Universität Bielefeld/IMW

Working Papers
Institute of Mathematical Economics

Arbeiten aus dem
Institut für Mathematische Wirtschaftsforschung

Nr. 201

Informationsverarbeitungsstrukturen
in begrenzt rationalen
komplexen individuellen Entscheidungen

von
Andrea Brunwinkel

Februar 1991
0. Einführung

1. Informationsträger im kognitiven Apparat

Im kognitiven Apparat des Menschen lassen sich drei miteinander verknüpfte Bereiche zur Informationsspeicherung unterscheiden, die verschiedene Aufgaben und Qualitäten haben.

Der sensorische Speicher enthält für sehr kurze Zeit das exakte, vollständige Abbild der aktuellen Umwelt, wie es von den Sinnesorganen wahrgenommen wird. Er ist für die vorliegenden Betrachtungen von eher untergeordneter Bedeutung.

Das Langzeitgedächtnis (long term memory = LTM) stellt die umfassende Datenbank des kognitiven Apparates dar, in der eine nahezu unbegrenzte Menge von Information in stark vernetzten Strukturen gespeichert ist beziehungsweise neu abgelegt werden kann. Die dort gespeicherten Daten sind schwerer zugänglich als die des STM, doch liefern die verschiedenartigen Verknüpfungen oft die gewünschte Information, da sie durch mehrfache inhaltliche Beziehungen miteinander verbunden sind, auf die unten noch detaillierter eingegangen wird. Das LTM stellt das Hauptmedium dar, auf dem die kognitiven Prozesse des Menschen stattfinden.

2. Kognitive Strukturen

Die epistemische Struktur (von griechisch "episteme" = Wissen) stellt die Datenbank des Individuums dar. Sie beinhaltet sein gesamtes Faktenwissen sowie persönliche Erfahrungen, aber auch die Kontroll- und Steuerungsmechanismen für solche Situationen und Aufgaben, mit denen das Individuum

2.1 Die epistemische Struktur

Die epistemische Struktur des menschlichen Langzeitgedächtnisses kann man sich als ein immens großes Netzwerk vorstellen. In diesem Netzwerk stellen die Knoten die jeweiligen Komponenten eines Sachverhalts dar, während gerichtete Pfeile verschiedener Art die Relationen wiedergeben, durch die die Komponenten inhaltlich miteinander verknüpft sind, woraus sich der Gesamtzusammenhang des Sachverhalts ergibt. Einen Sachverhalt kann dann nach beschrieben werden als "eine Ganzheit, in der verschiedene Komponenten durch bestimmte Relationen miteinander verknüpft sind" (Dörner (1987), S.17, Herv.i.O.). Angemerkt sei dabei, daß jeder Sachverhalt als "offen" anzusehen ist in dem Sinne, daß die Zahl der Komponenten und Relationen, die einen Sachverhalt beschreiben, nicht begrenzt ist, sondern beliebig steigen kann, wenn entsprechend weiter entfernte Beziehungen ergänzend berücksichtigt werden.

2.1.1 Inhalte der epistemischen Struktur

Entsprechend den unterschiedlichen Arten von Inhalten der epistemischen Struktur scheint es sinnvoll, das episodische Gedächtnis, generische Strukturen sowie das Fertigkeitsgedächtnis zu unterscheiden. Wiederum sei betont,
daß die unterschiedlichen Inhalte nicht etwa in getrennten Strukturen zusammenhanglos nebeneinander stehen, sondern daß sie ein Ganzes bilden, das den gesamten "Wissensfundus" des Individuums darstellt. Die Gliederung dient vorrangig dazu, die verschiedenartigen "Merkfähigkeiten" des Menschen und darüberhinaus implizit auch seine Fertigkeiten zu charakterisieren:

Das episodische Gedächtnis beinhaltet persönliche Erlebnisse eines Individuums, die im allgemeinen mit einem spezifischen Ort und Zeitpunkt verknüpft und mit mentalen Bildern der Ereignisse verbunden sind. (Brewer und Pani (1983) bezeichnen diesen Teil des episodischen Gedächtnisses als "persönliches Gedächtnis".)

2.1.2 Beispiele

Abbildung 1: Teil einer epistemischen Struktur

Quelle: Lindsay/Norman (1981), S.297.
Abbildung 2: Teil einer epistemischen Struktur

Quelle: Lindsay/Norman (1981), S.304.
Vorstellungen, die hier nicht näher spezifiziert werden. Den vierten Hund "Tommy" kennt das Kind nicht persönlich, außer der Bezeichnung hat es keine weiteren Informationen über ihn.

Das zweite Beispiel stellt das Wissen dar, das eine bestimmte Person über die Geschehnisse hat, die an einem bestimmten Tag in einer Taverne namens "Beim Beo" stattfanden: Elke hat Spaghetti auf Klaus verschüttet. Darum hat Klaus Elke angeschrien, und der Hund Blackie hat Klaus deshalb gebissen. Darüberhinaus gibt es noch eine Reihe anderer Zusammenhänge, die die Person über die Ereignisse hinaus außerordentlich erweitert und die mehr oder weniger eng mit einzelnen Komponenten der Ereignisse verknüpft sind. So ist beispielsweise Eddi der Besitzer der Taverne und des Hundes namens Blackie. Hans mag Elke und außerdem eine Person namens Luise. Er und Luise sind Weintrinker, etc.

Es ist naheliegend, dass das verwendete Relationensystem in diesem zweiten Beispiel erheblich umfassender sein muss als im ersten, da hier neben Definitionen und Fakten auch Verlaufsbeschreibungen von Tätigkeiten geliefert werden, in denen unter anderem auch Reihenfolgebeziehungen eine Rolle spielen.

2.1.3 Relationen und Komponenten

Wie bereits die Beispiele illustrieren, lassen sich in der epistemischen Struktur hinsichtlich ihrer Eigenschaften und Funktionen verschiedene Arten von Komponenten und von Relationen unterscheiden.

Betrachtet man die Netzwerkstrukturen auf einer relativ abstrakten Ebene, so kann man die in der epistemischen Struktur gespeicherten Zusammenhänge zwischen einzelnen Komponenten zumindest in folgende Klassen von Relationen gliedern:

Ganze—Teil—Relationen weisen auf Elemente hin, aus denen eine Komponente zusammengesetzt ist (typischer Verknüpfungsbegriff: "hat", in o.g. Beispielen nicht enthalten). Eine besondere Form der Ganze—Teil—Relationen sind die Eigenschafts—Relationen, die zu den verschiedenen Merkmalen führen, die eine Komponente hat. (typischer Verknüpfungsbegriff: "trifft zu auf")
Abstraktheitsrelationen verknüpfen Oberbegriffe und Unterbegriffe miteinander. (typischer Verknüpfungsbegriff: "ist ein" / "isa")

Neben verschiedenen Klassen von Relationen können auch verschiedene Typen von Komponenten unterschieden werden:

Tätigkeiten sind mit anderen Komponenten vor allem durch raum–zeitliche Relationen verknüpft.

Alle Inhalte der epistemischen Struktur sind in dieser Weise in die Struktur eingebunden, so daß sich durch die Verfolgung langer Ketten von Relationen Beziehungen zwischen beliebigen Gedächtnisdaten finden lassen. Es ist nahelegend, daß Zusammenhänge mit kurzen Relationsketten leichter und sicherer aufgefunden werden können als solche mit längeren Ketten.

2.2 Die heuristische Struktur

Für die Lösung von bisher unbekannten Problemen verfügt der Mensch über eine individuelle Verfahrensbibliothek mit Konstruktionsverfahren ("Heurismen"), mit deren Hilfe eine Reihe von flexiblen Bausteinen kombiniert werden kann, die als elementare beziehungsweise komplexe Operatoren bezeichnet werden. Dabei bedienen sich die Heurismen immer der epistemischen Struktur als Datengrundlage. Während die epistemische Struktur bekannte Tätigkeiten eigenständig durchführen kann, und somit über eine relative Autonomie verfügt, ist die heuristische Struktur auf die "Datenbank" der epistemischen Struktur angewiesen, denn sie selbst liefert lediglich die möglichen Konstruktions- und Kombinationsverfahren.

Bei den festen Handlungsprogrammen, die in der epistemischen Struktur gespeichert sind, ist die Abfolge der Operatoren sowie der Zugriff und die Speicherung der verwendeten Daten im Gedächtnis fest installiert. Im
Gegensatz dazu müssen bei der Bewältigung neuer Problemstellungen mittels der Heurismen flexible Bausteine aus dem vorhandenen Repertoire neu kombiniert und gegebenenfalls auch modifiziert werden. Da der weitere Programmablauf nicht a priori feststeht, muß dabei eine vergleichsweise große Menge neuer Daten behalten und zur eventuellen Weiterverarbeitung verfügbar gehalten werden, ohne daß für diese Daten Speicherplätze mit festen Zugriffsmechanismen in der epistemischen Struktur vorgegeben sind. (Diese neuen Daten sind einerseits Inputdaten aus der Umwelt, die mit Hilfe des sensorischen Speichers über die Sinnesorgane aufgenommen wurden, und andererseits (Zwischen-)Ergebnisse interner Operationen und neuer Verknüpfungen von bereits bekannten Daten.) Außerdem müssen die für den flexiblen Informationsverarbeitungsprozeß möglicherweise relevanten Stellen im Netzwerk der epistemischen Struktur festgehalten werden.

In diesem Verarbeitungsprozeß stellt das STM mit seiner Kapazitätsbeschränkung auf 5 bis 7 Speicherplätze für einfache Informationseinheiten den wesentlichen, kritischen Engpaß dar, da es als Zwischenspeicher dient. Flexible Lösungsprozesse müssen daher so strukturiert werden, daß die Speicherplätze des STM zumindest für alle jeweils benötigten Verweise ausreichen, die die Stellen im Gedächtnis kennzeichnen, an denen die notwendigen Daten abgelegt sind, so daß möglichst keine wichtige Information dadurch verloren geht, daß sie nicht wiedergefunden werden kann. Gerade wegen dieses Speicherengpasses ist es für den Informationsverarbeitungsprozeß von ganz entscheidender Bedeutung, daß das gesamte gespeicherte Material sehr gut strukturiert und durch verschiedenartige inhaltliche Relationen miteinander verknüpft ist (vgl. oben, Abschnitt 2.1). Dies hat zur Konsequenz, daß mit dem Auffinden eines Knotens im Netzwerk nicht nur ein einzelnes Datum, sondern vielmehr ein größerer Informationszusammenhang erschlossen wird.

Aufgrund der angeführten kapazitätsbedingten Restriktionen beschränkt sich das kognitive System außerdem darauf, mit sehr wenigen elementaren Operatoren zu arbeiten, die untereinander verwandte, sehr ähnliche Strukturen aufweisen und miteinander kombiniert werden können. Aus diesen elementaren Operatoren setzen sich sowohl die fest gespeicherten Handlungsprogramme als auch die mit Hilfe der Heurismen erstellten komplexeren Operatoren zur Lösung neuartiger Probleme zusammen.

Daß das menschliche Informationsverarbeitungssystem trotz der Beschränkung auf solche einfachen Verarbeitungsstrukturen fähig ist, seine bemerkenswerten
Informationsverarbeitungsleistungen zu erbringen, liegt auch an der hohen Verarbeitungsgeschwindigkeit. Der kognitive Apparat des Menschen ist zwar nicht in der Lage, sehr viele Daten auf einmal zu bearbeiten, doch erfolgen die einzelnen Verarbeitungsschritte mit so hoher Geschwindigkeit, daß häufig die Annahme naheliegt, es handele sich bei einer Abfolge von Operationen um einen einzigen Verarbeitungsschritt.

2.2.1 Kennzeichnungen

Um bei der Beschäftigung mit neuartigen Problemen bestimmte Stellen in der Gedächtnisstruktur gezielt wiederfinden zu können, müssen geeignete Kennzeichnungen verwendet werden. Dabei lassen sich zwei Arten von Kennzeichnungen unterscheiden:

In dieser Weise können nicht nur einzelne Objekte oder Relationen markiert werden, sondern gegebenenfalls auch längere "Wege" durch das Netzwerk der epistemischen Struktur. Kommt es durch wiederholten Zugriff zu einer Verfestigung eines solchen Weges, so kann sich eine Routine, also ein festes Handlungsprogramm entwickeln, dessen Ablaufstrukturen dann Teil der epistemischen Struktur werden.

Zeiger im STM führen zu speziell gekennzeichneten Stellen in der Gedächtnisstruktur, die im Verlauf des Informationsverarbeitungsprozesses exakt und eindeutig wiedergefunden werden sollen bzw. müssen. Die Anzahl derartiger Zeiger ist durch die Kapazitätsgrenze des STM auf maximal 5 bis 7 Zeiger gleichzeitig begrenzt. Ist die Kapazitätsgrenze erreicht, dann wird der älteste, d.h. der am längsten nicht benutzte Zeiger überschrieben.
3. Strukturen elementarer und komplexer Operatoren

Wie bereits geschildert, lassen sich alle komplexen Operationen, die mit mehreren Objekten umgehen, durch Zerlegung auf Kombinationen elementarer Operatoren zurückführen, die mit Hilfe des begrenzten Zwischenspeichers des STM durchführbar sind. Diese elementaren Operatoren werden mittels der heuristischen Struktur als Bausteine für die Konstruktion der individuellen komplexen Operatoren eingesetzt, mit denen dann umfangreiche Probleme bearbeitet werden können.

3.1 Elementare Operatoren

Wegen der angeführten Kapazitätsbeschränkungen des STM erstrecken sich die elementaren Operatoren nach Möglichkeit jeweils nur auf ein Objekt beziehungsweise einen einzigen Sachverhalt. Bei Operatoren, die Aussagen über Beziehungen zwischen Objekten treffen sollen, erfolgt eine Beschränkung auf jeweils zwei Objekte gleichzeitig.

Die folgenden Beispiele illustrieren die genauen Prozeßabläufe einzelner elementarer Operatoren:

3.1.1 Markieren eines Objektes oder einer Relation in der Gedächtnisstruktur

Wie oben ausgeführt, erhält jedes Objekt und jeder Sachverhalt im Gedächtnis eine Markierung, sobald mit dem Objekt gearbeitet wird (Markiervorgang Ia in Abbildung 3), eine bereits bestehende Markierung wird verstärkt (Markiervorgang Ib). Qualitativ kann zwischen markierten und unmarkierten Objekten unterschieden werden. Stärker markierte Objekte werden leichter gefunden als weniger stark markierte. Ist eine Marke im Zeitverlauf zu weit verblaßt, so wird das betreffende Objekt wieder als unmarkiert wahrgenommen.

Darüber hinaus können Zeiger zu ausgewählten markierten Stellen der Gedächtnisstruktur im STM abgelegt werden. Übersteigt die Anzahl der Zeiger die Kapazitätsgrenze des STM, so wird der älteste Zeiger überschrieben (Markiervorgang II).

In der in Abbildung 3 dargestellten Form tritt der Vorgang des Markierens dann auf, wenn das Individuum im Laufe des Informationsverarbeitungsprozesses ungezielt auf ein Objekt trifft, das im Zusammenhang mit dem bearbeiteten Problem von Interesse ist. Außerdem treten die Markierungsvorgänge als Teile oder Bausteine der Verarbeitungsvorgänge anderer Operatoren auf (vgl. Abbildung 4).
Abbildung 3: Markieren eines Objektes oder einer Relation

3.1.2 Zergliedern eines Objektes in Teile

Abbildung 4: Zergliedern eines Objekts in Teile
3.1.3 Weitere elementare Operatoren

Erfassen von Eigenschaften eines Objekts

Klassifikation und Konkretisierung

Vergleichen hinsichtlich Gemeinsamkeiten und Unterschieden
Dieser Operator hat bereits deutlich komplexeren Charakter als die bisher dargestellten, denn der Vergleichsoperator geht mit zwei Objekten oder Sachverhalten um. Die Vergleichsoperation erfordert, daß jeweils zunächst das "Erfassen von Eigenschaften" für ein Objekt durchgeführt und anschließend festgestellt wird, ob die ermittelte Eigenschaft auf das zweite Objekt ebenfalls zutrifft.

Verallgemeinern bedeutet das Erfassen von gemeinsamen, wesentlichen Eigenschaften, die eine Reihe von Sachverhalten hat. Hier liegt die Kombination aus dem "Vergleichen bezüglich Gemeinsamkeiten" und dem "Abstrahieren" vor.

4. Koordination der Prozesse im kognitiven Apparat

Wie dargestellt setzen sich auch sehr komplexe kognitive Prozesse aus einfachen, elementaren Operatoren zusammen. Die Aggregate können dabei ein beliebig hohes Niveau erreichen, dennoch läßt sich jeder noch so komplexe Gesamtoperator auf eine Kombination überschaubarer elementarer Operatoren zurückführen, die sukzessiv bearbeitet werden können. Für häufig wiederkehrende komplexe Aufgaben können solche komplexen Operatoren fest installiert werden, die dann als feste Handlungsprogramme in der epistemischen Struktur gespeichert sind.

In vielen Fällen ist eine feste Installation jedoch weder sinnvoll noch notwendig, da spezielle komplexe Problemlösungen nur selten mehrfach in identischer Form auftreten. Daher stehen für unbekannte, einmalig oder sehr selten auftretende Probleme die Heuristiken zur Verfügung. Diese schaffen komplexe, zusammengesetzte Informationsverarbeitungsprozeduren, in denen flexible, austauschbare Operatoren der jeweiligen Problemstellung angepaßt werden. Bei der Verwendung dieser Heuristiken muß anhand der übergeordneten Zielsetzung, die das Individuum bezüglich des gegebenen Problems verfolgt, eine entsprechende Auswahl geeigneter Operatoren aus dem flexiblen Operatorinventar erfolgen.
Darüber hinaus müssen die Informationsverarbeitungsprozesse, die im Zusammenhang mit komplexen Problemlösungen durchgeführt werden, auch mit den anderen Prozessen abgestimmt und koordiniert werden, die das Gehirn ebenfalls steuert. Denn es zeigt sich, daß der Mensch zwar bei bestimmten Aktivitäten relativ gut in der Lage ist, sie gleichzeitig auszuführen (z.B. Laufen und Sprechen), bei anderen dagegen nicht (z.B. ein Problem lösen und auf andere Fragen antworten). Grundsätzlich können Tätigkeiten umso schlechter parallel ausgeführt werden, je größer die Interferenz zwischen den Informationen ist, die zu den Tätigkeiten benötigt werden, insbesondere auch, je größer die Informationsverarbeitungs-Belastung bei den einzelnen Tätigkeiten ist.

Prozessoren, die auf verschiedene Teile des Gehirns zugreifen und somit keine Interferenzen aufweisen, können prinzipiell parallel arbeiten, während Prozessoren, die in ähnlicher Weise arbeiten und daher auf gleiche Teile des Gedächtnisses zugreifen müssen, nicht ohne Effizienzverluste gleichzeitig aktiv sein können.

Die Koordination der Aktivierungen und Inaktivierungen von Prozessoren sowie auch die Festlegung der Zielvorgaben insbesondere für die Prozessoren, die mit flexiblen Heurismen arbeiten, erfolgt durch einen übergeordneten Prozessor, der als Supervisor bezeichnet wird. Die Bedeutung des Supervisors geht besonders im Bereich des expliziten Problemlösens bei weitem über die reine Koordinatorfunktion hinaus, vielmehr organisiert der Supervisor von der Zielbildung über die Koordination und Modifikation der Operatoren bis hin zur Kontrolle der Ergebnisse den gesamten Informationsverarbeitungs- und Entscheidungsprozeß.
Literatur

