A Markovian Decision Process With Hidden States and Hidden Costs

November 1977
Abstract

A Markovian Decision Process (MDP) is considered in which it is not permitted to observe the state at any observation point as well as the associated cost.
It is shown that for a particular class of a MDP with uncountable state space and finite action space the Howard Policy Improvement Routine (HPIR) cannot be used for finding an optimal policy. Some immediate results out of this model are presented.
A MARKOVIAN DECISION PROCESS WITH HIDDEN STATES
AND HIDDEN COSTS

Hans W. Gottinger

1. INTRODUCTION

A Markovian Decision Process (MDP) is a stochastic process that describes the
evolution of a dynamic system controlled by sequences of decisions or actions.
For a general reference book, also listing various applications, see Derman [2].
Consider the MDP defined by the following objects;

State Space $S = \{1, 2, 3, \ldots, N\}$, for finite N,
Action Space $A = \{a_1, a_2, \ldots, a_m\}$, for finite M,
Cost Set $C = \{C(i, a_j) : i \in S, a_j \in A\}$,
Transition Probabilities $= \{q_{ij}(a_k) : i, j \in S, a_k \in A\}$,
Discount Factor δ, such that $0 < \delta < 1$.

The problem is to find a policy for taking actions which minimizes the
total expected discounted cost over the infinite future, given the
initial state of the process.

A stationary policy for a MDP is defined as a map $f : S \rightarrow A$.
Howard [4] analyzed MDP's having finite state and action spaces and
proved that an optimal stationary policy (i.e. a stationary policy
which minimizes the total expected discounted cost) always exists.
The Howard Policy Improvement Routine (HPIR) is a method by which an optimal
stationary policy for MDP may be found.

Suppose now, that we are given the MDP as defined above, but
that we are not allowed to observe the state at any observation point$t = 0, 1, 2, \ldots$, i.e. the state is hidden.
Suppose also, that we are not allowed to observe
the cost $C(X_t,a_t)$ at any observation points $t = 0, 1, 2, \ldots$. In other words, the total cost will be assessed at infinity. Finally, suppose that we are allowed to observe the initial probability distribution over the state space S. In this paper we develop a model for analyzing this problem and present some preliminary results.

2. **THE MODEL**

In an effort to analyze the above problem, we define the following objects.

$$S = \{\text{All probability distributions over } S\}$$

$$= \{\bar{P} = (P_1, P_2, \ldots, P_N) \in \mathbb{E}_N : 0 \leq P_i \leq 1, \sum_{i=1}^{N} P_i = 1, \text{ for } i = 1, 2, \ldots, N\},$$

where \mathbb{E}_N is N-dimensional Euclidean space and we let P_i be the probability of being in state i;

the set $A = A = \{a_1, a_2, \ldots, a_M\}$; the transition matrices $Q(a_K) = [q_{ij}(a_K)]$; and the cost vectors $\bar{C}(a_K) = (C[1,a_K], \ldots, C[N,a_K])$.

We note that if the distribution over S is $\bar{P} \in S$ and we take action $a_K \in A$, then the new distribution over S will be given by $\bar{P}' = \bar{P}Q(a_K)$. The expected cost, $C(\bar{P},a_K)$, of having the distribution \bar{P} and taking action a_K will be given as the inner product

$$C(\bar{P},a_K) = \langle \bar{P}, \bar{C}(a_K) \rangle = \sum_{i=1}^{N} P_i C(i,a_K).$$
At this point, we note that the new distribution \overline{P} depends only on the current distribution \overline{P} and the current action a_v, i.e. $\overline{P} = \overline{P} Q(a_v)$, therefore, we see that we now have an extended Markovian Decision Process (EMDP) defined by the objects

State Space $\underline{S} = \{\text{all probability distributions over } S\}$,
Action Space $\underline{A} = A = \{a_1, a_2, \ldots, a_M\}$, and
Cost Set $\underline{C} = \{C(\overline{P}, a) : \overline{P} \in \underline{S}, a \in \underline{A}\}$.
Discount Factor α, such that $0 < \alpha < 1$.

The set of all stationary policies for EMDP is given by $F = \{f : \underline{S} \mapsto \underline{A} = A\}$. For any such $f \in F$ and initial state $\overline{P}_0 \in \underline{S}$, the total expected discounted cost is given by

$$V_f(\overline{P}_0) = \sum_{t=0}^{\infty} \alpha^t C(\overline{P}_t, f[\overline{P}_t])$$

$$= \sum_{t=0}^{\infty} \alpha^t \langle f(\overline{P}_t), C(\overline{P}_t) \rangle,$$

where

$$\overline{P}_t = \overline{P}_0 \cdot Q(f[\overline{P}_0]) \cdot Q(f[\overline{P}_1]) \cdots Q(f[\overline{P}_{t-1}])$$

for $t = 1, 2, 3, \ldots$.

The EMDP as defined above (having uncountable state space and finite action space) belongs to the class of problems analyzed by Blackwell [1]. His analysis showed that an optimal stationary policy always exists and that the HPIR may be extended to this problem. However, in the finite state-finite action problems the set of all stationary policies is finite and, therefore, the HPIR will produce an optimal stationary policy in a finite number of steps. In the uncountable state-finite action problem, the set of all stationary policies is uncountable and, therefore, the HPIR cannot, in general, be used as a method for actually finding an optimal policy.
3. SPECIAL POLICIES OF EMDP

convex-stationary policies

With \(F \) as the set of all stationary policies for EMDP, we define the set \(\mathcal{F}_C \), of all convex-stationary policies for EMDP, as

\[
\mathcal{F}_C = \{ f \in F : f^{-1}(a_k) \text{ is a convex set for each } a_k \in A \}.
\]

constant sequence policies

Given the action space \(A = \{a_1, a_2, \ldots, a_N\} \), we define \(A = A a A x A x A \), \(N \)-factors, \(N = 1, 2, 3, \ldots \), to be the set of all sequences of length \(N \) of elements of \(A \), and we define \(A = A a A x A x A \), to be the set of all infinite sequences of elements of \(A \). For any finite sequence \(S \in A \), \(N \geq 1 \), we define the sequence \(S^K = S, S, \ldots, S \), \(K \)-factors, and \(S^\infty = S, S, S, \ldots \). For any finite sequences \(S_1 \) and \(S_2 \), we define \(A(S_1; S_2) = A(S_1, S_2) \) to be the set consisting of the two action sequences \(S_1 \) and \(S_2 \) and

\[
A(S_1, S_2) = A(S_1; S_2) x A(S_1; S_2) x \ldots
\]

\(S \infty \) is the set of all infinite sequences of elements of \(A(S_1; S_2) \). For any finite sequence \(S = a_1, a_2, \ldots, a_N \), \(N \geq 1 \), \(a_i \in A \), we define

\[
L_S(\overline{F}) = \sum_{t=0}^{N-1} \alpha^t C(\overline{F}_t, a_{t+1}),
\]

for \(\overline{F} \in \mathcal{F}_C \) and \(\overline{P}_0 = \overline{P} \), to be the cost of starting at \(\overline{F} \) and operating for \(N \) time periods when using the \(i^{th} \) entry in \(S \), \(1 \leq i \leq N \), as the action to be taken at the \(i^{th} \) observation time. We say that \(L_S(\overline{F}) \) is the cost of using the finite sequence \(S \), for all initial \(\overline{F} \in \mathcal{F}_C \). If \(S \in A^\infty \), we define the constant sequence policy \((S) \), to be the policy which uses the sequence \(S \) when starting at any initial \(\overline{F} \in \mathcal{F}_C \), we define \((A^\infty) \) to be the set of all such policies and we use \(V(S) \) (.), in place of \(L(S)(.) \), for the cost of the policy \((S) \).
4. DIRECT PROPERTIES OF EMDP

Lemma 1: The cost function, \(V(r) \), for any policy \(r \in \mathcal{A}^\infty \) is linear on \(\mathcal{S} \).

Proof: Let the sequence \(rc^\infty \) be given by \(r = a_1, a_2, a_3, \ldots \). Now, for any points \(\tilde{P}, \tilde{P}^r, \tilde{P}^{\|} \) in \(\mathcal{S} \) such that \(\tilde{P} = \lambda \tilde{P}^r + (1-\lambda) \tilde{P}^{\|} \) for some \(\lambda \in [0,1] \) we have, (with \(Q(a_o) = \) the Identity Operator),

\[
V(r)(\tilde{P}) = \sum_{t=0}^{\infty} \alpha^t C(\tilde{P}, a_{t+1})
\]

\[
= \sum_{t=0}^{\infty} \alpha^t \left(\tilde{P}Q(a_o)Q(a_1) \ldots Q(a_t) \right)
\]

\[
+ \lambda \sum_{t=0}^{\infty} \alpha^t \left(\tilde{P}^rQ(a_o)Q(a_1) \ldots Q(a_t) \right)
\]

\[
+ (1-\lambda) \sum_{t=0}^{\infty} \alpha^t \left(\tilde{P}^{\|}Q(a_o)Q(a_1) \ldots Q(a_t) \right)
\]

\[
= \lambda V(r)(\tilde{P}^r) + (1-\lambda) V(r)(\tilde{P}^{\|})
\]

or

\[
V(r)(\lambda \tilde{P}^r + (1-\lambda) \tilde{P}^{\|}) = \lambda V(r)(\tilde{P}^r) + (1-\lambda) V(r)(\tilde{P}^{\|}).
\]

For any stationary policy \(f \) and any \(\tilde{P} \in \mathcal{S} \), we define the sequence \(S(\tilde{P}, f) \in \mathcal{A}^\infty \),

\[
S(\tilde{P}, f) = \{a_t\}, \text{ by } a_{t+1} = f(\tilde{P}_t),
\]

\[
\tilde{P}_{t+1} = \tilde{P}_t Q(f(\tilde{P}_t)), \text{ for } t = 0,1,2, \ldots, \text{ and } \tilde{P}_0 = \tilde{P}.
\]

We say that \(S(\tilde{P}, f) \) is the sequence generated at \(\tilde{P} \) when the stationary policy \(f \) is used.

Lemma 2: For any stationary policy \(f \) and any \(\tilde{P} \in \mathcal{S} \), we have
\[V_f(\bar{P}) = V(S[\bar{P}, f]) (\bar{P}), \text{ where } V_f(\bar{P}) \text{ is the cost of using} \]
the stationary policy \(f \) and starting at \(\bar{P} \).

Proof: By definition of \(S(\bar{P}, f) \).

Theorem 1: The optimal cost function is concave on \(S \).

Proof: Let \(f^* \) be optimal. Lemmas 1 and 2 show that at each \(\bar{P} \in S \)

\[V_{f^*}(\bar{P}) = V(S[\bar{P}, f^*]) (\bar{P}) = \inf_{S \in A} V(S) (\bar{P}) \]

Therefore, we see that at each point \(\bar{P} \in S \), \(V_{f^*}(\bar{P}) \) is the infimum over
a set of linear functions and hence \(V_{f^*} \) is concave.

Next we prove that the optimal cost function is continuous on
\(S \) by making use of the following representation. Let \(B \) be the set
of all bounded metric functions on \(S \), see Dunford and Schwartz[3]Define a norm on \(B \)
by:

\[||V|| = \sup_{\bar{P} \in S} |V(\bar{P})|, \text{ for any } V \in B. \]

Next, define the operator \(U : B \rightarrow B \) by

\[(UV)(\bar{P}) = \min_{a_K \in A} \{ L(\bar{P}) + aV(PQ[a_K]) \}. \]

In Lemma 3, we state some results presented in Reference [1].

Lemma 3.

(i) \(U \) is a contraction operator

(ii) For any \(V \in B \), the sequence \(U^nV \) converges to the
optimal cost function \(V_{f^*} \).

(iii) The optimal cost function, \(V_{f^*} \), is the unique solution
to \(UV_{f^*} = V_{f^*} \).

We now have the following Theorem.
THEOREM 2: The optimal cost function is uniformly continuous on S.

Proof: For any $u \in B$, we have

$$u_n = u^n u + V_{f^*} \text{ as } n \to \infty.$$

We also have

$$u_{n+1}(P) = \min_{a_k \in A} \{ L_{a_k}(P) + a u_n(PQ[a_k]) \}$$

for $P \in S$. Therefore, we see that since $L_{a_k}(\cdot)$ is continuous for each $a_k \in A$, each u_n will be continuous if $u = u_0$ is continuous. The convergence of $U_n \to V_{f^*}$ is uniform because U is a contraction operator, i.e.

$$||U_n - V_{f^*}|| \leq a^n ||u - V_{f^*}||.$$
REFERENCES

