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1 Introduction

Foster and Hart (2009) introduce a notion of riskiness, or critical wealth level,
for gambles with known distribution. Their measure is objective in so far as
it depends only on the distribution of the outcome; in the language of the
finance literature on risk measures, it is law-invariant, in decision–theoretic
terms, it is probabilistically sophisticated.

Formally, the Foster–Hart measure of riskiness is given by the unique
solution R(X) of

E log

(
1 +

X

R(X)

)
= 0 . (1)

This concept admits a simple operational interpretation as an agent
avoids bankruptcy in the long run provided she accepts a gamble X only
if her wealth exceeds the critical value R(X). The Foster–Hart measure of
riskiness R(X) is defined for a discrete random variable X on some proba-
bility space (Ω,F , P ) that satisfies EX > 0 and P (X < 0) > 0.

Hellmann and Riedel (2014) noticed that for continuous distributed gam-
bles the defining equation does not necesseraly posses a solution. By showing
that the riskiness numbers of discrete gambles on a grid converge to the max-
imal loss of these gambles as the grid size becomes finer, they suggest to use
the maximal loss as the reasonable extension for the Foster-Hart measure in
case there exists no solution to equation (1).

Until now the Foster–Hart measure of riskiness has just been studied
in a static framework. As many financial applications require, however, to
quantify risk over time in a dynamic way, it seems natural and important to
generalize the concept to a dynamic framework.

Dynamic measurement of risk plays an important role in the recent litera-
ture 1 since it allows, in contrast to the static case, to measure risk of financial
positions over time. The arrival of new information can thus be taken into
account. This is important for many situations; suppose, for instance, one
faces a gamble that has its payments in, say, one month. In two weeks from
now the information about this gamble might be much more precise which al-
lows to adjust the risk assessment and to determine the risk more accurately.
A static risk measure cannot do that. To cover such cases it is therefore
crucial to be able to merge from static to dynamic risk measurement.

1See, among others, Detlefsen and Scandolo (2005) and Föllmer and Schied (2011),
Chapter 11 for a detailed introduction to dynamic risk measures.
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We thus set out to study the Foster–Hart measure of riskiness (or more
precisely the extended Foster–Hart measure of riskiness defined in Hellmann
and Riedel (2014)) in a dynamic framework. We define the dynamic extended
Foster–Hart measure of riskiness.

A desirable property of a dynamic risk measure is the notion of time–
consistency. Roughly speaking a measure is time consistent if it assigns a
greater risk to one gamble than to another whenever it is known that the
same holds true tomorrow. This property yields a consistent behavior of an
agent who bases her decision on a time consistent risk measure. We show,
however, that the dynamic version of the Foster–Hart measure of riskiness
does not satisfy the time–consistency condition.

We further give an important justification for the extended Foster–Hart
measure of riskiness by showing that the no-bankruptcy result (and with it
the operational interpretation) carries over to continuous distributions.

In the original work of Foster and Hart (2009) a somewhat dynamic ap-
proach is already needed to prove the no–bankruptcy result. Their approach,
however, is rather intuitive than measure theoretically precise. We provide
here a precise measure theoretic approach, which allows us also to drop the
quite artificial assumption used in Foster and Hart (2009) that all gambles
are multiples of a finite number of basic gambles.

Furthermore, we have to cope with the fact that for the extended Foster–
Hart measure of riskiness it is allowed, in contrast to original measure, that
the possible gains are unbounded. We therefore deal with a more general
class of gambles.

For all these reasons we come up with a completely different approach to
prove the no-bankruptcy result.

The paper is set up as follows: Section 2 introduces the dynamic frame-
work as well as the dynamic extended Foster–Hart measure of riskiness. In
Section 3 we give the more general no–bankruptcy result. Section 4 contains
a counterexample which shows the time-inconsistency of the new defined
measure. Finally, the appendix consists of some proofs.

2 The dynamic framework

In the following, let (Ω,F , (Ft)t∈N, P ) be a filtered probability space, where
the filtration (Ft)t∈N represents the information structure given at the respec-
tive time t. We denote by At the set of all Ft−measurable random variables
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and consider a sequence of random variables (Xt) that is adapted to the fil-
tration (Ft)t∈N. In order to be able to measure the risk of Xt in every time
period s < t, Xt has to satisfy all the conditions which define a gamble in
Hellmann and Riedel (2014) given the respective information structure (Fs).

Definition 2.1 We call a random variable X on (Ω,F , P ) a gamble for the
σ–field Fs ⊂ F if X is bounded from below and satisfies E[X|Fs] > 0 a.s.
and P (Xt < 0|Fs) > 0 a.s..

In the remainder, we assume that for t > s, Xt is a gamble for Fs. We
denote by Ls(Xt) the maximal loss of Xt given the information at time s.
Formally,

Ls(Xt) := ess inf{Z ∈ As|P (−Xt > Z|Fs) = 0 a.s.}.

We now embed the extended riskiness notion of Hellmann and Riedel (2014)
in the dynamic framework. As time goes by, we learn something about the
realization of the random variable and are therefore able to quantify the
risk more precisely. Measuring the risk of Xt in every single time period
s < t yields a family of conditional risk measures (ρs(Xt))s=1...t−1, where
every ρs(Xt) is a Fs−measurable random variable. For continuous random
variables the equation

E

[
log

(
1 +

Xt

ρs(Xt)

)
|Fs
]

= 0 (2)

does not always have a solution. Following the arguments of Hellmann and
Riedel (2014), this is the case on the set

B :=

{
E

[
log

(
1 +

Xt

Ls(Xt)

)
|Fs
]
≥ 0

}
.

As in the static case, on B the conditional maximal loss is the reasonable
extension of the classical riskiness notion. We are now ready to give the
definition of the dynamic extended Foster–Hart measure of riskiness.

Definition 2.2 The dynamic extended Foster–Hart measure of riskiness for
a gamble Xt is the family of conditional risk measures (ρs(Xt))s=1...t−1, where
each ρs(Xt) is equal to the conditional maximal loss Ls(Xt) on B and the
solution to equation (2) on Bc.
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The next lemma shows that the dynamic extended Foster–Hart riskiness
is indeed well defined.

Lemma 2.3 There exists one and only one Fs–measurable random variable
ρs(Xt) ≥ Ls(Xt) that solves equation (2) on Bc and satisfies ρs(Xt) = Ls(Xt)
on B.

For the proof we refer to the appendix.

3 No–Bankruptcy Result

The main result of Foster and Hart (2009) yields that a decision maker who
rejects a gamble whenever his wealth is below the associated riskiness num-
ber avoids bankruptcy (with probability one). It is crucial not to lose this
property (and with it the operational interpretation of the measure) when
working with continuous distributed gambles.

We provide here the respective no–bankruptcy theorem for the extended
Foster–Hart measure of riskiness.

Theorem 3.1 Let (Xn) be a sequence of gambles that are uniformly bounded
above by some integrable random variable Y > 0 and satisfy some minimal
possible loss requirement, i.e. there exists ε > 0 such that a.s.

Ln−1(Xn) ≥ ε > 0

for all n. Let W0 > 0 be the initial wealth and define recursively

Wt+1 = Wt +Xt+1

if E
[
log
(

1 + Xt+1

Wt

)
|Ft
]
≥ 0 and

Wt+1 = Wt

else. We then ensure no bankruptcy, i.e.

P [limWt = 0] = 0 .

Proof: Note first that Wt > 0. This can be shown by induction. We have
W0 > 0. We have eitherWt+1 = Wt which is positive by induction hypothesis,
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or Wt+1 = Wt +Xt+1. In this case, the condition E
[
log
(

1 + Xt+1

Wt

)
|Ft
]
≥ 0

implies that
Wt ≥ ρt(Xt+1) ≥ Lt(Xt+1).

Thus, Wt−Lt(Xt+1) ≥ 0. If ρt(Xt+1) = Lt(Xt+1), then we have P (Xt+1 =
Lt(Xt+1)|Ft) = 0. Hence, it holds that

Wt+1 > Wt − Lt(Xt+1) ≥ 0.

We can thus define St = logWt. We claim that S is a submartingale. Indeed,
on the set

A :=

{
E

[
log

(
1 +

Xt+1

Wt

)
|Ft
]
< 0

}
which belongs to Ft, there is nothing to show. On the set Ac, we have

E [St+1|Ft] = E [logWt+1|Ft]

= logWt + E

[
log

Wt+1

Wt

|Ft
]

= logWt + E

[
log

(
1 +

Xt+1

Wt

)
|Ft
]

≥ logWt = St .

S is thus a submartingale. We apply the theorem on submartingale
convergence in Shiryaev (1984), Chapter VII, Theorem 1. For a > 0, let
τa = inf {t ≥ o : Xt > a}. A stochastic sequence belongs to class C+ if for
every a > 0 we have

E (Xτa −Xτa−1)
+ 1{τa<∞} <∞.

Let us check that our sequence S is of class C+. Indeed, we have

(Sτa − Sτa−1)
+ = log

(
1 +

Xτa

Wτa−1

)
1{Xτa≥0}

and in that case Wτa−1 ≥ ρτa−1(Xτa) ≥ ε > 0, so we conclude

E (Sτa − Sτa−1)
+ ≤ E log

(
1 +

Y

ρτa−1(Xτa)

)
≤ E log

(
1 +

Y

ε

)
≤ E

Y

ε
<∞

where Y is the uniform integrable upper bound for our gambles and ε is
the minimal possible loss lower bound. By Theorem 1 in Shiryaev (1984),
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Chapter VII, we conclude that the set {St → −∞} is a null set. Indeed, on
the set {St → −∞}, S is bounded above. The theorem then states that the
limit of S exists and is finite (almost surely), and thus cannot be negative
infinity. �

4 Time Consistency

An important question arising in a dynamic framework is how the conditional
risks at different times are interrelated. This question leads to the important
notion of time–consistency. A dynamic risk measure (ρs)s=1...t−1 is called
time–consistent if for any gamble X1

t , X
2
t and for all s = 1, ..., t − 2 it holds

that
ρs+1(X

1
t ) ≥ ρs+1(X

2
t ) a.s. =⇒ ρs(X

1
t ) ≥ ρs(X

2
t ) a.s. (3)

That means, in particular, that if we know that tomorrow in every state of
the world gamble X1

t is assigned to have a higher risk than gamble X2
t , this

should also hold true today.
This desirable property is not satisfied by the dynamic extended Foster–

Hart riskiness as the following example demonstrates.

Example 4.1 Consider two discrete gambles X1
2 and X2

2 that have their
payments in two periods (t = 2) from now. They are distributed according to
the binomial trees given below. In t = 1 two states of the world are possible
which occur with equal probability 1

2
. We compute the riskiness today (t = 0)

and in each state in t = 1.
Gamble X1

2 has the following structure:

ρ(X1
2 ) ≈

219.426

ρ21(X
1
2 ) =

250
−2001

2

1000
1
2

1
2

ρ11(X
1
2 ) =

120
−1001

2

600
1
2

1
2
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Hence, X1
2 has the payoffs {600,−100, 1000,−200} occurring each with

equal probability. The riskiness in t = 1 in state one is the unique positive
solution to the equation 1/2 log(1+600/ρ11(X

1
2 ))+1/2 log(1−100/ρ11(X

1
2 )) =

0. Solving this gives ρ11(X
1
2 ) = 120. In a similar way we get that the riskiness

number in state two is ρ21(X
1
2 ) = 250 and that the riskiness today is ρ(X1

2 ) ≈
219.426.

The second gamble X2
2 is distributed according to the following tree:

ρ(X2
2 ) ≈

243.76

ρ21(X
2
2 ) =

250
−2401

2

6000
1
2

1
2

ρ11(X
2
2 ) =

120
−1051

2

840
1
2

1
2

Although the payoffs of X2
2 differ from the payoffs of X1

2 , the riskiness
numbers at time t = 1 coincides. Today, however, the risk of X2

2 is strictly
greater than the risk of X1

2 which contradicts the time–consistency condition
(3). Therefore, the dynamic extended Foster–Hart riskiness is not time–
consistent.

Appendix

For the appendix all inequalities and equalities between random variables are
assumed to hold P−almost surely.

A Proof of Lemma 2.3

Proof of Lemma 2.3: Let Xt be a gamble for the σ–field Fs. Without
loss of generality, we can assume Ls(Xt) = 1 almost surely (else replace Xt

by Xt/Ls(Xt)).
We write G = Fs and X = Xt in the following for shorter notation. We

fix a regular version P (ω, dx) for the conditional probability distribution of
X given G (which exists as X takes values in a Polish space). Whenever we

8



write conditional expectations or probabilities in the following, we have this
regular version in mind.

For our construction, we need that there are wealth levels W for which we
accept the gamble X given G. We thus start with the following observation.

Lemma A.1 There exist G–measurable random variables W ≥ 1 such that

E[log(W +X)|G] ≥ logW .

In particular, this holds true for all W with

W ≥ 2E[X2|G]

E[X|G]

and ∣∣∣∣XW
∣∣∣∣ ≤ 1

2
.

Proof of Lemma A.1: We use the estimate

log(1 + x) ≥ x− 2x2 (4)

for |x| ≤ 1/2 (which one can obtain from a Taylor–expansion and the La-
grange version of the error term). Take an G–measurable W with

W ≥ 2E[X2|G]

E[X|G]

and ∣∣∣∣XW
∣∣∣∣ ≤ 1

2
.

Such W exists because X has finite variance. We can simply take

W = 2 max

{
E[X2|G]

E[X|G]
, 2|X|

}
.

As |X/W | ≤ 1/2, log(1 +X/W ) is everywhere defined. By the estimate (4),
we obtain

E

[
log

(
1 +

X

W

)
|G
]
≥ E

[
X

W
− 2X2

W 2
|G
]

=
1

W

(
E [X|G]− E [2X2|G]

W

)
,
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and now we can use the fact that W ≥ 2E[X2|G]
E[X|G] to conclude that

E

[
log

(
1 +

X

W

)
|G
]
≥ 0 .

�

As a consequence of the preceding lemma, the set

Λ = {λ G −measurable| 0 < λ ≤ 1, E [log(1 + λX) |G] ≥ 0}

is not empty. Let λ0 be the G–essential supremum of λ. By definition, λ0
is G–measurable and λ0 ≥ λ for all λ ∈ Λ. Moreover, λ0 is the smallest
G–measurable random variable with these properties.

The set Λ is upwards directed: take λ1, λ2 ∈ Λ. Then we have for λ3 =
max{λ1, λ2}

E [log(1 + λ3X)|G] = 1{λ1≥λ2}E [log(1 + λ1X)|G]

+ 1{λ1<λ2}E [log(1 + λ2X)|G] ≥ 0 .

The other properties being obvious, we conclude λ3 ∈ Λ. Hence, Λ is upwards
directed; as a consequence, there exists a sequence (λn) ⊂ Λ with λn ↑ λ0.

Our next claim is E [log(1 + λ0X)|G] ≥ 0. The sequence

Zn = − log (1 + λnX)

is bounded from below by − log(1 + |X|) ≥ −|X| ∈ L1. We can then apply
Fatou’s lemma to conclude

−E [log(1 + λ0X)|G] = E [limZn|G] ≤ lim inf −E [log (1 + λnXn) |G] ≤ 0 ,

or
E [log(1 + λ0X)|G] ≥ 0 .

We claim now that we have

E [log (1 + λ0X) |G] = 0 (5)

on the set {λ0 < 1}. This will conclude the proof of our lemma.
It is enough to establish the claim on all sets

Γn =

{
λ0 ≤ 1− 1

n

}
10



for all n ∈ N. From now on, we work on this set only without stating it
explicitly. Let

Am,n =

{
E [log (1 + λ0X) |G] ≥ 1

m

}
∩ Γn .

We will show that Am,n is a null set for all m,n ∈ N.
Let ε = 1

1+mn
and set λ1 = (1 − ε)λ0 + ε. Then we have λ1 > λ0 and

λ1 ≤ (1− ε)(1− 1/n) + ε = 1− 1/n+ ε/n < 1. We also note

λ1 − λ0 = ε(1− λ0) ≤ ε. (6)

We have

1 + λ1X ≥ 1− λ1 ≥
1− ε
n

> 0 . (7)

log(1 + λ1X) is thus finite (on Γn where we work).
We now want to show

E [log (1 + λ1X) |G] ≥ 0

on Am,n. If Am,n was not a null set, this would contradict the definition of
λ0 as the G–essential supremum of Λ.

In order to establish the desired inequality, it is enough to show

E [log (1 + λ1X) |G]− E [log (1 + λ0X) |G] ≥ − 1

m

because of the definition of Am,n. Now, on the set {X ≥ 0} we have
log (1 + λ1X) ≥ log (1 + λ0X).

We need a uniform estimate for log (1 + λ1X)− log (1 + λ0X) on the set
{X < 0}. With the help of the mean value theorem, we obtain on {X < 0}

log

(
1 + λ1X

1 + λ0X

)
≥ − n

1− ε
(λ1 − λ0) ≥ −

nε

1− ε
.

(How can one see this: by the mean value theorem and (6), we have

log (1 + λ1X)− log (1 + λ0X) =
1

ξ
(λ1 − λ0)X

for some ξ in between 1 + λ1X and 1 + λ0X. By (7) 1 + λ1X ≥ (1 − ε)/n.
Hence, we have 0 < 1/ξ ≤ n

1−ε .)
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By the definition of ε, we thus have

log

(
1 + λ1X

1 + λ0X

)
≥ − nε

1− ε
= − 1

m

uniformly on {X < 0} as desired. It follows

E [log (1 + λ1X) |G]− E [log (1 + λ0X) |G]

≥ E

[
log

(
1 + λ1X

1 + λ0X

)
1{X<0}|G

]
≥ − 1

m
.

�
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