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Social choice of convex risk measures through
Arrovian aggregation of variational preferences∗
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Abstract
This paper studies collective decision making with regard to convex

risk measures: It addresses the question whether there exist non-
dictatorial aggregation functions of convex risk measures satisfying
Arrow-type rationality axioms (weak universality, systematicity, Pareto
principle). Herein, convex risk measures are identi�ed with variational
preferences on account of the Maccheroni�Marinacci�Rustichini (2006)
axiomatisation of variational preference relations and the Föllmer�
Schied (2002, 2004) representation theorem for concave monetary utility
functionals.

We prove a variational analogue of Arrow's impossibility theorem
for �nite electorates. For in�nite electorates, the possibility of rational
aggregation depends on a uniform continuity condition for the variational
preference pro�les; we prove variational analogues of both Campbell's
impossibility theorem and Fishburn's possibility theorem. The proof
methodology is based on a model-theoretic approach to aggregation theory
inspired by Lauwers�Van Liedekerke (1995).

An appendix applies the Dietrich�List (2010) analysis of majority
voting to the problem of variational preference aggregation.
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1 Introduction
Convex risk measures can be represented as negated maxmin expected utility
functions with additive convex lower-semicontinuous penalty (Föllmer and
Schied [11, 12]), which in turn are in a one-to-one correspondence with the
set of so-called variational preference relations (Maccheroni, Marinacci and
Rustichini [23]). Given such an individual decision-theoretic foundation for
convex risk measures, it is only natural to study the aggregation problem
for convex risk measures as an aggregation problem for variational preference
relations.

Whilst classical preference aggregation theory does not provide suitable
methods to study the aggregation of variational preferences, the scope of
aggregation theory has developed considerably during the past decade: It now
encompasses aggregation problems of very general form, including even the
aggregation of logical propositions.

One of the most recent developments among these generalisations of
classical (Arrovian) preference aggregation theory concerns the aggregation of
relational structures (model aggregation). This approach can best be seen as
a continuation of Lauwers and Van Liedekerke's far-sighted paper [20] and was
elaborated systematically recently by Herzberg and Eckert [15, 16].1

It is a rather natural methodological choice to employ model aggregation
theory in our analysis of variational preference aggregation, on account of the
intrinsic emphasis which model aggregation lays on semantics (in comparison
with most of the judgment aggregation literature) and also because of its
historical roots in preference aggregation theory through the work of Lauwers
and Van Liedekerke [20]. (Other general approaches to aggregation theory
can be found in the literature on judgment aggregation, including the abstract
aggregation theories of Nehring and Puppe [26] and of Dokow and Holzman [9]
and, in particular, the rich body of work by List and Pettit [21], Dietrich and
List [5, 6, 7], and Dietrich and Mongin [8].)

This methodology enables us to prove variational analogues of three of
the most important (im)possibility theorems of social choice theory: those of
Arrow, Fishburn, and Campbell. Moreover, it may well be possible to apply the
same proof methodology to obtain similar results for multiple-priors preferences
(which can be represented by coherent risk measures) and perhaps ultimately
even for dynamic variational or multiple-priors preferences.

The paper is structured as follows: Section 2 reviews the axioms and the
representation theorem of variational preferences and relates them to convex risk
measures. Section 3 proposes a formal framework for an Arrovian aggregation
theory of variational preferences, within which Section 4 formulates the main
(im)possibility results of this paper. Section 5 then describes brie�y the ideas
behind the proof methodology (model aggregation theory), while Section 6
discusses possible extensions and future research.

In an appendix, we also apply Dietrich and List's [7] account of majority
voting to the problem of variational preference aggregation. The fruit is a
possibility theorem, but at the cost of considerable and � at least at �rst sight
� rather unnatural restrictions on the domain of the variational preference
aggregator.

1For another recent application of that approach � to the problem of representative-agent
microfoundations for certain parametrised aggregator domains � see Herzberg [14].
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2 Variational preferences and convex risk
measures

Consider a �nite set S, called the set of states of the world, let X be a convex
subset of a vector space Y with more than one element, called the set of
consequences, let F be the set of all functions from S to X. Then, F is a convex
subset of the vector space Y S . Let Fc be the set of all constant functions from S
to X. Every element x ∈ X can be identi�ed with the constant function s 7→ x
in F and thus with an element of Fc.

Let us now introduce axioms for a binary relation % with symmetric part ∼
(i.e. f ∼ g if and only if f % g and g % f) and asymmetric part Â (i.e. f Â g
if and only if f % g but g 6∼ f); our formulation of the axioms is borrowed from
Maccheroni, Marinacci and Rustichini [23, p. 1453].

De�nition 1. A binary relation % on F with symmetric part ∼ and asymmetric
part Â is a variational preference ordering or convex risk-preference ordering if
and only if it satis�es all of the following axioms:

(A1) Weak order properties. For all f, g ∈ F, either f % g or g % f
(completeness); for all f, g, h ∈ F, if f % g and g % h, then f % h
(transitivity).

(A2) Weak certainty independence. For all f, g ∈ F, x, y ∈ Fc and α ∈ (0, 1),
if

αf + (1− α)x % αg + (1− α)x,

then
αf + (1− α)y % αg + (1− α)y.

(A3) Continuity. For all f, g, h ∈ F, the sets

{β ∈ [0, 1] : βf + (1− β) g % h}

and
{β ∈ [0, 1] : h % βf + (1− β) g}

are closed.

(A4) Monotonicity. For all f, g ∈ F, if f(s) % g(s) for all s ∈ S, then f % g.

(A5) Uncertainty aversion. For all f, g ∈ F and α ∈ (0, 1), if f ∼ g, then
αf + (1− α) g % f .

(A6) Non-degeneracy. There exist f, g ∈ F such that f Â g.

Remark 2. Let % be a binary relation on F with symmetric part ∼ and
asymmetric part Â.

1. If % satis�es completeness (A1a), then

f % g ⇔ f 6≺ g

for all f, g ∈ F.
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2. If % satis�es completeness (A1a), then % satis�es continuity (A3) if and
only if for all f, g, h ∈ F and all β ∈ [0, 1], there exist α, γ ∈ [0, 1] such
that

• (α, γ) ⊆ {δ ∈ [0, 1] : δf + (1− δ) g % h} if βf + (1− β) g % h, and
• (α, γ) ⊆ {δ ∈ [0, 1] : h % δf + (1− δ) g} if h % βf + (1− β) g,

while either

• 0 ≤ α < β < γ ≤ 1 or
• 0 = α = β < γ ≤ 1 or
• 0 ≤ α < β = γ = 1.

The identi�cation of variational preference relations with convex risk-
preference orderings can be justi�ed as follows: On the one hand, Maccheroni,
Marinacci and Rustichini [23, pp. 1453, 1456] have extended previous work
by Gilboa and Schmeidler [13] and established that a relation % satisfying
axioms (A1-A6) allows for a representation in terms of a maxmin expected
utility function with additive convex lower-semicontinuous penalty: A binary
relation % on F is a variational preference relation if and only if there exists a
nonzero linear function u : X → R and a convex lower-semicontinuous function
c : ∆ → [0,+∞] (∆ being the set of all probability measures on S) whose
in�mum is > −∞ such that for any f, g ∈ F, one has

f % g ⇔ min
p∈∆

(∫
u ◦ f dp+ c(p)

)
≥ min

p∈∆

(∫
u ◦ g dp+ c(p)

)
.

On the other hand, Föllmer and Schied [11, 12] have demonstrated that convex
risk measures can be represented as negated maxmin expected utility functions
with additive convex lower-semicontinuous penalty and �real consequences� (i.e.
X ⊆ R). Therefore, variational preference relations are the ordinal equivalents
of convex risk measures.

In our investigation of aggregation of variational preference orderings (i.e.
convex risk-preference orderings), it will be helpful to have a more �quantitative�
notion of continuity at hand, in order to distinguish degrees of continuity. For
this purpose we introduce the notion of a witness to continuity. The following
de�nition of being a �witness to continuity� is motivated by the role which the
scalars α, γ play in the equivalent characterisation of continuity in Remark 2.

De�nition 3. Let f, g, h ∈ F and β ∈ [0, 1]. A pair of real numbers (α, γ) ∈
[0, 1]2 is called a witness-pair to the continuity of % along f, g, h ∈ F in β if
and only if for all δ ∈ (α, γ), one has

• δf + (1− δ) g ≺ h if βf + (1− β) g ≺ h and

• h ≺ δf + (1− δ) g if h ≺ βf + (1− β) g,

whilst either

• α < β < γ or

• 0 = α = β < γ or

• α < β = γ = 1.
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A real number ε ∈ [0, 1] is called a witness to the continuity of % along f, g, h ∈ F

in β if and only if there exists some α ∈ [0, 1] or γ ∈ [0, 1] such that either (α, ε)
or (γ, ε) is a witness-pair to the continuity of % along f, g, h ∈ F in β.

With this de�nition, we can now rephrase Remark 2:

Remark 4. If % satis�es completeness (A1a), then % satis�es continuity (A3)
if and only if for all f, g, h ∈ F and all β ∈ [0, 1] there exists a witness to the
continuity of % along f, g, h ∈ F in β.

3 Aggregation of variational preferences
Consider a set N (�nite or in�nite), which we shall call population or electorate.
Elements of N are called individuals, subsets of N are called coalitions. Suppose
that each individual i ∈ N is endowed with a variational preference ordering %i

(as de�ned in Section 2); any such resulting N -sequence % = (%i)i∈N is called
a variational preference pro�le. In various circumstances � for instance, in the
course of making certain policy choices � the question will arise whether one
can aggregate the individual variational preference orderings and obtain a social
variational preference ordering (i.e. an aggregate of the individual variational
preferences %i which itself happens to be variational preference relation). And
if so, are there any rules, satisfying certain rationality conditions, which can
be used to assign a (social) variational preference ordering to all variational
preference pro�les � or at least to a large class of variational preference pro�les?

We shall show that any such rule whose domain encompasses a rich class
of variational preference pro�les must be dictatorial in the case of �nite Nand
thus establish an equivalent of Arrow's [1] impossibility theorem for variational
preference aggregation. For the case of in�nite N , we shall �rst prove an
impossibility result under the assumption of an even more comprehensive
aggregator domain, thus obtaining an equivalent of Campbell's [3] impossibility
theorem for variational preference aggregation). Secondly, we shall show a
possibility result for in�niteN under the assumption that the aggregator domain
contains only uniformly continuous variational preference pro�le; this result
can be seen as an variational-preference analogue of Fishburn's [10] possibility
theorem.

As we shall see in an appendix, on certain restricted domains of pro�les for
�nite electorates, the majority voting rule � which also satis�es two important
rationality axioms � can be used to obtain a social variational preference
ordering.

4 Main results: Variational preference
aggregation for rich aggregator domains

Denote the set of all variational preference relations on F by P.
In this paper, a preference aggregator is a map F with domain dom(F ) ⊆ PN

whose range is a set of complete binary relations on F. A variational preference
aggregator or convex risk-preference aggregator is a map F from a subset
dom(F ) ⊆ PN to P. A preference aggregator F is said to be
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• universal if and only if dom(F ) = PN (so that F : PN → P);

• weakly universal if and only if dom(F ) is a rich aggregator domain. Herein,
a subset D ⊆ PN is called a rich aggregator domain if and only if there are
f, f ′, g, g′ ∈ F and variational preference orderings %1,%2,%3 such that

� f %1 g, f
′ %1 g

′, f %2 g, f
′ ≺2 g

′, f ≺3 g, f
′ %3 g

′, and
� {%1,%2,%3}N ⊆ D;

• systematic if and only if for every % ∈ dom(F ) and all f, f ′, g, g′ ∈ F with
{i ∈ N : f %i g} = {i ∈ N : f ′ %i g

′} one has

f F
(
%

)
g ⇔ f ′ F

(
%

)
g′;

• Paretian if and only if for every % ∈ dom(F ) and all f, g ∈ F, if f %i g

for all i ∈ N , then f F
(
%

)
g;

• dictatorial if and only if there exists some i ∈ N (called dictator) such
that for every % ∈ dom(F ) and all f, g ∈ F,

f F
(
%

)
g ⇔ f %i g.

The modi�cation �weakly� in �weakly universal� is justi�ed:

Remark 5. If S contains at least two elements, then PN is a rich aggregator
domain, and every universal aggregator is also weakly universal.

(All proofs can be found in Appendix C.) Clearly, every dictatorial F can be
extended to a universal, systematic and Paretian aggregator. It is remarkable
that even the converse holds true:

Theorem 6. Let N be �nite and let F be a (variational) preference aggregator.
F is weakly universal, systematic and Paretian if and only if it is dictatorial.

(Theorem 6 is the variational preference analogue of Arrow's [1] possibility
theorem.)

Under an additional assumption on the richness of the domain of dom(F ),
one can even extend Theorem 6 to the case of in�nite N . A pro�le % is said to
be continuous if and only if %i is continuous for all i ∈ N . Using the terminology
of De�nition 3, a variational preference pro�le % is discontinuous in the limit
if and only if for all f, g, h ∈ F and all β ∈ [0, 1], every α ∈ [0, 1] is a witness
to the continuity of %i along f, g, h in β for only �nitely many i ∈ N . As an
example one might think of a pro�le of variational preference relations (%i)i∈N,
each with variational representation (ui, ci), where ui = i u0 and ci = c0 for all
i ∈ N>0.

Theorem 7. Let N be an arbitrary set (�nite or in�nite). Let F be a
weakly universal, systematic and Paretian variational preference aggregator.
Suppose that its domain dom(F ) contains a pro�le % that is (continuous, but)
discontinuous in the limit. Then F is dictatorial.
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(Theorem 7 can be seen as the variational preference analogue of Campbell's
[3] possibility theorem.)

Conversely, one can obtain a possibility result for in�nite N by demanding
uniform continuity rather than continuity of the variational preference pro�les
in the aggregator domain: A pro�le (%i)i∈N is said to be uniformly continuous
if and only if for all f, g, h ∈ F and all β ∈ [0, 1], there exist α, γ ∈ [0, 1] which
for all i ∈ N are a witness-pair to the continuity of %i along f, g, h in β.

Theorem 8. Let N be an in�nite set, and let D ⊆ PN be a rich aggregator
domain such that all pro�les in D are uniformly continuous. Then there exist
non-dictatorial, weakly universal, systematic and Paretian variational preference
aggregators F : D→ P.

(Theorem 8 is the variational preference analogue of Fishburn's [10]
possibility theorem.)

5 Proof idea
The shortest route in proving the above theorems is to invoke recent results
from model aggregation theory, due to Herzberg and Eckert [16] who generalised
previous �ndings by Lauwers and Van Liedekerke [20]. In order to employ these
results, one needs to reformulate the variational preference aggregation problem
as a model aggregation problem (see Appendix B); thereafter, the proofs follow
relatively easily from the model aggregation theory in Herzberg and Eckert [16]
(see Appendix C). In this section, we brie�y describe model aggregation theory
and its application to the aggregation of variational preferences; a rigorous
review can be found in Appendix A.

Model aggregation theory studies the aggregation of �rst-order structures
(in the sense of mathematical logic). An aggregator in this setting is then just
a map from a set of N -sequences of structures of a certain type to a set of
structures of such type. It is not di�cult to formulate analogues of Arrow's [1]
rationality assumptions in this framework.

Of utmost importance is the notion of a decisive coalition with respect to an
aggregator F : A coalition D is said to be decisive with respect to an aggregator
F if and only if it can be written in the form D = {i ∈ N : (F,%i) |= φ}
for some pro�le % ∈ dom(F ) and some quanti�er-free formula φ such
that

(
F, F

(
%

))
|= φ.

Denoting the set of all decisive coalitions with respect to F by DF , one can
next prove the following key lemma:

Lemma 9. If F is a weakly universal, systematic and Paretian variational
preference aggregator, then DF is an ultra�lter on N .2

2 An ultra�lter on N is a nonempty set D of coalitions which is not equal to the powerset
of N , is closed under supersets (i.e. if D ∈ D and D′ ⊇ D, then D′ ∈ D), closed under
intersections (i.e. if D, D′ ∈ D, then D ∩D′ ∈ D) and has the property that for any coalition
D either D ∈ D or N \ D ∈ D. A �lter on N is a set of coalitions that has the �rst three
properties, but may lack the last one. One can show that ultra�lters are nothing else but
⊆-maximal �lters.
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The proof of Lemma 9 uses a slight generalisation of the main lemma in
Lauwers and Van Liedekerke [20, Lemma 2]:3 In the proof of that lemma, the
ultra�lter properties (non-triviality; closure under supersets and intersections;
dichotomy) are veri�ed by constructing appropriate pro�les through exploiting
the richness of the aggregator domain.

Since ultra�lters on �nite sets are always principal (i.e. systems of supersets
of singletons), Lemma 9 quickly leads to a proof of the �only if� part in
Theorem 6. The proof of the �if� part in Theorem 6 is straightforward.

Using the ultra�lter property of the set of decisive coalitions, Theorem 8
and Theorem 7 can now be proved through applications of �o±'s theorem: For,
one can apply Lemma 9 to show that any weakly universal, systematic and
Paretian preference aggregator F maps every variational preference pro�le to
the restriction (to the original domain F) of its ultraproduct (with respect
to the ultra�lter DF of decisive coalitions); and conversely, �o±'s theorem
implies that every preference aggregator F which assigns to each variational
preference pro�le in dom(F ) the restriction of its ultraproduct with respect to
a �xed ultra�lter D constitutes a systematic Paretian preference aggregator
(which is weakly universal if dom(F ) is a rich aggregator domain). Now,
since � again by �o±'s theorem � restricted ultraproducts preserve universal
formulae (also sometimes called Π1 formulae) that hold in all factor structures,
it is clear that the aggregate of a uniformly continuous variational preference
pro�le under a weakly universal systematic Paretian preference aggregator must
again be continuous and thus a variational preference pro�le. Hence, every
weakly universal, systematic, Paretian preference aggregator whose domain only
consists of uniformly continuous variational preference pro�les is actually a
variational preference aggregator. Now, for in�nite N , there exist non-principal
ultra�lters U on N . Choose such a U and let F : D→ P be a map whose domain
only contains uniformly continuous variational preference pro�les and which
assigns to each element of D the restriction of its ultraproduct with respect
to U. This F will then be a variational preference aggregator which is not
dictatorial, establishing Theorem 8.

The representation of weakly systematic, Paretian preference aggregators as
restricted ultraproduct constructions can also be used to show that no domain
of a weakly universal, systematic, Paretian variational preference aggregator can
contain a pro�le % that is discontinuous in the limit. For, if there were such
an aggregator, it would on the one hand have to preserve continuity, and on
the other hand, every scalar will be a witness to the continuity of only �nitely
many variational preference orderings in the pro�le % (which is discontinuous
in the limit). A combination of these two facts ultimately implies that the set
of decisive coalitions contains a �nite set (viz. the set of all i ∈ N such that α is
a witness to the continuity of %i along f, g, h ∈ F in β, wherein α, β ∈ [0, 1] and
f, g, h ∈ F have been chosen such that α is witness to the continuity of F

(
%

)

along f, g, h ∈ F in β). But an ultra�lter which contains a �nite set is principal,
whence the corresponding aggregator is dictatorial. This proves Theorem 7.

3Whilst the published proof of Lauwers and Van Liedekerke's [20] lemma is incomplete, an
addendum by Herzberg, Lauwers, Van Liedekerke and Fianu [17] has recently �lled the gap.
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6 Extensions
Using the methodology of the present paper, one can also study the aggregation
of coherent risk measures for a �nite set of states of the world: For, coherent risk
measures can be written as negated maxmin expected utility functions, which in
turn represent multiple priors preferences, as shown by Gilboa and Schmeidler
[13]. Hence, the aggregation of coherent risk measures can be reformulated
as an aggregation problem for certainty-independent, continuous, monotonic,
uncertainty-averse and non-degenerate weak orders, and the theory of model
aggregation can again be used to prove impossibility and possibility results.

Moreover, the approach taken in this paper might perhaps also be used to
analyse the aggregation of dynamic variational preferences and thus of dynamic
convex risk measures: For, the representation theorem of Föllmer and Schied
[11, 12] has been extended to a dynamic setting by Detlefsen and Scandolo in
a paper on dynamic convex risk measures [4] which builds upon on Riedel's
seminal article on dynamic coherent risk measures [27]. Moreover, Maccheroni,
Marinacci and Rustichini [24] have recently developed a dynamic generalisation
of their axiomatisation of variational preferences [23]. Combining their theorem
with Detlefsen and Scandolo's result, one obtains a decision-theoretic foundation
of dynamic convex risk measures in terms of dynamic variational preferences.

At a more technical frontier, the systematicity condition can possibly be
relaxed, since systematicity is equivalent to the weaker aggregator condition
of independence if the conditional entailment relation among the set of test
sentences has full transitive closure.

7 Conclusion
We have formulated Arrow-type aggregation problems for convex risk measures
or variational preferences. Choosing a methodology inspired by Lauwers and
Van Liedekerke [20], one can prove analogues of Arrow's impossibility theorem,
Campbell's impossibility theorem, and Fishburn's possibility theorem. The
proof method is su�ciently general to be applied to Arrow-type aggregation of
coherent risk measures or multiple priors preferences, and perhaps even dynamic
convex or dynamic coherent risk measures and their variational counterparts.

� Appendices �

A Review of model aggregation theory
The theory of model aggregation was begun by Lauwers and Van Liedekerke
[20] (see also Herzberg, Lauwers Van Liedekerke and Fianu [17]) and continued
recently by Herzberg and Eckert [15, 16]. In the following, we only review
special cases of the most important known results from model aggregation with
particular relevance for the analysis of variational preference aggregation. In
fact, the presentation in this appendix is only slightly more general than the
work of Lauwers and Van Liedekerke [20] � in that it allows for arbitrarily
many predicate symbols rather than just one �, whence any reader who knows
Lauwers and Van Liedekerke's work [20] may well skip this appendix. For proofs
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and a more general account of model aggregation, see Herzberg and Eckert
[15, 16].

We assume in this section that the reader has some basic knowledge of
model theory. The paper by Lauwers and Van Liedekerke [20] contains a
short introduction to logic and model theory for social choice theorists; more
comprehensive introductions can be found in textbooks such as those by Bell
and Slomson [2] or Hodges [18].

Let A be a set. Let L be a language consisting of predicate symbols Ṗn,
n ∈ κ, and constant symbols ȧ for all elements a of A. The arity of Ṗn will be
denoted δ(n), for all n ∈ κ.

For the purposes of this paper, an L-structure is a pair B =
〈
B,

〈
PB

n

〉
n∈κ

〉

consisting of a set B ⊇ A (called the domain of B) and certain sets PB
n ⊆ Bδ(n)

which serve to interpret the predicate symbols Ṗn through Tarski's de�nition
of truth. We require that by de�nition any L-structure interprets the constant
symbols ȧ canonically, i.e. by a, for any a ∈ A.

Let S be the set of atomic formulae in L. Let T be the Boolean closure of
S, i.e. the closure of S under the logical connectives ¬̇, ∧̇, ∨̇. The elements of T

are called test sentences, and the elements of S are called basic test sentences.
Let T be a consistent set of universal sentences in L.4, and let Ω be the

collection of models of T with domain A. As is usual in model theory, the
restriction of an L-structure B is the L-structure that is obtained by restricting
the interpretations of the relation symbol to the domain A; it is denoted resAB.

We assume that there are two sentences in S, henceforth denoted µ, ν ∈ S,
such that each of µ∧̇ν, µ∧̇¬̇ν and ¬̇µ∧̇ν is consistent with T , in symbols,

T ∪ {µ∧̇ν} 6` ⊥, T ∪ {µ∧̇¬̇ν} 6` ⊥, T ∪ {¬̇µ∧̇ν} 6` ⊥ (1)

(wherein ⊥ is shorthand for φ∧̇¬̇φ for some sentence φ).
Since S is the set of all atomic formulae in L and T is a set of universal

sentences, the following propositions hold for all L-structures A and all A1,A2 ∈
Ω:

(∀λ ∈ S (A1 |= λ⇔ A2 |= λ)) ⇒ A1 = A2. (2)
A |= T ⇒ resAA ∈ Ω (3)

∀λ ∈ T (A |= λ⇔ resAA |= λ) . (4)
Elements of ΩN will be called pro�les. An aggregator is a map f whose

domain dom(f) is a subset of ΩN and whose range is a subset of Ω.5
For all λ ∈ T and all ω ∈ ΩN , we denote the coalition supporting λ given

pro�le ω, by
C(ω, λ) := {i ∈ N : ωi |= λ} .

Let us �x an aggregator f . Consider the following axioms:
4A sentence is universal if it (in its prenex normal form) has the form (̇∀̇v̇k1 )̇ · · · (̇∀̇v̇km )̇φ

for some formula φ that does not contain any quanti�ers and some nonnegative integer m.
5We deviate from Lauwers' and Van Liedekerke's [20] notation as follows:
• Aggregators will be denoted by f (instead of AF).
• Pro�les will be denoted by ω or 〈ωi : i ∈ N〉 (instead of 〈Ai : i ∈ N〉).
• The image of a pro�le ω under an aggregator f will be denoted by f(ω) (instead of

A(ω)).
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(A1). dom(f) = ΩN .

(A1'). There exist models A1,A2,A3 ∈ Ω such that

1. A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, A3 |= ¬̇µ∧̇ν, and
2. {A1,A2,A3}N ⊆ dom(f).

(A2). For all ω ∈ dom(f) and all λ ∈ T, if f(ω) |= λ, then C(ω, λ) 6= ∅.
(A3). For all ω, ω′ ∈ dom(f) and all λ, λ′ ∈ T such that C(ω, λ) = C(ω′, λ′), one

has f(ω) |= λ if and only if f(ω′) |= λ′.

(A1) is the axiom of Universality. Axiom (A2) is a generalised Pareto
Principle. (A3) is a generalised form of the axiom of Systematicity, which itself
is a strong variant of the axiom of Independence of Irrelevant Alternatives.6

By our assumptions on µ, ν ∈ S, there must be L-structures A1,A2,A3 such
that A1,A2,A3 |= T as well as A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, A3 |= ¬̇µ∧̇ν. Since T is
universal and so are all elements of T, we may assume that A1,A2,A3 all have
domain A (otherwise, take their restriction to A). Hence, Axiom (A1') is simply
a weak version of (A1) because of our assumption about the sentences µ, ν ∈ S.

Given an aggregator f , we de�ne the set of decisive coalitions by

Df := {C(ω, λ) : ω ∈ dom(f), λ ∈ T, f(ω) |= λ} .

It is not di�cult to verify that systematic aggregators are characterised by their
sets of decisive coalitions:

Remark 10. If f satis�es (A3), then for all ω ∈ dom(f) and λ ∈ T,

C(ω, λ) ∈ Df ⇔ f(ω) |= λ.

This framework is su�ciently general to cover the cases of preference
aggregation, propositional judgment aggregation, and modal aggregation.7 The
general model aggregation theory in Herzberg and Eckert [15, 16] admits more
general sets of test sentences T and relaxes the aggregator axioms (A2) and
(A3).

The key result of model aggregation is the following lemma:8
6Systematicity vacuously implies Independence of Irrelevant Alternatives. The converse is

true under additional hypotheses: In the preference aggregation framework, the combination
of Independence of Irrelevant Alternatives and the Pareto Principle implies Systematicity if
the individual preferences are complete and quasi-transitive (cf. Lauwers and Van Liedekerke
[20, Section 6, p. 232]).

7For example, for preference aggregation, one lets L have a single binary predicate Ṗ ,
modelling the preference relation. The set A will be the set of alternatives. The interpretation
of Ṗ (ȧ, ḃ) will be �a is preferred to b�. (Thus, the interpretation of ωi |= Ṗ (ȧ, ḃ) is �under
pro�le ω, individual i prefers a to b�, and the interpretation of f(ω) |= Ṗ (ȧ, ḃ) is �under
pro�le ω, a is socially preferred to b�.) T can be any universal theory in that language. For
propositional judgment aggregation, one lets L have a single unary predicate Ḃ, modelling a
belief operator. The set A will be the agenda. The interpretation of Ḃȧ �a is accepted�. (Thus,
the interpretation of ωi |= Ḃȧ is �under pro�le ω, individual i accepts a�, and the interpretation
of f(ω) |= Ḃȧ is �under pro�le ω, a is socially accepted�.) T can be any universal theory in
that language.

8Lemma 11 slightly generalises the main lemma in Lauwers and Van Liedekerke [20,
Lemma 2]; a proof in a more general setting can be found in Herzberg and Eckert's �rst
paper [15].
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Lemma 11. Let f be weakly universal, systematic, and Paretian. Then, Df is
an ultra�lter.9

We say that f is dictatorial if and only if there exists some if ∈ N (called
the dictator) such that Df = {J ⊆ N : if ∈ J}.
Remark 12. Let f be an aggregator, and suppose N is �nite. Then, f is
dictatorial if and only if Df is an ultra�lter.

As a corollary of the ultra�lter property of the set of decisive coalitions (see
Lemma 11), we then get an analogue of Arrow's impossibility theorem:10

Corollary 13 (Impossibility theorem). Let f be weakly universal,
systematic, and Paretian. If N is �nite, then f is dictatorial.

By �o±'s theorem [22]:

Remark 14. If D is an ultra�lter, then

resA

∏

i∈N

ωi/D |= λ⇔ C(ω, λ) ∈ D

for all ω ∈ ΩN and λ ∈ T.

Lemma 15. Let f be weakly universal, systematic, and Paretian, then f(ω) =
resA

∏
i∈N ωi/Df for all ω ∈ dom(f).

Lemma 16. Suppose D is an ultra�lter, and consider the aggregator resA

∏
/D,

de�ned by
resA

∏
/D : ΩN → Ω, ω 7→ resA

∏

i∈N

ωi/D.

Then resA

∏
/D is a universal, systematic and Paretian aggregator.

Let βN denote the set of all ultra�lters on the set N , and let AR be the
set of all universal, systematic and Paretian aggregators. Now one can prove a
general version of the Kirman�Sondermann [19] correspondence:11

Theorem 17 (Kirman�Sondermann correspondence). There is a
bijection Λ : AR → βN, given by

∀f ∈ AR Λ(f) = Df .

Its inverse is given by

∀D ∈ βN Λ−1(D) = resA

∏
/D,

wherein, as in Lemma 16, resA

∏
/D : ω 7→ resA

∏
i∈N ωi/D.

9For the de�nition of an ultra�lter, see footnote 2 on page 7.
10
11This Theorem 17 is a slight generalisation of Lauwers and Van Liedekerke's main theorem;

its proof � in a more general framework than that of the present paper � can be found in
Herzberg and Eckert [15].
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Consider an arbitrary L-sentence which is not universal. In its prenex normal
form it can be written as ψ ≡ (̇∀̇ẋ1)̇ . . . (̇∀̇ẋm)̇(̇∃̇ẏ)̇φ (ẋ1, . . . , ẋm; ẏ), wherein m
is a nonnegative integer and φ (ẋ1, . . . , ẋm; ẏ) is an L-formula with m + 1 free
variables. For the rest of this section, ψ and φ are �xed in this manner.

We say that a pro�le ω ∈ ΩN has �nite witness multiplicity with respect to
ψ if and only if ωi |= ψ for all i ∈ N , but for all a1, . . . , am, a

′ ∈ A, the coalition
{i ∈ N : ω |= φ(a1, . . . , am; a′)} is �nite.

An aggregator f is said to preserve an L-sentence ψ if and only if for all
ω ∈ dom(f), one has f(ω) |= ψ whenever ωi |= ψ for all i ∈ N . We then have
the following theorem:12

Theorem 18. Let f be weakly universal, systematic and Paretian, suppose
f preserves ψ, and assume that there exists some ω ∈ ΩI with �nite witness
multiplicity with respect to ψ. Then, f is a dictatorship.

B Variational preference aggregation as model
aggregation

As we have remarked before, our proofs depend largely on the recent results on
model aggregation by Herzberg and Eckert [15, 16] that generalise previous work
by Lauwers and Van Liedekerke [20]. The key to the proofs of Theorem 6 and
Theorem 7 is therefore the rephrasing of the variational preference aggregation
problem in the framework of �rst-order model theory.

The formulation of the variational preference aggregation problem in the
framework of �rst-order model theory can even be accomplished without
appealing to multi-sorted predicate logic, as it will turn out that one can identify
the closed unit interval [0, 1] ⊆ R and the open unit interval (0, 1) ⊆ R with
subsets of Fc and hence of F. The domain of the model-theoretic structures to
be aggregated will thus be just F, and individual constant and variable symbols
will always be interpreted as referring to constant or variable elements of F.

In order to embed the closed and open unit intervals of R into F, choose two
distinct elements x0, x1 ∈ X, and de�ne for all α ∈ [0, 1] a constant function α̌
by

α̌ : s 7→ αx0 + (1− α)x1.

Clearly, the map α 7→ α̌ is injective.13 Hence, if we de�ne

Ī = {α̌ : α ∈ [0, 1]}

and
I = {α̌ : α ∈ (0, 1)} = Ī \ {x0, x1} ,

12This theorem is in some sense an abstract version of a similar result by Lauwers and
Van Liedekerke [20, p. 230, Property 4]; its proof can be found in Herzberg and Eckert's
second paper [16].

13For, if
αx0 + (1− α) x1 = βx0 + (1− β) x1

for some α, β ∈ [0, 1] with α 6= β, then

(α− β) x0 = (α− β) x1

and thus x0 = x1, contradiction.
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there is a canonical bijection between Ī and [0, 1] ⊆ R as well as between I and
(0, 1) ⊆ R.

This allows us to de�ne a mixture operator m : Ī × F2 → F as follows: For
all α ∈ [0, 1] and f, g ∈ F, put

m (α̌; f, g) = αf + (1− α) g ∈ F.

(Recall that F is a convex subset of the vector space Y S .) For every s ∈ S, let
πs : F → Fc be the projection operator which maps f to the constant function
with range {f(s)}, so that πs(f) : s 7→ f(s) for all f ∈ F.

Finally, one can de�ne a linear ordering <Ī on Ī by

α̌ <Ī β̌ ⇔ α < β

for all α, β ∈ [0, 1].
With these de�nitions, we may now consider the following axioms for a

binary relation % with symmetric part ∼ (i.e. f ∼ g if and only if f % g and
g % f) and asymmetric part Â (i.e. f Â g if and only if f % g but g 6∼ f):

(A1) Weak order properties. For all f, g ∈ F, either f % g or g % f ; for all
f, g, h ∈ F, if f % g and g % h, then f % h.

(A2) Weak certainty independence. For all f, g ∈ F, x, y ∈ Fc and a ∈ I, if

m (a; f, x) % m (a; g, x) ,

then
m (a; f, y) % m (a; g, y) .

(A3) Continuity. For all f, g, h ∈ F and all b ∈ I, there exist a, c ∈ Ī such that

� if m (b; f, g) % h, then for all d ∈ I with a<Ī d<Ī c, one has
m (d; f, g) % h, and

� if h % m (b; f, g), then for all d ∈ I with a<Ī d<Ī c, one has h %
m (d; f, g) ,

while either

� x0≤Ī a<Ī b<Ī c≤Ī x1 or
� x0 = a = b<Ī c≤Ī x1 or
� x0≤Ī a < b = c = x1.

(A4) Monotonicity. For all f, g ∈ F, if
∧

s∈S πs(f) % πs(g), then f % g.

(A5) Uncertainty aversion. For all f, g ∈ F and a ∈ I, if f ∼ g, then
m (a; f, g) % f .

(A6) Non-degeneracy. There exist f, g ∈ F such that f Â g.

All these axioms can be captured in a language of �rst-order logic with:

• two unary predicate symbols Ċ, İ (expressing membership in the subsets
Fc and I, respectively, of F),
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• two binary predicate symbols %̇ and <̇Ī ,

• card(S) operator symbols π̇s,

• and a ternary operation symbol ṁ.

Henceforth, the language with the predicate symbols Ċ, İ, the operator symbols
π̇s (for each s ∈ S), the predicate symbols %̇ and <̇Ī the operation symbol ṁ,
and a constant symbol ḟ for every element f ∈ F.

Let Γ be the set of all models A =
〈
F,

〈
CA, IA,%A, <Ī

A,
〈
πA

s

〉
s∈S

,mA
〉〉

of (A1-A6) with domain F such that A canonically interprets

• the constant symbols ḟ (i.e. fA = f for every f ∈ F),

• the unary predicate symbols Ċ and İ (i.e. CA = Fc and IA = I),

• the binary relation symbol <̇Ī (i.e. ẋA<Ī
AẏA if and only if x<Ī y for all

x, y ∈ X),

• the operator symbols π̇s (i.e. A |= π̇s(ḟ)=̇ġ if and only if f(s) = g for all
s ∈ S and f, g ∈ F), and

• the ternary operation symbol m (i.e. A |= ṁ
(
ȧ; ḟ , ġ

)
=̇ḣ if and only if

m (a; f, g) = h for all f, g, h ∈ F and all a ∈ I).
Then, elements of Γ are in a canonical one-to-one correspondence with

variational preference orderings. Hence, variational preference aggregators are
in a canonical one-to-one correspondence with maps G : dom(G) → Γ where
dom(G) ⊆ ΓN ; such maps g shall also be called model aggregators.

One can now rephrase the variational preference aggregator axioms as model
aggregator axioms. Let T be the Boolean closure of the set of atomic sentences.
We shall call T the set of test sentences.

• universal if and only if dom(G) = ΓN (so that G : ΓN → P);

• weakly universal if and only if dom(G) is a rich aggregator domain. Herein,
a set D is a rich aggregator domain if and only if there exist atomic
sentences µ, ν and models A1,A2,A3 such that

� A1 |= µ∧̇ν, A2 |= µ∧̇¬̇ν, A2 |= ¬̇µ∧̇ν and
� {A1,A2,A3}N ⊆ dom(G);

• systematic if and only if for every A ∈ dom(G) and all test sentences λ, λ′
satisfying {i ∈ N : Ai |= λ} = {i ∈ N : Ai |= λ′} one has

G (A) |= λ⇔ G (A) |= λ′;

• Paretian if and only if for every A ∈ dom(G) and all test sentences λ, if
AI |= λ for all i ∈ N , then G (A) |= λ;

• dictatorial if and only if there exists some i ∈ N (called dictator) such
that for every A ∈ dom(G) and all test sentences λ,

G (A) |= λ⇔ Ai |= λ.
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A coalition D is said to be decisive with respect to a model aggregator G if
and only if there is some A ∈ dom(G) and some test sentence λ such that

G (A) |= λ, D = {i ∈ N : Ai |= λ} .
The set of all decisive coalitions with respect to G is denoted DG.

C Proof details
Let ∆ be the set of all probability measures on S. By the Macceroni�Marinacci�
Rustichini theorem [23, Theorem 3], a binary relation % on F is a variational
preference relation if and only if there exists a nonzero linear function u : X → R
and a convex lower-semicontinuous function c : ∆ → [0,+∞] whose in�mum is
a real number (rather than −∞ or +∞) such that for all f, g ∈ F,

f % g ⇔ min
p∈∆

(∫
u ◦ f dp+ c(p)

)
≥ min

p∈∆

(∫
u ◦ g dp+ c(p)

)
.

In that case, we say that % has the variational representation (u, c).

Proof of Remark 5. Let s0, s1 be two distinct elements. Let u be a nonzero
linear function. Without loss of generality, assume u (x0) < u (x1). Let c1, c2, c3
be such that ci(p) = +∞ for all i ∈ {1, 2, 3} and all p ∈ ∆ such that p {s} > 0
for some s ∈ S\{s0, s1}. Then, for every i ∈ {1, 2, 3}, there exists some function
c′i : [0, 1] → R such that

c′i(q) = ci (qδs0 + (1− q)δs1)

for all q ∈ [0, 1] (wherein δs denotes the Dirac probability measure concentrated
on the singleton {s}). Let f, g ∈ F be such that

f (s0) = x0, f (s1) = x1, g (s0) = x1, g (s1) = x0.

Clearly then for any i ∈ {1, 2, 3}, one has

min
p∈∆

(∫
u ◦ f dp+ ci(p)

)
= min

q∈[0,1]
(qu (x0) + (1− q)u (x1) + c′i(q))

= u (x1) + min
q∈[0,1]

(q (u (x0)− u (x1)) + c′i(q))

min
p∈∆

(∫
u ◦ g dp+ ci(p)

)
= min

q∈[0,1]
(qu (x1) + (1− q)u (x0) + c′i(q))

= u (x0) + min
q∈[0,1]

(q (u (x1)− u (x0)) + c′i(q))

Let us now put c′1(q) = 0 for all q ∈ [0, 1]. Then, because u (x1) > u (x0) or
equivalently u (x0)− u (x1) < 0 and u (x1)− u (x0) > 0, we have

min
p∈∆

(∫
u ◦ f dp+ c1(p)

)
= u (x1) + min

q∈[0,1]


q (u (x0)− u (x1)) + c′1(q)︸ ︷︷ ︸

=0




= u (x1) + u (x0)− u (x1) = u (x0)

min
p∈∆

(∫
u ◦ g dp+ c1(p)

)
= u (x0) + min

q∈[0,1]


q (u (x1)− u (x0)) + c′1(q)︸ ︷︷ ︸

=0




= u (x0)
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hence f ∼1 g if %1 is chosen as the variational preference relation with
variational representation (u, c1).

Next, put c′2 : q 7→ q (u (x1)− u (x0)). Then,

min
p∈∆

(∫
u ◦ f dp+ c2(p)

)
= u (x1) + min

q∈[0,1]
(q (u (x0)− u (x1)) + c′2(q))

= u (x1)

min
p∈∆

(∫
u ◦ g dp+ c2(p)

)
= u (x0) + min

q∈[0,1]
(q (u (x1)− u (x0)) + c′2(q))

= u (x0) + min
q∈[0,1]

2q (u (x1)− u (x0))

= u (x0) ,

hence f Â2 g if %2 is chosen as the variational preference relation with
variational representation (u, c2).

Finally, put c′3 : q 7→ q (u (x0)− u (x1)). Then,

min
p∈∆

(∫
u ◦ f dp+ c3(p)

)
= u (x1) + min

q∈[0,1]
(q (u (x0)− u (x1)) + c′3(q))

= u (x1) + min
q∈[0,1]

2q (u (x0)− u (x1))

= u (x1) + 2 (u (x0)− u (x1))
= 2u (x0)− u (x1) < u (x0)

min
p∈∆

(∫
u ◦ g dp+ c3(p)

)
= u (x0) + min

q∈[0,1]
(q (u (x1)− u (x0)) + c′3(q))

= u (x0)

hence g Â3 f if %3 is chosen as the variational preference relation with
variational representation (u, c3).

All in all, we have found variational preference relations %1,%2,%3 with

f %1 g %1 f, f Â2 g, g Â3 f.

If we put f ′ = g and g′ = f , then f, g, f ′, g′ and %1,%2,%3 satisfy the
requirements in the de�nition of a rich aggregator domain.

It follows that PN is a rich aggregator domain. Therefore, every universal
aggregator is also weakly universal.

Proof of Theorem 6. The reformulation of variational preference aggregation as
model aggregation in Appendix B permits the application of the impossibility
result in Corollary 13 (a generalisation of Arrow's theorem) which in our context
says that any weakly universal, systematic, Paretian model aggregator which
preserves the (universal) axioms A1-A2, A4-A6 (i.e. the variational preference
axioms without continuity) is a dictatorship if N is �nite. Hence, a fortiori, any
variational preference aggregator (which by de�nition even preserves all axioms
A1-A6 on its domain) must be a dictatorship if N is �nite.

Proof of Theorem 7. The reformulation of variational preference aggregation in
Appendix B also allows us to use the characterisation of model aggregators
as restricted ultraproduct constructions (Lemma 15). In order to apply
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Theorem 18, the impossibility result for aggregators on in�nite populations
which preserve certain non-universal formulae (for a similar result, cf. Lauwers
and Van Liedekerke [20, p. 230, Property 4]), observe �rst that continuity of
variational preferences is not a universal formula and secondly that any pro�le
which is discontinuous in the limit has �nite witness multiplicity with respect
to continuity (in the terminology of Theorem 18, the abstract version of a
similar).

Proof of Theorem 8. Again, in light of Appendix B, we may use the
characterisation of aggregators as restricted ultraproduct constructions
(Lemma 15). Note that for �xed f, g, h and α, β, γ, the formula �〈α, γ〉 is a
witness-pair to the continuity of % along f, g, h in β� is a universal formula,
and all the axioms A1-A2, A4-A6 are also universal formulae. Hence, the
axioms A1-A2, A4-A6 as well as the formulae �〈α, γ〉 is a witness-pair to the
continuity of % along f, g, h in β� (for all �xed f, g, h, α, β, γ) are preserved
by restricted ultraproducts. Therefore, restricted ultraproduct constructions
on rich domains are model aggregators which not only are weakly universal,
systematic and Paretian and preserve axioms A1-A2, A4-A6, but they also
aggregate uniformly continuous pro�les into continuous pro�les. Hence, any
restricted ultraproduct construction on a rich domain with only uniformly
continuous pro�les constitutes weakly universal, systematic and Paretian
variational preference aggregator. However, on an in�nite set N there are non-
principal ultra�lters and thus non-dictatorial aggregators derived from restricted
ultraproduct constructions.

Proof of Lemma 9. This is a direct consequence of Lemma 11, itself a slight
generalisation of the main lemma in Lauwers and Van Liedekerke [20, Lemma
2].

D Variational preference aggregation with
restricted domain through majority voting

We have seen that in general, universal systematic Paretian aggregation of
convex risk measures is impossible. If one drops universality, then rational
aggregation of risk measures is still possible, viz. through majority voting about
risk measures, but at the expense of considerable restrictions on the variational
preference pro�les.

In analysing majority decisions about convex risk measures, one can build
on the work of Dietrich and List [7] who have developed a theory of majority
voting in the very general framework of judgment aggregation, including a
generalisation of May's [25] theorem (which uniquely characterises majority
voting by means of certain axioms such as anonymity and acceptance/rejection
neutrality). In order to do so, one has to embed the aggregation problem for
risk measures into the framework of judgment aggregation.

Consider the axiom system Σ consisting of the following formulae:

• The axioms (A1-A6) as reformulated in Appendix B.

• The formulae ¬̇ḟ=̇ġ for all f, g ∈ F such that f 6= g.
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• All formulae of the form π̇s(ḟ)=̇ẋ for all s ∈ S, f ∈ F and x ∈ Fc satisfying
πs(f) = x.

• All formulae of the form Ċẋ for all x ∈ Fc, and all formulae of the form
¬̇Ċḟ for all f ∈ F \ Fc.

• All formulae of the form İ ȧ for all a ∈ I, and all formulae of the form ¬̇İ ḟ
for all f ∈ F \ I.

• All formulae of the form ṁ
(
ȧ; ḟ , ġ

)
= ḣ for all a ∈ I and f, g, h ∈ F

satisfying m (a; f, g) = h.

For any set of L-formulae A, completeness and consistency will be understood
to mean Σ-completeness and Σ-consistency

Let
Ξ =

{
ḟ%̇ġ, ¬̇ḟ%̇ġ : f, g ∈ F

}
.

This is an agenda in the terminology of judgment aggregation, i.e. a set of
proposition-negation pairs. In the following, for any p ∈ Ξ, we mean by ¬̄p the
other element of the proposition-negation pair in Ξ to which p belongs, so that
¬̄¬̄p = p for any p ∈ Ξ.

A fully rational judgment set is a complete and consistent subset of Ξ; note
that by the choice of Σ, any fully rational judgment set uniquely determines
a preference relation % on F that satis�es axioms (A1-A6). The set of fully
rational judgment sets will be denoted by D.

Let N be �nite. A pro�le is an N -tuple A = (Ai)i∈N of fully rational
judgment sets. For each pro�le A and any p ∈ Ξ, we de�ne the coalition
supporting p under pro�le A by

A(p) = {i ∈ N : p ∈ Ai} .

The aggregation rule of majority voting is then de�ned as the map

F : DN → 2Ξ, A 7→ {p ∈ Ξ : card (A (p)) > card (A (¬̄p))} .

At least whenever card(N) is odd, the aggregate judgment set F (A) will be
complete for every A ∈ DN . The question is whether F (A) will be consistent
as well; if it is, it is a fully rational judgment set and thus by our observation
made above, uniquely determines a preference relation % on F that satis�es
axioms (A1-A6), hence a convex risk measure.

A su�cient condition for the consistency of F (A) for certain A ∈ DN has
been discovered by Dietrich and List [7] and is known as the value-restriction
property. A pro�le A ∈ DN value-restricted is for every non-singleton, minimal
inconsistent subset Y ⊆ Ξ there exists a two-element subset Z ⊆ Y such that
Z 6⊆ Ai for all i ∈ N . If there is an ordering on the agenda with respect to which
every Ai (for i ∈ N) is (locally) single-plateaued or single-canyoned, then the
pro�le is value-restricted and hence F (A) is consistent (and complete anyway).

However, in the case of variational preference pro�les, the conditions of
single-canyonedness or single-plateauedness � let alone the value-restriction
property � do not appear to be natural conditions. This gives additional weight
to the impossibility results in the present paper.
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