (Irwin, 1992; Irwin, Brown, & 92 

Sun, 1988). This persistence may be largely bound to the retinal locations of objects (Irwin et 93 

al., 1988) which are moved by the saccade. However, because the competition for object 94 

recognition concerns all visually available objects in the visual field (Bundesen, 1990; or at 95 

least great parts thereof, Bundesen et al., 2005; Desimone & Duncan, 1995), this persisting 96 

object information may compete with the actual objects in the next fixation. As a result, object 97 
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recognition in the next fixation should suffer per se from the object available in the previous 98 

fixation. 99 

Furthermore, it has been suggested that the competition for object recognition can 100 

extend across changes and interruptions of visual input, such as those imposed by saccades, 101 

but only if the objects are relevant to the task at hand (Schneider, 2013). This task-driven 102 

competition hypothesis �L�V���G�L�U�H�F�W�O�\���E�D�V�H�G���R�Q���6�F�K�Q�H�L�G�H�U�¶�V�����������������W�K�H�R�U�\���R�I���³�7ask-dRiven visual 103 

Attention and working Memory (TRAM)� .́ According to TRAM, objects from the previous 104 

fixation that are task-relevant but have not been fully processed will be encapsulated, 105 

protected against being wiped-out by the saccade, and enter the competition for object 106 

recognition in the next fixation. As a result, object recognition in this fixation should suffer 107 

from all task-relevant objects of the previous fixation (except for those for which 108 

correspondence between the fixations can be established, see also Poth, Herwig, & Schneider, 109 

2015; Poth & Schneider, 2016b). 110 

Here, we investigated the question of whether objects compete for object recognition 111 

across saccadic eye movements. In two experiments, participants made saccades to peripheral 112 

saccade target objects and then reported a letter that became visible within these objects after 113 

the saccade. The letter was presented for a number of different durations and terminated by a 114 

mask. We estimated the speed with which the letter was processed as the rate at which letter 115 

report performance increased with increasing presentation duration (Bundesen, 1990, after a 116 

minimum presentation duration has been exceeded). Importantly, visual processing speed of 117 

the postsaccadic letter should directly reflect the amount of neuronal processing resources it 118 

receives (Bundesen et al., 2005).  119 

Experiment 1 investigated whether recognition of a postsaccadic object suffers from 120 

attentional competition with presaccadic objects per se. To this end, the peripheral saccade 121 

target appeared either alone, or was flanked by two, or four irrelevant non-target objects 122 

(digits). The non-targets were extinguished as soon as participants made the saccade. Now, if 123 
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there was no attentional competition across the saccade, as per the proposed visual separation 124 

hypothesis, then the number of presaccadic non-targets should have no effect on the visual 125 

processing speed of the postsaccadic letter. In contrast, if there was attentional competition, 126 

for instance due to lingering presaccadic representations (Irwin et al., 1988; Irwin, 1992), then 127 

visual processing speed should be lower the more presaccadic non-targets are presented. To 128 

preview the results, the number of presaccadic non-targets had no effect on the visual 129 

processing speed of the postsaccadic letter, supporting the visual separation hypothesis. 130 

Experiment 2 went on to test the task-driven competition hypothesis. It investigated 131 

whether processing speed of a postsaccadic object suffers from attentional competition with 132 

presaccadic objects when these are task-relevant. The paradigm was identical to the one of 133 

Experiment 1, except that the non-targets were now task-relevant because they had to be 134 

matched against a probe at trial end. The results of Experiment 2 support the task-driven 135 

competition hypothesis: the more presaccadic non-targets had been shown, the lower was the 136 

speed of processing the postsaccadic letter. Cross-experiment analyses corroborated that this 137 

effect was indeed larger than the null effect of Experiment 1. 138 

Method 139 

Participants 140 

Nine participants performed Experiment 1. An additional participant was excluded 141 

from analysis due to letter reports at chance level (which prevented fitting the data with the 142 

model below). Participants were between 22 and 30 years old (MD = 25 years), three were 143 

male, six female, eight were right-, one was left-handed.  144 

Eight different participants performed Experiment 2. An additional participant aborted 145 

the experiment. Participants were between 20 and 31 years old (MD = 23.5 years), three were 146 

male, five female, seven were right-, one was left-handed.  147 

All participants reported normal or corrected-to-normal visual acuity and normal color 148 

vision. They gave written informed consent before participation. The experiments followed 149 
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the ethical guidelines of the German Psychological Association (DGPs) and were approved by 150 

�%�L�H�O�H�I�H�O�G���8�Q�L�Y�H�U�V�L�W�\�¶�V���H�W�K�L�F�V���F�R�P�P�L�W�W�H�H�� 151 

Apparatus and Stimuli 152 

Participants performed the experiments in a semi-lit room. A head- and a chin-rest 153 

ensured that they viewed the computer screen (G90fB, ViewSonic, Brea, CA, USA) from a 154 

distance of 71 cm. The screen had a resolution of 1024 × 768 pixels at physical dimensions of 155 

36 × 27 cm, a refresh rate of 100 Hz, and was controlled by a GeForce GTX 970 graphics 156 

card (driver version 344.48, Nvidia, Santa Clara, CA, USA). A video-based tower-mounted 157 

eye tracker (Eyelink 1000, SR Research, Ottawa, Ontario, CA) recorded the behavior of 158 

�S�D�U�W�L�F�L�S�D�Q�W�V�¶���U�L�J�K�W���H�\�H�V���Dt a sampling rate of 1000 Hz. Responses were collected using a 159 

standard computer keyboard (with QWERTZ layout). 160 

 The luminances and colors of stimuli were measured using an i1 Pro (X-Rite, Grand 161 

Rapids, MI, USA) and are reported as CIE Lxy-coordinates. Stimuli were shown against a 162 

gray background (screen center: L = 11.605 cd/m2, x = 0.294, y = 0.307, averaged across left 163 

and right stimulus locations: L = 10.829, x = 0.288, y = 0.303�������$���³���´-character (0.34° × 164 

0.34° [degrees of visual angle], L = 55.255 cd/m2, x = 0.291, y = 0.304) was used as central 165 

fixation cross. The saccade target was a red circle appearing left or right of screen center (see 166 

the procedure, L = 29.886 cd/m2, x = 0.606, y = 0.332; measurements were averaged across 167 

the two locations, as for all stimuli that appeared left and right of screen center). Non-targets 168 

were the digits from 1 to 9 (0.45° × 0.93°, L = 21.855 cd/m2, x = 0.535, y = 0.327). Letter 169 

stimuli were uppercase letters (0.39° × 0.67°) from the set [ABDEFGHJKLMNOPRSTVXZ], 170 

written in Arial font and in the background gray. For each individual participant, 30 pattern 171 

masks were algorithmically created (as described in Poth et al., 2015; Poth & Schneider, 172 

2016b) by overlaying nine black (L = 0.139 cd/m2, x = 0.252, y = 0.355) mirror-reversed and 173 

upside down letters (drawn randomly without replacement from the letter set) with horizontal 174 
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Zusammenfassung
(German summary)

Menschliches Verhalten basiert zu einem großen Teil auf visueller Kognition, der Verarbeitung visueller
Informationen über externe Objekte. Zwei Funktionen visueller Kognition scheinen besonders wichtig
für zielgerichtetes Verhalten. Als erste Funktion ermöglicht es die Objekterkennung, Objekte in der
Umwelt als Mitglieder von Objektkategorien zu identi�zieren, so dass sie zur Erfüllung von Aufgaben
genutzt werden können. Als zweite Funktion ermöglicht es die Kurzzeiterkennung, zu erkennen ob
ein Objekt in der Umgebung kürzlich gesehen wurde. Dadurch erst kann aktuelles Verhalten bezüglich
des Objekts mit früherem Verhalten in Beziehung gesetzt werden. Beide Funktionen teilen eine Ein-
schränkung: Sie müssen über distinke Episode visueller Verarbeitung hinweg erfüllt werden, die durch
Änderungen der Vearbeitungsanforderungen unterbrochen werden.

Für die Objekterkennung bergen visuelle Verarbeitungsepisoden das Problem derselektiven Inte-
gration. Es muss entschieden werden, ob Objektinformationen der aktuellen Verarbeitungsepisode die
der Vorherigen erneuern und so mit diesen integriert werden sollen. Alternativ ist auch die getrennte
Repräsentation der Objekte beider Episoden möglich. Die Entscheidung ist bedeutend. Erneuerung
und Integration sollte eine kumulative und schnelle Objekterkennung ermöglichen. Objektveränderun-
gen sollten durch Integration jedoch verdeckt werden, da deren Wahrnehmung einen Vergleich zweier
Repräsentationen erfordert, hier jedoch nur eine Repräsentation vorliegt. Eine Trennung von Objek-
trepräsentationen birgt zwar Vorteile für die Veränderungswahrnehmung, sollte die Erkennung von Ob-
jekten jedoch beeinträchtigen. Der Grund dafür ist, dass die Objekterkennung mittels begrenzten Verar-
beitungsressourcen geschieht, die im Falle getrennter Objektrepräsentationen auf diese verteilt werden
müssten.

Für die Kurzzeiterkennung führen visuelle Verarbeitungsepisoden zum einemAbgleichsproblem.
Das heißt, dass ein Objekt der aktuellen Episode (unabhängig von dessen Objektkategorie) mit Repräsen-
tationen von Objekten abgeglichen werden muss, die nicht nur der vorherigen, sondern mehrerer kür-
zlich zurückliegenden Episoden entstammen können.

Ziel der vorliegenden Dissertation ist es, einen ersten Schritt zum Verständnis der Mechanismen
zu gehen, die die Probleme lösen, die sich aus visuellen Verabeitungsepisoden ergeben und somit
Objekt- und Kurzzeiterkennung über Episoden hinweg ermöglichen. Zu diesem Zweck führten wir
fünf empirische Studien zu Fragen durch, deren Klärung zur Entwicklung einer Theorie der Objekt- und
Kurzzeiterkennung erforderlich ist.
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Die ersten drei Studien konzentrierten sich auf Objekterkennung, die über die visuellen Verar-
beitungsepisoden von Fixationen der Augen hinweg statt�ndet. Fixationen bezeichnen Perioden der
visuellen Informationsaufnahme, in denen die Augen relativ stillstehen. Sie werden unterbrochen durch
schnelle sakkadische Augenbewegungen. Sakkaden sind zur Objekterkennung nötig, weil sie die Fovea
im Zentrum der Retina des Auges auf interessierende Objekte richten, damit diese scharf gesehen wer-
den. Bilder von Objekten auf der Retina werden duch Sakkaden verschoben und verändert und die
Aufnahme visueller Informationen wird durch sie unterbrochen. Daher teilen Sakkaden die visuelle Ve-
rarbeitung in Episoden distinkter Fixationen, denen die Mechanismen zur Objekterkennung begegnen
müssen.

In zwei Studien (Poth et al., 2015; Poth & Schneider, 2016a) untersuchten wir, wie das Problem
der selektiven Integration gelöst wird, um die Objekterkennung über aufeinanderfolgende Fixationen
hinweg zu unterstützen. Genauer untersuchten wir die aktuelle Hypothese, dass das Problem durch
einen Mechanismus gelöst wird, der ein Objekt vor und nach der Sakkade auf Korrespondenz (bzw.
Kontinuität) hin testet (Schneider, 2013). Wird Objektkorrespondenz festgestellt, sollten das prä- und
postsakkadische Objekt in einer gemeinsamen Repräsentation integriert werden. Wird Objektkorre-
spondenz hingegen gebrochen, dann sollten das prä- und postsakkadische Objekt getrennt repräsen-
tiert werden. Diese Trennung sollte Vergleiche der Objekte ermöglichen und so die Diskrimination
von transsakkadsichen Objektverschiebungen verbessern. Die Objekterkennung sollte jedoch unter der
Trennung leiden, weil dazu nötige begrenzte Verarbeitungsresourcen auf mehrere statt eine Repräsen-
tation aufgeteilt werden müssen. Die Ergebnisse beider Studien stützten diese Hypothesen. Wurde die
Objektkorrespondenz nach einer Sakkade zum Objekt durch kurzzeitiges Auslassen des Objekts ge-
brochen, verbesserte sich die Diskrimination von Objektverschiebungen, aber verschlechterte sich die
Objekterkennung. Dies zeigt, dass Objektkorrespondenz über die Sakkade sich auf die Objekterkennung
nach der Sakkade auswirkt. Weitere Experimente untersuchten die Natur der Objektkorrespondenz. Sie
zeigten, dass eine Beeinträchtigung der Objekterkennung auch dann auftritt, wenn die Objektkorrespon-
denz durch transsakkadische Veränderungen der Kontrastpolarität (und Luminanz) eines Objekts, dessen
Farbe-und-Luminanz oder dessen Farbe allein gebrochen wurde. Zusammen mit dem erstgenannten Be-
fund bedeutet dies, dass die Objektkorrespondenz über die Sakkade sowohl auf den raumzeitlichen als
auch auf den Ober�ächenmerkmalen eines Objekts basiert.

In der dritten Studie (Poth & Schneider, 2016b, eingereicht) untersuchten wir nun die Grenzen der
Objekterkennung über Sakkaden. Da Objekterkennung begrenzte Verarbeitungsresourcen erfordert,
kann sie zu einer Zeit nur für wenige Objekte erfolgen. Hier untersuchten wir, ob verschiedene Ob-
jekte über Sakkaden hinweg um diese begrenzten Resourcen konkurrieren müssen. In diesem Fall ver-
langsame sich die visuelle Verarbeitung nach der Sakkade mit steigender Anzahl gesehener Objekte vor
der Sakkade. Die Ergebnisse der Studie zeigen, dass Objekte über die Sakkade um Verarbeitungsres-
sourcen konkurrieren und so die Objekterkennung verlangsamen. Dies geschieht jedoch nur, wenn die
Objekte aufgabenrelevant sind. Diese Ergebnisse stützen die Kernvorhersage einer aktuellen Theorie,
nämlich, dass die Bedeutsamkeit einer Objektrepräsentation darüber entscheidet, ob sie die Sakkade
überdauert und anschließend Verarbeitungsressourcen verbraucht (Schneider, 2013).
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Mit der vierten Studie (Poth & Schneider, 2016c) wandten wir uns nun von den Verarbeitungsepiso-
den aufeinanderfolgender Fixationen denen zu, die durch erscheinende und verschwindende Objekte
und betreffende Aufgabenanforderungen de�niert sind. Hier fragten wir nach der Beziehung zwischen
den Mechanismen, die die Objekt- und die Kurzzeiterkennung leisten. Es wird angenommen, dass die
visuelle Verarbeitung zur Objekterkennung mit der Enkodierung in ein kapazitätsbegrenztes visuelles
Arbeitsgedächtnis endet, durch das Objekte zum Bericht zur Verfügung stehen. Wir untersuchten, ob
die Enkodierung ins visuelle Arbeitsgedächtnis nun nicht nur zur Objekterkennung in dieser sondern
auch zur Kurzzeiterkennung in späteren Verarbeitungsepisoden nötig ist. Die Ergebnisse sprachen dafür,
indem sie zeigten dass Objekte, die vermutlich nicht ins Arbeitsgedächtnis gelangten, später nicht zur
Kurzzeiterkennung genutzt werden konnten. Dies bedeutet, dass die anfänglichen Schritte visueller Ver-
arbeitung, die vor der Enkodierung ins Arbeitsgedächtnis ablaufen zur späteren Kurzzeiterkennung nicht
ausreichen. Das visuelle Arbeitsgedächtnis scheint daher zur Lösung des Abgleichproblems beizutra-
gen, indem es die Informationsmenge limitiert, die bei der Kurzzeiterkennung berücksichtigt wird.

In der fünften Studie (Poth & Schneider, 2016d, eingereicht) setzten wir die Untersuchung der
Kurzzeiterkennung fort, indem wir fragten wie sie in einer vorausgegangenen Verarbeitungsepisode
vorbereitet werden kann. Wir testeten, wie sich die Priorisierung von Objektrepräsentationen im vi-
suellen Arbeitsgedächtnis auf zwei distinkte Leistungskomponenten einer bevorstehenden Kurzzeit-
erkennungsaufgabe auswirkt. Unsere Ergebnisse zeigten, dass eine solche Priorisierung die Gedächt-
nisleistung steigert, jedoch auch die visuelle Verarbeitung von Objekten zur Kurzzeiterkennung in einer
zukünftigen Episode beschleunigt. Dies zeigt, dass Änderungen der Verarbeitungsprioritäten zu mo-
mentan ablaufenden Lösungen des Abgleichproblems der Kurzzeiterkennung beitragen.

Zusammengenommen, zeigen die fünf Studien wie die Mechanismen der Objekt- und Kurzzeit-
erkennung bestimmte Probleme bewältigen, die sich aus der Unterteilung visueller Vearbeitung in dis-
tinkte Episoden ergeben. In diesem Sinne weisen die Studien auf visuelle Verarbeitungsepisoden als
eine Problemquelle für die Objekt- und Kurzzeiterkennung hin, die in aktueller Forschung größtenteils
vernachlässigt wird. Umgekehrt, geben die Studien jedoch auch Anlass, über den funktionalen Wert
visueller Verarbeitungsepisoden zu spekulieren.
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QV\ŴQ[]IT _WZSQVOUMUWZa39^QLMVKMNZWUXZWJMZMKWOVQ\QWVIN\MZTM\\MZZMXWZ\'-FDCH?;FG?C
3GK9>DAD=K"0$*--)' LWQ3*)',,12(NX[aO'+)*/')*--)

/BC495( @W\P$7' ;'$  BKPVMQLMZ$F' G' "+) H/#' @ZQWZQ\QbI\QWVQV̂ Q[]IT _WZSQVOUMUWZaMVPIVKM[
UMUWZa&ZM\MV\QWVIVL [XMML[ ]X XZWKM[[QVOQVI KWUXIZQ[WV\I[S' 4I8B?HH;:@7FEI8A?97%?DC?C
)HH;CH?DC"3;F9;EH?DC"7C: 3GK9>DE>KG?9G$



Bestätigung der Einreichung von Manuskripten zur
Publikation
(Con�rmation of manuscript submissions for publication)

134







 

Gedruckt auf alterungsbeständigem Papier °° ISO 9706 

 


	Acknowledgments
	Summary
	Summary
	Dissertation synopsis


