An Algorithm for the Construction of Homogeneous Games
Joachim Rosenmüller
May 1986
Abstract

Suppose, a weighted majority simple n-person game is to be specified by allotting weight $g_0 = 0$ to k_0 players, weight g_1 to the next k_1 player, ..., weight g_r to the last k_r players; here $g_i \in \mathbb{N}$ is increasing and $k_i \in \mathbb{N}$. ($i = 0, \ldots, r$). A coalition is winning if the total weight of its members is at least $\lambda \in \mathbb{N}$. An algorithm is provided such that, given (g_0, g_1, \ldots, g_r) and (k_0, k_1, \ldots, k_r), every λ is produced which renders the resulting simple game to be homogeneous.
SEC. 1 The matrix of homogeneity

Let \(k = (k_0, \ldots, k_r) \in \mathbb{N}_0^{r+1} \) satisfy

\[
(1) \quad k_0 \geq 0, \quad k_1, \ldots, k_r \geq 1;
\]

a vector \(s = (s_0, \ldots, s_r) \in \mathbb{N}_0^{r+1} \) is a feasible profile (for \(k \)) if \(s \leq k \). Next, let \(g = (g_0, g_1, \ldots, g_r) \in \mathbb{N}_0^{r+1} \) satisfy

\[
(2) \quad 0 = g_0 \leq g_1 \leq g_2 \ldots \leq g_r \neq 0 .
\]

\(g \) induces the function

\[
g : \{s \leq k\} \to \mathbb{N}_0
\]

\[
(3) \quad g(s) = \sum_{i=0}^{r} s_i g_i .
\]

The function \(g \) as well as the pair \(M = (g, k) \) is called a measure. A measure and a constant \(\lambda \in \mathbb{N} \) such that \(g(k) \geq \lambda \) generate a characteristic function \(v = v^M_\lambda : \{s \leq k\} \to \{0, 1\} \) on the profiles of \(k \) via

\[
(4) \quad v(s) = \begin{cases}
1 & g(s) \geq \lambda \\
0 & g(s) < \lambda
\end{cases} \quad (s \leq k)
\]

The familiar framework of n-person cooperative game theory is easily obtained; put \(n = \sum_{i=0}^{r} k_i \) and \(\Omega = 1, \ldots, n \). Decompose

\(\Omega = K_0 + K_1 + \ldots + K_r \) (\(+ = \) "disjoint union") such that \(|K_i| = k_i \). \(\Omega \) is the "set of players" and any coalition \(S \subseteq \Omega \) has a profile \(s = (|S \cap K_0|, \ldots, |S \cap K_r|) \). Then \((M, \lambda) = (g, k; \lambda) \) induce a cf. (in the familiar sense) say, by

\[
w(S) = v^M_\lambda (|S \cap K_0|, \ldots, |S \cap K_r|) = v(s).
\]
Thus, players in K_i have the same weight g_i and there are k_i players with this property. Therefore, $i \in \{0, \ldots, r\}$ (or K_i) is called a **fellowship**. λ is the "majority level".

A profile $s \preceq k$ is winning if $v(s) = 1$ (losing otherwise) and minimal winning if any winning profile $t \preceq s$ satisfies $t = s$.

Profiles will be ordered **lexicographically** (from right to left, i.e., s precedes s' if $s_\rho > s'_\rho$ and $s_i = s'_i$ ($i > \rho$)). The **lex-max** profile is the lexicographically first min-win profile (containing the largest fellows).

A pair $M = (g,k)$ is said to be **homogeneous** w.r.t. $\lambda \in \mathbb{N}$ if $g(k) > \lambda$ and

\[
\text{For any } s \preceq k \text{, } g(s) > \lambda \text{ there is } t \preceq s \text{ such that } g(t) = \lambda
\]

We use the notation $M \text{ hom } \lambda$ in order to indicate homogeneity; $M \text{ hom } 0 \lambda$ means that either $M \text{ hom } \lambda$ or $g(k) < \lambda$.

Assume that $M \text{ hom } \lambda$ and let us construct the **lex-max** profile, say s_0^λ, by collecting first the weights of the largest fellowship, then those of the second largest fellowship etc. until we have the total mass λ is combined. By homogeneity, the majority level is indeed exactly hit by this procedure, i.e., there is $i_0 \in \{1, \ldots, r\}$ and $c \in \mathbb{N}$, $1 \leq c \leq k_{i_0}$ such that

\[
\lambda = cg_{i_0} + \sum_{i=i_0+1}^{r} k_i g_i
\]

and

\[
s_0^\lambda = (0, \ldots, 0, c, k_{i_0+1}, \ldots, k_r)
\]
The remaining players (fellowships) constitute a smaller measure which is a projection of \(M = (g,k) \); this measure is (for \(c < k_{i_0} \))

\[
M^{C}_{i_0} := (g_0, g_1, \ldots, g_{i_0}; k_0, k_1, \ldots, k_{i_0} - c)
\]

or (if \(c = k_{i_0} \))

\[
k_{i_0} = M^{0}_{i_0} := (g_0, g_1, \ldots, g_{i_1}; k_0, k_1, \ldots, k_{i_1 - 1})
\]

Now the remaining players may try to replace a member of the larger fellowships (those already engaged in the lex-max profile) in order to enter a min-win coalition (profile); more precisely, the measure \(M^{C}_{i_0} \) and the weight \(g_j \) \((j > i_0) \) constitute a weighted majority game which, as it turns out, is a homogeneous one. Indeed we have

Lemma 1.1. (The BASIC LEMMA, see [8])

Let \(M = (g,k) \) satisfy (1) and (2) and let \(\lambda \in \mathbb{N}, g(k) \geq \lambda \). Then \(M \) hom \(\lambda \) if and only if there is \(i_0 \in \{1, \ldots, r\} \) and \(c \in \mathbb{N}, 1 \leq c \leq k_{i_0} \) such that (6) is satisfied and

\[
M^{C}_{i_0} \text{ hom } g_j \quad (i_0 \leq j \leq r)
\]

holds true.

Note that \(M^{C}_{i_0} \text{ hom } g_{i_0} \) is equivalent to \(M^{0}_{i_0} \text{ hom } g_{i_0} \).

Let us introduce the following notations

\[
\mathcal{M}^r := \{(g,k) \in \mathbb{N}_0^{2(r+1)} \mid k \text{ satisfies (1)} \quad \text{and } g \text{ satisfies (2)}\}
\]
\((11) \)

\[
\mathcal{M}^0 := \{(0, k_0) \mid k_0 \in \mathbb{N}_0 \}
\]

\[
\mathcal{M} = \bigcup_{r=0}^{\infty} \mathcal{M}^r
\]

For any \(M \in \mathcal{M}^r \), \(m \) denotes "total mass", i.e.

\[
m = \sum_{i=1}^{r} k_i g_i
\]

and indices are carried accordingly, i.e.

\[
i_0 - 1
\]

\[
m_{i_0}^c = \sum_{i=1}^{i_0 - 1} k_i g_i + (k_{i_0} - c) g_{i_0}
\]

etc.

Definition 1.2. Let \(M = (g, k) \in \mathcal{M}^s \) and for \(1 \leq r \leq s \) consider \(M_r = (g_0, g_1, \ldots, g_r; k_0 k_1, \ldots, k_r) \).

For \(1 \leq i_0 \leq r \) and \(1 \leq c \leq k_{i_0} \) consider

\[
\lambda_{i_0}^c = \lambda_{i_0}^c (g, k) = c g_{i_0} + \sum_{i=i_0+1}^{r} k_i g_i
\]

and

\[
c_{i_0}^r = c_{i_0}^r (g, k) = \min \{ c \in \mathbb{N} \mid 1 \leq c \leq k_{i_0}, M_r \text{ hom } \lambda_{i_0}^c \}
\]

(where \(\min \emptyset = \infty \)). Then \(C = (c_{i_0}^r)_{1 \leq i \leq s} \)

\[
C_{i_0}^r = 0 \quad \text{for} \quad r < i
\]

is called the **matrix of homogeneity** of \(M = (g, k) \).

Lemma 1.3. Let \(M \in \mathcal{M}^s \). For \(1 \leq i_0 \leq r \leq s \) and \(1 \leq c \leq k_{i_0} \),

\[
M_r \text{ hom } \lambda_{i_0}^c
\]

if and only if \(c \geq c_{i_0}^r \).
Proof: This follows from the BASIC LEMMA since \(M^C_{i_0} \) hom \(g_j \) for
\[j > i_0 \] implies \(M^C_{i_0} \) hom \(g_j \); see Lemma 2.1. of [8]

Thus, we have now slightly changed our view point: Fix \(M \in \mathfrak{M}^S \) and
consider any "projection" \(M_r \in \mathfrak{M}^R \) \((r \leq s)\). The numbers \(\lambda = \lambda^C_{i_0} \) are
the only candidates such that \((M_r, \lambda^C_{i_0}) \) generates a "homogeneous" cf.
\(\lambda^C_{i_0} \), i.e., such that \(M_r \) hom \(\lambda^C_{i_0} \). Knowledge of the matrix \(C \) is
sufficient in order to decide whether \(M \) hom \(\lambda^C_{i_0} \) holds true. Now,
Lemma 1.1. suggests that homogeneity is a property which is acquired
or disturbed by a recursive procedure.

As has been shown in [8], \(C \) also allows for a recursive computation.

Our present purpose is to exhibit regularity properties of the matrix \(C \).
This will provide faster algorithms for the actual computation of \(C \).
Besides, as has been elaborated in [5], [8], [9] the recursive structure
allows for the definition of certain characters of players (as well as
fellowships and types) in a homogeneous game. These types are the
(familiar) dummy, the sum and the step. It will turn out that some
properties of \(C \) also reflect the "strength" of certain players (fellow-
ships) in the corresponding games in a way such that the character of a
fellowship may be decided upon by inspection of \(C \).

Thus, the matrix \(C \) at once yields all homogeneous games that may result
from any projection \(M_r \) of \(M \in \mathfrak{M}^S \) and shows something about the
strength of the players in these games. Fast algorithms in order to
compute \(C \) are therefore considered to be desirable.
SEC. 2 Properties of C

Lemma 1.3 suggests that, given $M = (g, k) \in \mathcal{K}^S$, it suffices to know the matrix of homogeneity C in order to specify all "majority levels", $\lambda \in \mathbb{N}$ such that $M \hom C \lambda$. Let us, therefore, exhibit some properties of this matrix that will turn out to be useful for a recursive computation. Parts of these arguments we shall quote from [8], however, we want to use the fact that "many" entries of the matrix C are not finite, thus providing eventually a more effective algorithm.

Lemma 2.1. (cf. 2.3. of [8])

Let $M \in \mathcal{K}^S$. Then, for $1 \leq i_0 \leq r \leq s$, we have

$$c_{i_0}^r < \infty \text{ if and only if } M_{i_0-1} \hom g_i \quad (i = i_0, \ldots, r).$$

Proof: $c_{i_0}^r < \infty$ is equivalent to $M_r \hom \lambda_i^{C_{i_0}}$ for some c, $1 \leq c \leq k_{i_0}$ (Definition 1.2.) and by Lemma 1.3. this is equivalent

$$M_r \hom \lambda_i^{C_{i_0}} = \sum_{i = i_0}^{k_{i_0}} k_i g_i$$

Finally, by Lemma 1.1., this is equivalent to

$$M_{i_0-1} \hom g_i \quad (i = i_0, \ldots, r)$$

Lemma 2.2. (cf. 2.3. of [8])

Let $M \in \mathcal{K}^S$. Then

$$c_1^1 = 1$$

and, for $r \geq 2$

$$c_r^r = \begin{cases} 1 & \text{if } M_{r-1} \hom g_r \\ \infty & \text{otherwise.} \end{cases}$$
Proof: \(c_{i_0}^1 = 1 \) follows from the definition of \(C \). In order to check (3), observe that Lemma 2.1. implies that
\[c_r^r < \infty \text{ if and only if } M_{r-1} \text{ hom}_o g_r. \text{ But } M_{r-1} \text{ hom}_o g_r \text{ implies } M^C_r \text{ hom}_o g_r \text{ for all } c \in \mathbb{N}, 1 \leq c \leq k_r, \text{ q.e.d.} \]

Next, let us define the quantity

\[(4) \quad \gamma_{i_0}^r := \min \{ c \mid 1 \leq c \leq k_{i_0}, M^C_{i_0} \text{ hom}_o g_r \}, \]

then, using \(\alpha \lor \beta \) in order to denote the maximum of reals \(\alpha \) and \(\beta \), we have

Lemma 2.3. (cf. [8])

Let \(\mathcal{M} \in M^S \) and \(2 \leq r \leq s \). For \(i_0 < r \) it follows that

\[(5) \quad c_{i_0}^r = c_{i_0}^{r-1} \lor \gamma_{i_0}^r \]

Proof: Obvious, in view of Lemma 1.1. we have

\[c_{i_0}^r = \min \{ c \in \mathbb{N} \mid 1 \leq c \leq k_{i_0}, M^C_{i_0} \text{ hom}_o g_i \text{ } (i=i_0, \ldots, r) \} \]

\[= \min \{ c \in \mathbb{N} \mid 1 \leq c \leq k_{i_0}, M^C_{i_0} \text{ hom}_o g_i \text{ } (i=i_0, \ldots, r-1) \} \]

\[\lor \min \{ c \in \mathbb{N} \mid 1 \leq c \leq k_{i_0}, M^C_{i_0} \text{ hom}_o g_r \} \]

\[= c_{i_0}^{r-1} \lor \gamma_{i_0}^r. \]

Denote by \([\alpha] \) the largest integer less than or equal to \(\alpha \) and put, for \(1 \leq i \leq s \)

\[(7) \quad l_i^i := \begin{cases}
1 & \text{if } g_{i_1} \mid g_i \text{ or } k_{i_1} g_{i_1} \leq g_i \\
& \text{otherwise.}
\end{cases} \]
Lemma 2.4. (cf. [8])

Let \(M \in \mathcal{M}^S \) and \(1 < r \leq s \). Then

\[
 c_{1}^{r} = c_{1}^{r-1} \vee l_{1}^{r}.
\]

(8)

Proof: This follows from 2.3., since

\[
 \gamma_{1}^{r} = \min \{ c \mid 1 \leq c \leq k_{1}, M_{1}^{c} \text{ hom}_{o} g_{r} \}
 = \min \{ c \mid 1 \leq c \leq k_{1}, g_{1} \mid g_{r} \text{ or } k_{1}g_{1} < g_{r} \}
 = l_{1}^{r}
\]

Corollary 2.5. Let \(M = (g,k) \in \mathcal{M}^S \) and let

\[
 C = C(M) = (c_{i}^{r})_{1 \leq i \leq r \leq s}
\]

denote the matrix of homogeneity of \(M \).

Each column of \(C \) is monotone increasing. If there are finite entries in a column at all, then the first entry equals 1.

This is obvious since monotonicity follows from (8) and the shape of the first entry (the diagonal element of \(C \)) is specified by (3).

Corollary 2.6. Let \(M \in \mathcal{M}^S \) and \(2 < r \leq s \). Suppose that

\[
 c_{1}^{r} > c_{1}^{r-1}.
\]

Then

\[
 c_{2}^{r} = \ldots = c_{r}^{r} = \infty
\]

(9)

(and, by monotonicity, \(c_{i}^{j} = \infty \) for \(j \geq r \) and \(2 \leq i \leq r \)).
Proof: If \(c_i^r > c_i^{r-1} \), then \(\gamma_1^r = \gamma_1^{r-1} > 1 \); i.e., in view of (7)

\[g_1 \neq g_r \quad \text{and} \quad k_1 g_1 > g_r \]

It follows that, for any \(i_0, 2 \leq i_0 \leq r \),

\[M_{i_0-1} h \in \mathbb{L}_{i_0} g_r \]

That is, \(c_{i_0}^r = \infty \) by Lemma 2.1., q.e.d.

Consider the matrix \(C = C(M) \). Given \(r, i_0 \), we may say that the entries \(c_{j}^{i}, j \geq r, i_0+1 \leq i \leq r \) constitute the "south-east-stripe" of \(c_{i_0}^r \). Thus, whenever there occurs a jump in the first column, then the entries in the south-east-stripe are all \(\infty \); this suggests vaguely the following form of \(C \):

```
1
... ...
1 ...
1 \infty \infty \infty
```

Now, it turns out, that the principle is a general one: whenever jumps occur in any column, then the south-east-stripe is rendered \(\infty \).

Theorem 2.7. Let \(M \in \mathcal{R}^s \) and \(C \) the matrix of homogeneity. Whenever, for some \(2 \leq i_0 \leq r-1 \leq r \leq s \),

\[c_{i_0}^r > c_{i_0}^{r-1} \]

then
(10) \[c_{i_0}^r = \ldots = c_r^r = \infty \]

(and, by monotonicity \(c_j^j = \infty \) for \(j \geq r \), \(i_0 + 1 \leq i \leq r \)).

Proof: Let \(c = c_{i_0}^{r-1} \). Then we have

\[M_{i_0}^C \hom \rightarrow g_j \quad (i_0 \leq j \leq r - 1) \]

(see e.g. formula (6)). On the other hand, we have \(\gamma_{i_0}^r > c \), thus

\[M_{i_0}^C \hom \rightarrow g_r \]

Now, \(M_{i_0}^C \) is a projection of \(M_{i_0}^C \) and hence we have a fortiori

\[M_{i_0} \hom \rightarrow g_r \]

which by Lemma 2.1. implies \(c_{i_0}^{r-1} = \infty \). Similarly, for any \(i \), \(i_0 \leq i \leq r \), \(M_{i_0}^C \) is a projection of \(M_i \) and thus \(M_i \hom \rightarrow g_r \), implying \(c_i^r = \infty \), q.e.d.

Remark 2.8. The computational procedure for obtaining the matrix \(C \)

is greatly simplified by the fact that frequently \(c_{i_0}^r = \infty \)

is implied by the "south-east-stripe" rule indicated via Theorem 2.7.

However, in some cases we actually need to compute \(c_{i_0}^r \) given that the

entries \(c_1^{r'} \) are already known for \(r' = r \), \(i < i_0 \) and for \(r' < r \), \(i \leq r' \). To this end we proceed as follows.

2.8. A. If \(i_0 = r \), then we know that \(c_r^r = 1 \) if and only if

\[M_{r-1} \hom \rightarrow g_r \]. The matrix of homogeneity w.r.t. \(M_{r-1} \) is

(recursively) known; this is \((c_i^{r'})_{i \leq i < r' \leq r-1} \).
2.8.B. Consider the case that $1 < i_0 < r$. We may assume $c_{i_0}^i = 1$ and $c_{i_0}^r < \infty (i_0 \leq r < r-1)$, for otherwise we have $c_{i_0}^r = \infty$ by monotonicity. Thus we have

\[(11) \quad M_{i_0}^{i-1} \hom g_{i_0}\]

(by Theorem 2.1.). Given this hypothesis, we have to compute

\[(12) \quad \gamma_{i_0}^r = \min \{c \in \mathbb{N} \mid 1 \leq c \leq k_{i_0}, M_{i_0}^c \hom g_r\} .\]

To this end we first apply a test in order to check whether

\[(13) \quad M_{i_0}^{i-1} \hom g_r\]

holds true. (Again, the C-matrix for $M_{i_0}^{i-1}$ is already known)

2.8.B.a. If the answer is \textbf{no} and $M_{i_0}^{i-1} \hom g_r$ then

\[\gamma_{i_0}^r = \infty\]

as $M_{i_0}^{i-1} = M_{i_0}^c$.

2.8.B.b. If the answer is \textbf{yes} and $M_{i_0}^{i-1} \hom g_r$, then, by the same reasoning we have $\gamma_{i_0}^r \leq k_{i_0}$ (i.e. $c = k_{i_0}$ is admitted in (12); thus, in particular the "min" operation in (12) is not taken w.r.t. the empty set). Our next test consists of a check whether

\[(14) \quad g_{i_0} \mid g_r\]

holds true.
2.8.B.b.a. If "yes", and \(g_{i_0} \mid g_r \), then (13) implies \(M_{i_0}^1 \hom g_{i_0} \) and hence
\[
\gamma_{i_0}^r = 1.
\]
Indeed, if \(M_{i_0}^{i_0-1} \hom g_{i_0} \) then \(M_{i_0}^1 \hom g_r \) is trivial and if \(m_{i_0}^{i_0-1} < g_{i_0} \) then \(M_{i_0}^1 \hom g_r \) is a simple exercise.

2.8.B.b. If "no", and \(g_{i_0} \not\mid g_r \), then we call upon Lemma 3.4. in [8] which tells us that, given the present conditions
\[
M_{i_0}^c \hom g_r
\]
is equivalent to
\[
M_{i_0}^{i_0-1} \hom (g_r - (k_{i_0} - c) g_{i_0})
\]
if \((k_{i_0} - c) g_{i_0} < g_r \), that is, if \(c g_{i_0} > k_{i_0} g_{i_0} - g_r \).

Now, for \(c = k_{i_0} \) this is satisfied, indeed, we know already that
\[
\gamma_{i_0}^r < k_{i_0}.
\]
Hence, for \(c = k_{i_0} - 1, k_{i_0} - 2, \ldots, 1 \) let us check whether
\[
(k_{i_0} - c) g_{i_0} < g_r
\]
and
\[
M_{i_0}^{i_0-1} \hom (g_r - (k_{i_0} - c) g_{i_0})
\]
are simultaneously satisfied. Again the \(c \)-matrix for \(M_{i_0}^{i_0-1} \) is known.

Once for some \(c \) the answer is "no" we put \(\gamma_{i_0}^r = c + 1 \). If the answer is "yes" for all \(c \), we put \(\gamma_{i_0}^r = 1 \).
Presumably, it is preferable to check for \(t = 1, 2, \ldots, k_{i_0} - 1 \) (i.e. \(t = k_{i_0} - c \)) whether

\[
(17) \quad t g_{i_0} < g_r
\]

\[
(18) \quad M_{i_0-1} \hom_0(g_r - t g_{i_0})
\]

If, for some \(t \) the answer is "no" put

\[
(19) \quad \gamma^r_{i_0} = k_{i_0} - t + 1
\]

and if the answer is "yes" always, put

\[
\gamma^r_{i_0} = 1.
\]

Remark 2.9. Any test for homogeneity, given that the matrix \(C \) is known, takes place according to Lemma 1.3. That is, given \(M_r \) and \(\lambda \), check first whether there is \(i_0, 1 \leq i_0 \leq r \) and \(c, 1 \leq c \leq k_{i_0} \) such that \(\lambda = \lambda_{i_0}^c \). Then check whether \(c \geq c_{i_0}^r \).
SEC. 3 The algorithm

Collecting the pieces we now want to describe an algorithm for the matrix of homogeneity of a given measure \(M = (g,k) \).

Now, for the sake of a consistent representation it is useful to carry a fellowship with players having weight 0; i.e. to consider \(k \) and \(g \) as specified by (1) and (2) of SEC. 1, where \(g_0 = 0 \). However, for the present algorithm this is not necessary; thus we deal with \(g = (g_1, \ldots, g_r) \in \mathbb{N}^r \) and \(k = (k_0, \ldots, k_r) \in \mathbb{N}^r \).

The algorithm is described in terms of "functions" defined on vectors of integers. The essential one is the last function, called \(CE \), which yields the matrix \(C \). However, the functions defined by I, II, III are necessary because of the recursive nature of our procedure.

I. Function IOC \((g; k; \lambda)\).

Entries: \(g = (g_1, \ldots, g_r) \in \mathbb{N}^r \); \(k = (k_1, \ldots, k_r) \in \mathbb{N}^r \); \(\lambda \in \mathbb{N} \).

Output: \((i_0, c) \in \mathbb{N}_0 \times \mathbb{N}_0 \).

Task: Determines \(i_0, c \) such that \(\lambda = \lambda_{i_0}^c \) or otherwise reports failure if no such quantities exist.

Procedure:

1. Choose \(i_0 \in \mathbb{N} \) such that

\[
\sum_{i=i_0}^{i+1} k_i g_i < \lambda \leq \sum_{i=i_0}^{i+1} k_i g_i
\]

2. Put \(\Delta := \lambda - \sum_{i=i_0}^{i+1} k_i g_i \)
3. If \(g_{i_0} \mid A \), then \(\Rightarrow 4 \); otherwise \(\Rightarrow 5 \)

4. Put \(c := \frac{A}{g_{i_0}} \); put IOC \((g; k; \lambda) = (i_0, c) \Rightarrow 6 \)

5. Put \(\text{IOC} (g; k; \lambda) = (0, 0) \Rightarrow 6 \)

6. END.

II. Function HOMN \((g; k; \lambda; c,)\)

Entries: \(g = (g_1, \ldots, g_r) \in \mathbb{N}^r \)
\(k = (k_1, \ldots, k_r) \in \mathbb{N}^r \)
\(\lambda \in \mathbb{N} \)
\(c. = (c_1, \ldots, c_r) \in \mathbb{N}^r \)

Output: \(+ \) or \(- \) (HOMN is a "Boolean function")

Task: Given (the last row of the matrix C) \(c. \), HOMN decides whether \(M = (g, k) \text{ hom}_0 \lambda \) or not.

Procedure:
1. If \(\sum_{i=1}^{r} k_i g_i \leq \lambda \), then put \(\text{HOMN} (\ast, \ast, \ast, \ast) = + \) and \(\Rightarrow 4 \). Otherwise \(\Rightarrow 2 \).

2. If \(\text{IOC} (g; k; \lambda) = (0, 0) \), then put \(\text{HOMN} (\ast, \ast, \ast, \ast) = - \) and \(\Rightarrow 4 \).
 Otherwise put \((i_0, c) := \text{IOC} (g; k; \lambda) \) and \(\Rightarrow 3 \).
3. If \(c \geq c_{i_0} \), then put \(\text{HOMN} (\cdot, \cdot, \cdot, \cdot, \cdot) \)
\[= + \] and \(\Rightarrow 4 \). Otherwise, put \(\text{HOMN} (\cdot, \cdot, \cdot, \cdot, \cdot) \)
\[= - \] and \(\Rightarrow 4 \).

4. END.

III. Function \(\text{GAM} (g; k; g_{i_0}; g_r; c_r) \)

Entries:
\[
g = (g_1, \ldots, g_{i_0-1}) \in \mathbb{N}_{i_0-1}^i
\]
\[
k = (k_1, \ldots, k_{i_0-1}) \in \mathbb{N}_{i_0-1}^i
\]
\[
g_{i_0}, g_r \in \mathbb{N}
\]
\[
c_r = (c_1, \ldots, c_{i_0-1}) \in \mathbb{N}_{i_0-1}^i
\]

Output:
\[
\gamma_{i_0}^r \in \mathbb{N} \cup \{\infty\}
\]

Task: Computes \(\gamma_{i_0}^r \) given row \(i_0 \) of \(C \).

Procedure:
1. If \(\text{HOMN} (g; k; g_r; c_r) = - \), then put \(\text{GAM} (\cdot, \cdot, \cdot, \cdot, \cdot) = \infty \)
and \(\Rightarrow 9 \). Otherwise \(\Rightarrow 2 \).

2. If \(g_{i_0} \mid g_r \), then put \(\text{GAM} (\cdot, \cdot, \cdot, \cdot, \cdot) = 1 \) and \(\Rightarrow 9 \).
Otherwise \(\Rightarrow 3 \).

3. Let \(t = 1 \) and \(\Rightarrow 4 \).

4. If \(t g_{i_0} < g_r \) and \(\text{HOMN} (g; k; g_r - tg_{i_0}; c_r) = + \),
then \(\Rightarrow 5 \). Otherwise \(\Rightarrow 7 \).

5. \(t \rightarrow t + 1 \); \(\Rightarrow 6 \).
6. If \(t \leq k_{i_0} - 1 \) then \(\Rightarrow 4 \). Otherwise \(\Rightarrow 7 \).

7. Put \(\text{GAM} (\ast, \ast, \ast, \ast, \ast) = 1 \) and \(\Rightarrow 9 \).

8. Put \(\text{GAM} (\ast, \ast, \ast, \ast, \ast) = k_{i_0} - t + 1 \) and \(\Rightarrow 9 \).

9. END.

IV. Function CE \((g, k)\)

Entries: \(g = (g_1, \ldots, g_s) \in \mathbb{N}^s \)
\(k = (k_1, \ldots, k_s) \in \mathbb{N}^s \)

Output: Matrix \(C = (c_{i,r})_{i,r=1,\ldots,s} \in \mathbb{N}^{s \times s} \)
\(c_{i,r} = 0 \ (i > r) \) (or \(C \) triangular and \(c_{i,r} \) not defined for \(i > r \))

Procedure:
1. Put \(c_{i}^r = 0 \) for all \(i \) and \(r \).
2. Put \(c_{1}^1 = 1 \)
3. For \(j = 1, \ldots, s \) put \(1_{j}^1 = 1 \) if \(k_1 g_1 < g_j \) or \(g_1 \mid g_j \).
 Otherwise, put \(1_{j}^1 = k_1 - \frac{g_j}{g_1} \).
4. If \(k_1 g_1 < g_2 \) or \(g_1 \mid g_2 \), then put \(c_{1}^2 = 1 \) and \(c_{2}^2 = 1 \).
 Otherwise put \(c_{1}^2 = 1^2 \) and \(c_{2}^2 = m \).
5. Put \(r = 3 \) and \(i_0 = 1 \).
6. If \(c_{i_0}^r = m \), then \(\Rightarrow 12 \). Otherwise \(\Rightarrow 7 \).
REFERENCES

"WIRTSCHAFTSTHEORETISCHE ENTSCHEIDUNGSFORSCHUNG"

A series of books published by the Institute of Mathematical Economics, University of Bielefeld

Wolfgang Rohde: A Game Theoretical Model of a Futures Market Vol. 1
Klaus Binder: Oligopolistic Pricing and Market Entry Vol. 2
Karin Wagner: A Model of Pricing in the Cement Industry Vol. 3
Rolf Stoecker: Experimental Investigation of Decision-Behavior in Bertrand-Oligopoly Games Vol. 4
Angela Klopstech: Market processes with Bounded Rationality Vol. 5
Götz Huttel: On Public Goods and Location Conflicts Vol. 6