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Abstract

We study a dynamic model of opinion formation in social networks. In our

model, boundedly rational agents update opinions by averaging over their neigh-

bors’ expressed opinions, but may misrepresent their own opinion by conforming or

counter-conforming with their neighbors. We show that an agent’s social influence

on the long-run group opinion is increasing in network centrality and decreasing

in conformity. For efficiency of information aggregation (“wisdom”), misrepresen-

tation of opinions need not undermine wisdom. Given the network, we provide

the optimal distribution of conformity levels in the society and show which agents

should be more conforming in order to increase wisdom.
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1 Introduction

Understanding opinions is important because they crucially shape economic behavior.

Consumers’ demand for a product depends on the opinions about the quality of this

product and about the integrity of its producing company. Majority opinions on political

issues set the political course. Moreover, opinions on the relative importance of issues

decide upon the agenda of actions or on the allocation of a budget – be it within a company,

within a government, or within some other group of decision makers. When asked for a

personal opinion, however, people are often tempted to misrepresent what they actually

think, e.g. because disagreement would make them feel uncomfortable. Abstracting from

this issue, models of opinion formation have worked with the assumption that people do

not misrepresent their opinions. They provide conditions for the emergence of consensus

of opinions (e.g. DeGroot, 1974), identify opinion leaders (e.g. DeMarzo et al., 2003),

and even show that large societies can be “wise” in a well defined sense (e.g. Golub

and Jackson, 2010). We challenge these results by incorporating the possibility that

stated opinions differ from true opinions in a conforming or counter-conforming way.

This requires additional conditions to guarantee consensus, it affects who is an opinion

leader, and it can undermine or foster the wisdom of a society, as we will show.

If individuals are fully rational and completely informed, then the social network (of

personal relationships) does not affect long-run opinions.1 However, in most settings it is

not realistic to assume that individuals know the whole social network which determines

the communication structure. Moreover, as it has been shown recently in laboratory ex-

periments, even in small social networks where the network is made common knowledge,

people fail to properly account for repetitions of information (Corazzini et al., 2012).

Therefore, models of more näıve social learning are used to describe the process of opin-

ion formation (DeMarzo et al., 2003; Golub and Jackson, 2010; Acemoglu et al., 2010;

Corazzini et al., 2012). The common idea of these approaches is to assume that agents

update their opinion according to a weighted average of the current opinions (cf. DeG-

root, 1974). In this so-called DeGroot model the weights of averaging are collected in an

exogenously given learning matrix, which has the interpretation of a social network.

While the assumption of this form of non-Bayesian updating has been extensively dis-

cussed and motivated (Friedkin and Johnsen, 1990; DeMarzo et al., 2003; Acemoglu and

Ozdaglar, 2011; Corazzini et al., 2012), this is not true to the same extent for another

crucial assumption of the DeGroot model framework: it is assumed that actors do not

misrepresent their opinion; in other words, stated opinions are assumed to coincide with

true opinions. DeMarzo et al. (2003) argue that this assumption is problematic in contexts

1Indeed, among equally informed agents within a strongly connected social network that is common
knowledge, Bayesian updating leads to convergence of all agents’ opinions to their initial opinions’ average
(DeMarzo et al., 2003, theorem 3).



of persuasion, where actors have a material interest in influencing others’ opinions. But

even if there is no material incentive to persuade, people often misrepresent their opin-

ions. In the famous study of Asch (1955), subjects wrongly judged the length of a stick

after some other, allegedly neutral, participants had placed the same wrong judgment.

Follow-up studies revealed that this effect is weaker if the subjects do not have to report

their judgments publicly (Deutsch and Gerard, 1955). The authors argue that two forms

of social influence can be observed in this study. While informational social influence

describes the updating of opinions according to what others have said, normative social

influence describes the behavior of stating an opinion that fits to the group norm.2 Thus,

one motive to misrepresent the true opinion is a preference for conformity in the sense

of “getting a utility gain by simply making the same choice as one’s reference group”

(Zafar, 2011, p. 774). Incentives to conform can be derived from desires for social status

(Bernheim, 1994) and are embodied in a utility component that depends on the difference

of the behavior of the focal actor and the behavior of some peer group (Jones, 1984),

also called “reference group” (Hayakawa and Venieris, 1977). Meanwhile, the concepts

of informational and normative social influence have become a cornerstone in analyzing

social influence, e.g. Ariely and Levav (2000, p. 279) call it the “primary paradigm”.3 In

terms of this paradigm, the DeGroot model of opinion formation and its variations are

models of informational social influence, but not of normative social influence.

In this work, we present a model that incorporates both informational and normative

social influence. The model consists of a sequence of discussion rounds among näıve and

boundedly rational agents. In each discussion round agents express an opinion depending

on their true opinion and on their preferences for conformity. We consider agents with

preferences for conformity, counter-conformity, and honest agents.4 From one discussion

round to the next, learning takes place in the sense that agents update their opinion

according to a learning matrix. In the special case where every agent is honest, our model

coincides with the classic DeGroot model studied by DeMarzo et al. (2003); Golub and

Jackson (2010); Corazzini et al. (2012). Allowing agents to misrepresent their opinion

in a conforming or counter-conforming way, we investigate how opinions evolve. We first

analyze the two-agent case which illustrates that dynamics can diverge, converge, or cycle.

2Deutsch and Gerard (1955, p. 629) further explain: “Commonly these two types of influence are
found together. However, it is possible to conform behaviorally with the expectations of others and say
things which one disbelieves but which agree with the beliefs of others. Also, it is possible that one will
accept an opponent’s beliefs as evidence about reality even though one has no motivation to agree with
him, per se.”

3However, this paradigm did not explicitly enter economic models. The terms ‘social influence’ and
‘conformity’ do usually not clarify whether social or normative influence is at work. We will be more
explicit on this distinction and only refer to conformity as a form of normative social influence.

4This is consistent with the psychological theory on normative social influence, which considers identi-
fication, non-identification and disidentification with the peer group as the sources of conformity, honesty
(independence), and counter-conformity (Hogg and Abrams, 1988).
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It turns out that a sufficiently conforming agent will reach consensus with any other agent.

We then show more generally that excluding counter-conforming agents is sufficient to

guarantee convergence of opinions to local consensus.

Focusing on convergence, we then ask how opinion leadership depends on conformity.

Understanding the determinants of opinion leadership is important because opinion lead-

ers have the potential to mislead others. In our model opinion leadership or power of any

agent can be measured by the influence of her initial opinion on the long-run (consensus)

opinion of her group. As one of the main results, we show how power is determined not

only by eigenvector centrality (Bonacich, 1972; Friedkin, 1991) with respect to the learn-

ing matrix, but also by the distribution of conformity in the society. Comparative statics

reveal that an agent’s power is decreasing in own level of conformity, increasing in other

agents’ level of conformity and increasing in own network centrality. These results show

that a strong position in the social network is not sufficient to become an opinion leader.

Another requirement is that an agent is not more conforming than the other members of

the society. Thus, our model provides a theoretical explanation for the empirical finding

that opinion leaders are characterized by a low degree of conformity (Chan and Misra,

1990).

Finally, we consider a context where there is a true state of nature and the individuals’

initial opinions are independent, unbiased, noisy signals which may differ with respect to

signal precision (the inverse of the variance). The question is how the misrepresentation

of opinions affects the accuracy of information aggregation (the society’s “wisdom”). A

negative effect might be expected since stated opinions become even less reliable signals

about the truth. Our results show that this conjecture does not hold in general. First,

if the society is homogeneous with respect to conformity, then information aggregation is

neither worse nor better than in the DeGroot model (i.e. when all individuals are honest).

Moreover, heterogeneous levels of conformity foster wisdom if they balance the power

of agents with their signal precision, while an unbalanced distribution can lead to lower

wisdom. Using comparative statics we observe that for the goal of higher accuracy of the

consensus opinion it would be helpful if people with a low signal precision (relative to

their power) were more conforming, while people with a high signal precision (relative to

their power) should be less conforming, or in more poetic words: “The whole problem

with the world is that fools and fanatics are always so certain of themselves, but wiser

people so full of doubts.”5

5Credit for this quote is often given to the philosopher and mathematician Bertrand Russell. Although
the origin of the quote is actually unknown, it is at least confirmed that Russell made a similar statement
in his essay “The Triumph of Stupidity,” which can be found in Mortals and Others: Bertrand Russell’s
American Essays, 1931-1935.
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Related Models The non-Bayesian approach to learning in social networks roots in

the pioneer work of French (1956), Harary (1959), and DeGroot (1974). Friedkin and

Johnsen (1990) provide a framework that subsumes former models as special cases. A

particular feature of Friedkin and Johnsen (1990) is that opinions can be updated in

every period not only according to the current profile of opinions but also according to

the own initial opinion. Another variation of the classic model is to let agents only be

affected by opinions that are not too different from the own opinion (Hegselmann and

Krause, 2002). Moreover, Lorenz (2005) allows the learning matrix to vary over time

and identifies general conditions for convergence. Under some conditions, convergence

to consensus is also robust if updating is noisy, as Mueller-Frank (2011) shows. In the

seminal contribution of DeMarzo et al. (2003) self confidence is allowed to vary over time.

There are also studies which extend the model by DeGroot (1974) to allow for adaption of

learning weights, e.g. in Pan (2010) the influence weights are updated over time and Flache

and Torenvlied (2004) study a variation of the classic model where actors anticipate the

difference between own opinion and group decision and adapt learning weights accordingly.

The recent model by Foerster et al. (2013) studies agents who increase the learning weights

others have for them. In a context of cultural transmission of traits, Buechel et al. (2011)

introduce strategic interaction for the DeGroot model in an OLG framework.

Finally, Corazzini et al. (2012) assess real opinion updating in a laboratory experiment.

They reject the hypothesis that participants are fully Bayesian and conclude that the

network structure does matter, which is in line with DeMarzo et al. (2003) who assume

that agents do not properly account for repetition, but are subject to persuasion bias.

Corazzini et al. (2012) suggest a specification of the DeGroot model, which is also a special

case of our model.

In the context of binary opinions Condorcet’s Jury theorem is a famous example of

how aggregation of individual opinions can be efficient in the limit. In the framework of

the DeGroot model, a similar phenomenon, coined “the wisdom of crowds,” is studied.

Golub and Jackson (2010) provide conditions for wisdom in the sense that the consensus

opinion of a society comes arbitrarily close to the truth when letting the size of the

society grow. Our approach to assess efficiency of information aggregation differs in that

we analyze the accuracy of information aggregation for a society of fixed size. This is

in line with Acemoglu et al. (2010) who assess the wisdom of a society as the difference

between optimal information aggregation and the consensus opinion that emerges in their

model. However, similar to Golub and Jackson (2010) we find that näıve agents can be

remarkably wise.

Besides these highly related works, there are several contributions to social influence in

the context of discrete choices of actions, such as the choice of one out of two technologies.

While their discussion is beyond the scope of this paper, we refer the reader to the following
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few prominent examples: models of social learning (Bikhchandani et al., 1992; Ellison and

Fudenberg, 1993, 1995; Bala and Goyal, 1998, 2001), cooperative models of social influence

(Grabisch and Rusinowska, 2010, 2011), and a model of strategic influence (Galeotti and

Goyal, 2009). Moreover, there is a recent literature on communication in social networks

when agents are strategic (Hagenbach and Koessler, 2010; Anderlini et al., 2012; Ambrus

et al., 2013). Those models of strategic information transmission clearly apply to different

contexts than the models of näıve social learning.

The rest of this paper is organized into five sections. In Section 2 we introduce the

model. Before we present the main results (in Section 4), we discuss the two-agent case

(Section 3). Section 5 addresses the wisdom of a society and in Section 6 we conclude,

while proofs are relegated to the appendix.

2 Model

2.1 Informational Social Influence

There is a set of agents/players N = {1, 2, ..., n} who interact with each other. A learning

structure is given by a n × n row stochastic matrix G, i.e. gij ≥ 0 for all i, j ∈ N and∑n
j=1 gij = 1 for all i ∈ N . This learning matrix represents the extent to which agents

listen to other agents and it can be interpreted as a weighted and directed social network.

We say that there is a directed path from i to j in this network if there exists i0, ..., ik ∈ N
such that i0 = i and ik = j and gilil+1

> 0 for all l = 0, ..., k − 1, which is equivalent to

(Gk)ij > 0.6 Moreover, we assume that gii < 1 for all i to assure that all agents update

their opinion.

We study a dynamic model where time is discrete t = 0, 1, 2... and initially each agent

has a predefined opinion xi(0) concerning some topic. The opinions of all agents at time

t are collected in x(t) ∈ Rn. In every period, agents talk to each other and finally update

their opinions according to the matrix G. In the classical DeGroot model agents exchange

opinions such that the opinions in period t+1 are formed by x(t+1) = Gx(t) = Gt+1x(0)

(DeGroot, 1974). The motivation for such a model is that agents always report their

true opinions and suffer from persuasion bias when the next period’s opinion is formed

as a weighted average of own and others’ opinions according to the social network G.

Concerning the assumption of honesty in opinion formation, DeMarzo et al. (2003) note:

“For simplicity, we assume that agents report their beliefs truthfully.”7

6We follow the convention of Jackson (2008) and DeMarzo et al. (2003) that a directed link from agent
i to agent j indicates that i listens to j, i.e. gij > 0, while the opposite convention is used by Corazzini
et al. (2012).

7DeMarzo et al. (2003, p. 3, footnote 9).
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We relax this assumption: an agent i ∈ N expresses some opinion si(t) ∈ R which need

not coincide with her true opinion xi(t).
8

A central assumption of our approach is that an agent cannot observe the true opinions

of the others but only their stated opinions. Since each agent knows her own true opinion

xi(t), we get that agent i′s next period’s opinion is formed by xi(t + 1) = giixi(t) +∑
j 6=i gijsj(t), where the weights gij are the individual learning weights as in the classical

model by DeGroot (1974). This holds for all agents i ∈ N and, thus, the updating process

becomes

x(t+ 1) = Dx(t) + (G−D)s(t), (1)

where D is the n× n diagonal matrix containing the diagonal of G.

2.2 Normative Social Influence

Misrepresenting the own opinion (i.e. being dishonest) might cause discomfort (e.g. Fes-

tinger, 1957). However, there are various motives to misrepresent the own opinion. Not

only strategic considerations of persuasion play a role, but also personality traits or emo-

tional motives. There is ample evidence that many people feel discomfort from stating an

opinion that is different from their peer group’s opinion (e.g. Deutsch and Gerard, 1955).

While certainly many people feel this type of normative social influence, this need not

be true for all people – there are even some who prefer to state an opinion that is far

away from what others say.9 We focus on these two motives for the misrepresentation of

opinions: conformity and counter-conformity.

To formalize these ideas, consider an agent i who is confronted with some group opinion

qi, while her own opinion on this topic is xi. In the spirit of the model of Bernheim (1994)

we consider a utility function that depends on an intrinsic part – this will be the incentive

to be honest – and a social part – this will be the incentive to conform/counter-conform.

Additionally, we assume that utility of an agent is additively separable into these two

parts and that for each part disutility takes a quadratic form.

Thus, the utility of agent i depends on the distance of true opinion xi to stated opinion

si as well as on the distance of stated opinion si to group opinion qi in the following way:

ui(si|xi) := −(1− δi)
(
si − xi

)2 − δi
(
si − qi

)2
, (2)

8The incentive to state an opinion different from true opinion will be based on preferences for confor-
mity or counter-conformity (cf. Subection 2.2). Moreover, agents adapt their stated opinions faster than
true opinions such that s(t) is given by Proposition 1.

9For instance, Hornsey et al. (2003) conducted a laboratory experiment where subjects reported their
willingness to privately or publicly express and support their opinion. For subjects with a strong moral
basis on the topic, the treatment of suggesting that a majority of the other subjects disagreed slightly
increased the willingness to publicly express the opinion.
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where δi ∈ (−1,+1) displays the relative importance of the preference for conformity in

relation to the preference for honesty. The preference peak (or “bliss point,” Bernheim,

1994) for such an agent is given by si = (1−δi)xi(t)+δiqi(t). This assumption is illustrated

in Figure 1. For δi ∈ (0, 1) the agent faces a trade-off between conforming and being honest

such that her preference peak lies within the interval (xi, qi). For δi ∈ (−1, 0), a similar

trade-off can be seen counter-conforming and being honest. In that case the preference

peak lies within the interval (xi − (qi − xi), xi). We assume that δi > −1 to restrict

counter-conformity to a certain bound which seems weak enough to cover all reasonable

cases, but keeps the analysis tractable.

Figure 1: Preferences for conformity, counter-conformity, and honesty.

A stylized fact on normative social influence is that people are heterogeneous in the way

and their degree of being influenced. The degree of conformity can hence be considered a

personality trait, but it might also depend on the topic under discussion. Let ∆ denote

the n×n diagonal matrix with entries δi ∈ (−1, 1) on the diagonal representing the levels

of conformity in the society.

While updating of true opinions, i.e. learning, is a relatively slow cognitive process,

stated opinions can be adapted in a much more fluid way. Our model reflects this fact

by considering an adaption process of stated opinions which takes place within a time

period t, while true opinions are updated from one period to the next.10 Thus, suppose

that within each period t ∈ N, there is a fast time scale τ ∈ N such that at each time

step τ one or more agents speak. The (possibly random) set of agents who are selected

to state their opinions at time step τ (of period t) is denoted by Aτ (t). Let sτ (t) be the

vector of stated opinions. Agents who are not selected to revise keep the stated opinion

of the previous time step, i.e. sτi (t) = sτ−1
i (t) if i ∈ N \Aτ (t). Agents, who are selected to

speak and thereby revise their stated opinion, observe last time step’s stated opinions of

their neighbors. These are perceived as a reference opinion qτ−1
i (t), which is the average

of the stated opinions with weights according to the listening matrix G, i.e.

qτi (t) =
∑
j 6=i

gij
1− gii

sτj (t). (3)

10An interpretation for this assumption is that each period is a discussion round within which stated
opinions are adjusted, while learning takes place between discussion rounds.
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In line with our assumption that agents are näıve when updating, we also assume that

agents are boundedly rational when revising their stated opinions. Upon revision oppor-

tunity, i.e. i ∈ Aτ (t), an agent i myopically chooses a stated opinion which maximizes her

current utility given by (2), i.e.

sτi (t) = (1− δi)xi(t) + δiq
τ−1
i (t), (4)

for any true opinion xi(t) and any reference opinion qτ−1
i (t).11 Hence, the stated opinion

given by myopic best response differs from the true opinion proportionally to the difference

of reference opinion and true opinion, and the proportion is determined by the preference

parameter δi. The parameter δi can thus be directly interpreted as the degree of conformity

of agent i′s behavior (cf. Figure 1). A conforming agent, characterized by δi ∈ (0, 1),

states an opinion between the true opinion xi(t) and perceived opinion qτ−1
i (t). A counter-

conforming agent, characterized by δi ∈ (−1, 0), states an opinion that is more extreme

than the true opinion xi(t) (with respect to the perceived opinion qτ−1
i (t)). Finally, an

honest agent, characterized by δi = 0, straight-forwardly states the true opinion, i.e.

sτi (t) = xi(t) for all τ ∈ N.

To ensure that every agent takes part in opinion exchange in period t, we assume that

for each agent i, the set {τ ∈ N : i ∈ Aτ (t)} is (almost surely) infinite, reflecting the

idea that no agent will stay forever with a stated opinion that is not in line with her

preferences. This assumption is satisfied if e.g. at each time step τ agents are randomly

selected to speak according to some probability distribution with full support on N .

It turns out that such a myopic best reply process within period t ∈ N inevitably leads

to one specific profile of stated opinions s(t) which only depends on the network G and

the conformity parameters ∆, but not on the starting stated opinions s0(t).

Proposition 1. Given the assumptions above, the within-period dynamics sτ (t) converge

for τ →∞ to

s(t) := [I −∆(I −D)−1(G−D)]−1(I −∆)x(t). (5)

The proof of Proposition 1 as well as all proofs of the following propositions are rele-

gated to an appendix. Proposition 1 shows that agents who revise opinions by conforming

or counter-conforming to what their neighbors last said, finally state (or express) the opin-

ions given by (5).

It is worth noting that considering the action sets Si(t) = R and utility functions

ui(si(t)|xi(t)) given by (2) implies that s(t) obtained by Proposition 1 is the unique Nash

equilibrium of the normal form game (N , S(t), u(·|x(t)) for each t ∈ N. Note that the

process that leads into this Nash equilibrium within period t neither requires complete

11Myopic maximizing is a common assumption in such models (see, e.g. Corazzini et al., 2012).
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information (e.g. on the network structure G), nor high degrees of rationality, nor some

sort of common knowledge.

2.3 Model Summary

In our model each period t ∈ N can be viewed as a discussion round within which agents

express opinions and then learn from one discussion round to the next. Proposition 1

determines which opinions are finally stated in a given period as a function of the true

opinions x(t). These stated opinions s(t) determine the vector of reference opinions q(t)

by (3) and are then a crucial ingredient of the updating process.12 Since opinions of period

t+ 1 are formed by (1) and the stated opinions of each period can be calculated as in

Proposition 1, we conclude that the opinion profile in period t+ 1 depends on the opinion

profile in period t in the following way:

x(t+ 1) = Mx(t), (6)

where M :=
[
D+(G−D)[I−∆(I−D)−1(G−D)]−1(I−∆)

]
. Note that the transformation

from x(t) to x(t+1), i.e. the matrix M , is independent of x(t). Thus, the opinion dynamics

is fully described by the power series M t, since x(t + 1) = Mx(t) = M2x(t − 1) =

... = M t+1x(0).13 The relation to the classical DeGroot model becomes apparent in this

expression when recalling x(t+1) = Gx(t) = Gt+1x(0). In that light the misrepresentation

of opinions leads to a transformation of the matrix G into the matrix M . If every agent

is honest, i.e. δi = 0 for any i ∈ N , then M = G and, hence, we are back in the classical

case of DeGroot (1974).

Let us illustrate the model introduced above by an example with three agents.

Example 1. Suppose there are three agents. Player 1 (black) starts with an opinion

x1(0) = 0, Player 2 (red) and Player 3 (blue) have initial opinions of x2(0) = 50 and

x3(0) = 100. Player 2 is an honest agent, i.e. δ2 = 0, Player 3 is a conforming agent,

i.e. δ3 = .5 > 0, and Player 1 is a counter-conforming agent, i.e. δ1 = −.5 < 0. To

illustrate the implications of the different degrees of conformity, we let the players be in

a symmetric network position. In particular, let the interaction structure be given by

G =

.6 .2 .2

.2 .6 .2

.2 .2 .6

 .

The dynamics of opinions across periods are displayed in Figure 2, where the solid lines

indicate the dynamics of true opinions x(t), the dashed lines display the stated opinions

12Since one interpretation for qi(t) is that this is the society’s opinion at time t as perceived by agent
i, we also call it i′s perceived opinion.

13The simple linear structure is of course implied by our assumption of quadratic utility.
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s(t) at the end of each period, and the dotted lines the perceived opinions q(t). For better

readability, we abstract from within-period dynamics and simply connect the opinions at

time t and t+ 1 by straight lines.
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Figure 2: A three-agent example with one honest, one conforming, and one counter-
conforming agent.

Since Player 2 (red) is honest, her stated opinion will always be equal to her true

opinion. Therefore, those functions (red dashed line and red solid line) coincide. Player 3

is a conforming agent, she always expresses an opinion (dashed blue line) that is a convex

combination of the perceived opinion of others (blue dotted line) and her true opinion

(blue solid line). Player 1 is a counter-conforming agent. With respect to the perceived

opinion (black dotted line), she always expresses an opinion (black dashed line) that is

more extreme than her true opinion (black solid line).

The opinion dynamics in this simple example are such that stated, true, and perceived

opinions of each agent become more and more similar and approach the value 33.3 in the

long-run. Thus, the long-run opinions are closer to the initial opinion of the counter-

conforming Player 1 than to the initial opinion of the conforming Player 3. If every agent

was honest, i.e. (δi = 0, i = 1, 2, 3), opinions in this simple example would approach a

value of 50.

The dynamics of Example 1 highlights several features, the generality of which we

discuss in the subsequent sections.
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3 Two-Agent Case

Let us begin with the analysis of the two-agent case. In this case, closed form solutions

are easy to obtain and, still, it is possible to observe several important properties of the

opinion dynamics. (The n-agent case is presented in Section 4.)

Let n = 2. Then we can write G as

G =

(
1− g12 g12

g21 1− g21

)

with g12, g21 ∈ (0, 1). With only two agents, the relevant group average for one agent is

simply the stated opinion of the other agent, i.e. q1(t) = s2(t) and q2(t) = s1(t). Plugging

in the variables for G into (6) yields

M =

(
1−m12 m12

m21 1−m21

)
=

1− g12
1− δ2

1− δ1δ2

g12
1− δ2

1− δ1δ2

g21
1− δ1

1− δ1δ2

1− g21
1− δ1

1− δ1δ2

 .

Since x(t+ 1) = Mx(t), an entry mij gives the importance of Player j on the one-period

opinion change of Player i. From ∂m12

∂δ2
= −g12

1−δ1
(1−δ1δ2)2

, we see the following comparative

static effect: higher conformity of Player 2 reduces her one-period influence on Player 1

(m12), which vanishes (m12 → 0) when Player 2’s conformity approaches 1. Thus, in the

short run, conformity results in a reduction of influence. To investigate long-run effects,

we examine the power series M t since x(t) = M tx(0). By induction one can easily see

that M t can be rewritten as follows:

M t =
1

m12 +m21

(
m21 +m12(1−m12 −m21)t m12 −m12(1−m12 −m21)t

m21 −m21(1−m12 −m21)t m12 +m21(1−m12 −m21)t

)
. (7)

From (7), we observe that the decisive quantity for the (speed of) convergence of M t is

λ := 1−m12 −m21 = 1− g12(1− δ2) + g21(1− δ1)

1− δ1δ2

< 1,

which is the second (largest) eigenvalue of M (the other eigenvalue of M is always 1). In

particular, M t converges if |λ| < 1 and, moreover, the smaller |λ|, the higher the speed of

convergence. Before discussing the issue of convergence in more detail, let us have a brief

12



look at the limit of M t in case of convergence: with the help of (7), we have

M∞ = lim
t→∞

M t =


m21

m12 +m21

m12

m12 +m21
m21

m12 +m21

m12

m12 +m21


such that, in the long run, the two agents will reach a consensus because x(∞) = M∞x(0).

Player 1’s and Player 2’s initial opinions enter this consensus opinion with weights m21

m12+m21

and m12

m12+m21
, respectively. Since m12

m12+m21
= g12(1−δ2)

g12(1−δ2)+g21(1−δ1)
= 1 − g21(1−δ1)

g12(1−δ2)+g21(1−δ1)
,

Player 2’s influence in the long-run is decreasing in δ2. Therefore, increasing conformity

not only decreases the short-run importance of an agent, but also the long-term impact

of this agent’s initial opinion.

To study the effect of conformity/counter-conformity on convergence, we will first

consider the special case δ1 = δ2 =: δ which simplifies λ to

λ = 1− 1

1 + δ
(g12 + g21).14 (8)

Since λ < 1, the decisive thresholds for λ are λ = 0 and λ = −1: for λ = 0, convergence

will be fastest (one-step convergence due to M = M2 = ... = M∞), while λ = −1 marks

the case of cycling M t (M t will alternate between M1 = M3 = ... and M2 = M4 = ...).

Figure 3 exemplifies the corresponding dynamics for G =

(
0.6 0.4

0.2 0.8

)
and initial opinions

x(0) = (0, 100)′. Notice, in particular, that the speed of convergence of true opinions x(t)

is not monotone in δ: when δ decreases from 0.5 to −0.4, speed increases and eventually

reaches one-step convergence; however, further reducing δ first leads to slower, alternating

dynamics, cycling, and finally divergent behavior.15 It might be surprising that higher

levels of conformity can decrease the speed of convergence. The intuition for this effect

can be gained by comparing cases (a) and (b). Under conformity, i.e. in case (a), stated

opinions s(t) are closer to each other in the first time periods such that agents’ true

opinions x(t) are less swayed to the center compared with case (b) where agents are

honest.16

If we relax the assumption of equal conformity (δ1 = δ2), the necessary and sufficient

14λ and |λ| as a function of δ are depicted in part (0) of Figure 3.
15Another aspect that can be observed in Figure 3 is that, under convergence, i.e. in cases (a)-(e), the

dynamics converges to the same limit independently of δ. We will show later on that this observation is
not a coincidence and that it is induced by setting δ1 = δ2 = δ.

16Recall that agents know their own true opinion and are thus resistant against their own misrepresen-
tation.
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Figure 3: Seven cases of two-agent dynamics for δ1 = δ2 = δ. Solid lines represent true
opinions and dashed lines display stated opinions. (0) Shape of λ. (a) δ > 0, conformity.
(b) δ = 0, honesty. (c) −0.4 < δ < 0, smooth convergence under counter-conformity. (d)
δ = −0.4, one-step convergence. (e) δ < −0.4, alternating dynamics with convergence.
(f) δ = −0.7, alternating dynamics (λ = −1). (g) δ < −0.7, divergence.

condition for convergence of M t (λ > −1) is equivalent to

g12
1− δ2

1− δ1δ2

+ g21
1− δ1

1− δ1δ2

< 2. (9)

To interpret this condition in terms of individual conformity parameters, let us distin-

guish two cases:17

(i) If δ2 ≤ 2g21+g12−2
2+g12

, then M t converges if and only if δ1 >
g12(1−δ2)+g21−2

g21−2δ2
.

(ii) If δ2 >
2g21+g12−2

2+g12
, then M t converges for any δ1 ∈ (−1,+1).

Thus, if Player 2 has a relatively low degree of conformity (case (i)), then Player 1 must be

17It can be checked that the threshold which defines the two cases is always in (−1, 13 ). Additionally,
given that (i) holds, the threshold for δ1 is below 1.
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sufficiently conforming in order to assure convergence. However, if Player 2’s conformity is

above some threshold, then we will have convergence for any conformity level of Player 1.

In fact, δ2 > 1
3

is sufficient for (ii) to hold. Since similar arguments can be made by

exchanging the players’ labels, in the two-agent case we always have convergence if there

is an agent with δi >
1
3
. Thus, a sufficiently conforming agent will reach consensus with

any other agent.

4 Opinion Dynamics

To study the dynamics of opinions of n agents, we first elaborate on the properties of

steady states and the relation of true, perceived, and stated opinion. We then provide

conditions for convergence of opinions and finally determine where opinions converge to.

We establish these necessary results in a general and formal way in Sections 4.1–4.4 before

we turn to the interpretation, in particular of the main result (Theorem 1), in Section 4.5.

4.1 Perceived, True, and Stated Opinions in Steady States

The dynamics of stated opinions s(t) can be derived from the dynamics of x(t) = M tx(0)

since Proposition 1 determines s(t) in dependence of x(t). Also, the dynamics of q(t)

are determined by s(t) since each perceived opinion qi(t) is exogenously defined as some

weighted average of s(t).

If it is the case that dynamics eventually settle down, we have x(t+ 1) = x(t), which

is equivalent to Mx(t) = x(t). In general, we define z ∈ Rn to be a steady state of the

opinion dynamics if Mz = z, i.e. if it is a (right-hand) eigenvector of M corresponding to

the eigenvalue 1. Considering the characteristic equation det(I −M) = 0, we can rewrite

its argument with use of (6) as follows:

I −M =
[
I − (G−D)∆(I −D)−1

]−1
(I −G), (10)

as shown in the Appendix A.2. Proposition 2 uses this expression to clarify the relation

between perceived, stated, and true opinions in a steady state.

Proposition 2 (Steady States). 1. The following statements are equivalent:

(a) x is a steady state, i.e. Mx = x,

(b) Gx = x,

(c) perceived and true opinions coincide, i.e. q = x,

(d) perceived and stated opinions coincide, i.e. q = s.
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2. If s = x, then δi(Gx− x)i = 0 for all agents i ∈ N . If δi 6= 0 for all agents i ∈ N ,

then s = x implies that x is a steady state.

The equivalence between Mx = x and Gx = x should not be misinterpreted. It does

not mean that both dynamics M tx(0) and Gtx(0) converge to the same vector of opinions.

What this condition really means can best be seen when G is irreducible, i.e. every agent

interacts (at least indirectly) with everybody else. Then, since G is row stochastic, Gx = x

is equivalent to xi = xj for all i, j ∈ N . In this case, all those opinion profiles are steady

states of G, where every agent has the same opinion. We call this a consensus. Only

consensus opinions can then be “steady states of G” (i.e. Gx = x) in case of irreducibility

of G and hence of M . Thus, the opinion dynamics in our model (according to M) only

lead to steady states that are also steady states of the special case with δi = 0 for all i

(i.e. the classic DeGroot model), but they do in general not lead to the same vector of

opinions when starting with some vector x(0). Further, the equivalence between Mx = x

and Gx = x implies that the rows of M always sum up to 1. This is true since G is

row stochastic and hence G1 = 1 (where 1 is the vector of ones) and thus by the above

result M1 = 1. Note however that, in contrast to G, M may have negative entries or even

entries larger than 1.

Proposition 2 part 1 also shows that in a steady state true opinion, stated opinion

and perceived opinion of any agent agree (since x = q = s). This is only true in a steady

state. However, the fact that true opinion x and stated opinion s coincide is not sufficient

for a steady state. The reason is simply that an honest agent (δi = 0) always reports her

opinion truthfully no matter of being in a steady state or not. In Part 2, however, we

show that if agents are dishonest (δi 6= 0 for all i ∈ N ), then all opinions are reported

truthfully (x = s) only in a steady state.

In the following we study the long-run dynamics. Since x(t) = M tx(0) it is straight-

forward to see that the opinion dynamics x(t) converges to a steady state (for any given

initial opinion profile x(0)) if and only if M t converges. From Proposition 2 it follows

that in this case also q(t) and s(t) converge. Note that we may also have convergence

of opinions x(t) if M t diverges. This can be most easily seen if every agent starts with

the same opinion (i.e. xi(0) = xj(0) for all i, j ∈ N ). Then from Proposition 2 we get

one-step convergence of x(t). This may also happen in the classical DeGroot model, i.e.

such that δi = 0 for all i.18 However, in any case – whether or not M t converges – it

is possible to show that in our model the true opinions x(t) converge if and only if the

stated opinions s(t) converge, which is equivalent to convergence of perceived opinions q(t)

(see Appendix A.3, Lemma A.2). Moreover, all converge to the same limit. Therefore,

throughout the paper, we restrict our analysis to the dynamics of true opinions x(t).

18See Berger (1981) for a necessary and sufficient condition for convergence of opinions in the DeGroot
model.
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4.2 The Structure of the Society

While some of the intuition gained in the two-agent case will generalize, there are features

of larger networks that cannot appear between only two agents: in the two-agent case,

both agents necessarily interact with one another since we assume that gii < 1 for all

i ∈ N . When considering opinion dynamics with n agents, there can be agents who are

not influenced at all by one another, or where the influence is only one-way. We thus

consider a partition of the agent set N such that the agents are ordered into groups which

are determined by the interaction patterns, i.e. the paths in the network implied by G.

Definition 1. Let Π(N , G) = {C1, C2, ..., CK ,R} be a partition of N into K(≥ 1) groups

and the (possibly empty) rest of the world R such that:

• Each group Ck is strongly connected, i.e. ∀i, j ∈ Ck there exists l ∈ N such that

(Gl)ij > 0.

• Each group Ck is closed, i.e. ∀i ∈ Ck, Gij > 0 implies j ∈ Ck.

• The (possibly empty) rest of the world consists of the agents who do not belong to

any group, i.e. R = N \
K⋃
k=1

Ck.

With a suitable renumeration, the matrix G can be organized into blocks which cor-

respond to the groups of the partition Π(N , G):

G =



G11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 GKK 0

GR1 · · · · · · GRK GRR


(11)

with Gkk = G|Ck , GRR = G|R, and GRk consisting of the rows of G belonging to R and

the columns of G belonging to Ck. This kind of organizing the agents into groups and

organizing the matrix into blocks is standard in the literature based on the DeGroot model

(e.g. DeMarzo et al., 2003; Golub and Jackson, 2010). Proposition 3 explicitly shows that

M – and in fact M t, for all t ∈ N – has the same block structure as G.19 Moreover, it

characterizes M t.

Proposition 3 (Blocks). Let G be given as in (11), i.e. organized into blocks according

19This result is not self-evident. It crucially depends on the definition of the reference opinion qτi (t).
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to the partition Π(N , G) = {C1, C2, ..., CK ,R}. Then for every t = 1, 2, ... we have

M t =



M t
11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M t
KK 0

(M t)R1 · · · · · · (M t)RK M t
RR


with

M t
kk = [I −

(
I − (Gkk −Dkk)∆kk(I −Dkk)

−1
)−1

(I −Gkk)]
t

for all k = 1, . . . , K,R, and

(M t)Rk =
t−1∑
l=0

M l
RRMRkM

t−1−l
kk ,

where MRk = (I − (GRR − DRR)∆RR(I − DRR)−1)−1GRk[(I − ∆kk(I − Dkk)
−1(Gkk −

Dkk))
−1(I −∆kk)] for all k = 1, . . . , K.

Concerning the block structure of M t and considering that x(t) = M tx(0), Proposi-

tion 3 shows that the opinion dynamics of each group Ck can be studied independently.

Only for agents in R multiple groups may matter. The agents in R, on the other hand, do

not affect the dynamics within groups. More importantly, Proposition 3 provides an ex-

plicit expression for M t and thus for the sequence of true opinions (since x(t) = M tx(0)).

Let us now investigate the limit of this sequence.

4.3 Conditions for Convergence

From Proposition 3 it becomes apparent that the dynamics of the different closed and

strongly connected groups are independent. Therefore, it is necessary for convergence of

M t that for any group Ck the relevant block M t
kk converges for t → ∞. To see that this

is not sufficient, consider the following example.

Example 2. Suppose there are four agents such that G =


0.7 0.3 0 0

0.3 0.7 0 0

0.085 0.085 0.49 0.34

0.085 0.085 0.34 0.49

 .
Thus Players 1 and 2 form a closed and strongly connected group C1, while Players 3

and 4 are the rest of the world R. Let the conformity parameter δ be given by δ =

(0, 0, δROTW , δROTW ). Figure 4 shows the opinion dynamics for the cases δROTW = −.75

and δROTW = −.9. While convergence within the closed and strongly connected group is
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guaranteed, the rest of the world (ROTW) may cause divergence of M t for t→∞.20
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Figure 4: The opinion dynamics of Example 2 for (a) δROTW = −.75 and (b) δROTW = −.9.

Thus, convergence of all closed and strongly connected groups M t
kk is not sufficient for

convergence of M t. In Proposition 4, we identify the additional condition on the rest of

the world such that M t converges.

Proposition 4 (First convergence result). Let the block structure of M be given as in

Proposition 3. M t converges for t→∞ if and only if M t
kk converges for all k = 1, . . . , K

and M t
RR converges to 0.

Proposition 4 presents a necessary and sufficient condition for convergence of M in

terms of the block structure. In Example 2 the condition that MRR converges to 0 fails

since strong counter-conformity of two agents leads to eigenvalues with high absolute

value to the extent that |λRR| > 1, for some eigenvalue of MRR. A similar violation of the

necessary condition for convergence occurs if counter-conformity of agents in the closed

and strongly connected groups is too strong. Thus, one can derive the intuition that strong

counter-conformity may cause divergence. The following result presents simple conditions

on the degree of conformity and the interaction structure that ensure convergence of the

opinion dynamics.

20Notice that, for the latter case, M not only has negative entries but also entries larger than unity:

M =


0.7 0.3 0 0
0.3 0.7 0 0

0.053125 0.053125 −0.115625 1.009375
0.053125 0.053125 1.009375 −0.115625

 .
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Proposition 5 (Second convergence result). M t converges for t→∞ if ∀i ∈ N we have

gii > 0 and δi ≥ 0.

The condition presented here is fairly weak. If we exclude counter-conformity (δi ≥
0), and every individual has at least some self-confidence, then the opinion dynamics

converges. Although all cases of conformity are covered by Proposition 5, it is important to

emphasize that this condition is not necessary for convergence. Examples of convergence

which include counter-conforming agents are given in Examples 1, 2 and in Section 3.

4.4 Long-run Opinions

For the remainder, we now assume that the power series M t converges. Although confor-

mity is sufficient for convergence, we do not explicitly assume this.

We are now left to address where opinions converge to (in the long-run) when starting

with some opinion profile x(0). The answer to this question depends on the learning matrix

G and the conformity parameters δi. We are particularly interested in the influence of each

agent’s initial opinion on the long-run opinion given her network position and her degree of

conformity. The following result characterizes the long-run opinions explicitly (conditional

on convergence). We present it first in a formal way and turn to its interpretation in

Section 4.5.

Theorem 1. Let G and M be organized as in Proposition 3. We denote by w, v ∈ Rn

the vectors that fulfill the following: for each closed and strongly connected group Ck ∈
Π(N , G), w|Ck is the left unit eigenvector of Gkk with

∑
i∈Ck

wi = 1, while v|Ck is left unit

eigenvector of Mkk with
∑
i∈Ck

wi = 1. If M t converges for t → ∞ to some matrix M∞,

then the following holds:

M∞ =



M∞
11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M∞
KK 0

M∞
R1 · · · · · · M∞

RK 0


with

M∞
kk = 1|Ckv

′
|Ck = 1|Ckw

′
|Ck

I −∆kk

1
′
|Ck(I −∆kk)w|Ck

, (12)

and

M∞
Rk = (I −GRR)−1GRkM

∞
kk (13)

for all k = 1, . . . , K.
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Theorem 1, the proof of which can be found in Appendix A.6, fully characterizes the

long-run dynamics of (true) opinions given convergence since x(∞) = M∞x(0).21 For

the interpretation of the result, we distinguish again between the closed and strongly

connected groups Ck and the rest of the world R.

We can first observe that the long-run opinions may differ across groups, but each

closed and strongly connected group Ck reaches a consensus ck ∈ R as each block M t
kk

of M t converges to a matrix of rank 1. Each row of M∞
kk is given by the left-hand unit

eigenvector v′|Ck , implying

ck := xi(∞) = xj(∞) = v′|Ckx(0)|Ck (14)

for all agents i, j in group Ck. The left-hand normalized unit eigenvector v′|Ck thus displays

the extent to which the initial opinion of each agent i matters for consensus within group

Ck. Moreover, v′|Ck is a function of w′|CK , the left-hand unit eigenvector of Gkk, and the

conformity parameters within the group, ∆kk. We delay the interpretation of this result

and its comparative statics to the next subsection.

The long-run opinion of an agent in the ROTW R is simply some weighted average

of the long-run opinions c1, . . . , cK within the groups 1, ..., K.22 To see this, consider the

matrix

Γ := (I −GRR)−1(GR11|C1 , . . . , GRK1|CK ),

which is easily seen to be row-stochastic. Γ enables translating (13) into

x(∞)|R = Γc (15)

combining the long-run opinions of the closed and strongly connected groups denoted by

the K-dimensional vector c = (c1, . . ., cK)′. Thus, the initial opinion of some agent in

the ROTW does not affect the long-run opinion profile x(∞) since the ROTW agents

end up with a weighted average of the consensus opinions of the closed and strongly

connected groups, which in turn are dependent on the initial opinions within those groups.

Moreover, the weights of averaging depend on G but not on the conformity parameters δi

for i ∈ R. Consequently, the long-run opinion of an agent in the ROTW neither depends

on an initial opinion nor on the conformity parameter of any agent within the ROTW

(including herself). Since each agent in the ROTW may average differently between

consent opinions of the closed and strongly connected groups, the agents in the ROTW

need not reach a consensus if there is more than just one closed and strongly connected

group. The important contribution of Theorem 1 lies in the characterization of v as a

21The dynamics collapses to the well-known DeGroot dynamics if every agent i is honest, i.e. ∆ is a
matrix of zeros.

22This result is fully analogous to theorem 10 in DeMarzo et al. (2003).
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function of w and ∆, as we will discuss next.

4.5 Opinion Leadership

To simplify the discussion, let us now restrict attention to one closed and strongly con-

nected group by assuming that there is only one such group, i.e. Π(N , G) = N . For

this purpose it is sufficient to assume that G is strongly connected or, equivalently, that

rk(I −G) = n− 1.

From (14), we get that x(∞) = 1v′x(0) and hence xj(∞) = v′x(0) =
∑

i∈N vixi(0).

Thus, an entry vi of v determines the weight of the initial opinion of agent i on the

long-run consensus opinion of her group. This is a very intuitive formalization of opinion

leadership: v measures the power of each agent in the group.

Note that for δi = 0 for all i ∈ N , (12) yields v = w, i.e. opinion leadership is fully

determined by the unit eigenvector of G. w is a well-studied object in network science:

it is known as eigenvector centrality of the transposed social network G′ (Bonacich, 1972;

Friedkin, 1991).23

When relaxing the assumption that every agent is honest, then the following Corol-

lary of Theorem 1 shows how opinion leadership is not only determined by eigenvector

centrality, but also by the degree of conformity.

Corollary 1. Let rk(I − G) = n − 1. Let w and v be the normalized left-hand unit

eigenvectors of G and M , respectively. Then we have for any i ∈ N

vi =
(1− δi)wi∑
j∈N (1− δj)wj

. (16)

Moreover,

∂vi
∂δk

=
wk

n∑
j=1

wj(1− δj)

 wi(1− δi)
n∑
j=1

wj(1− δj)
− 1i=k

 =
wk

n∑
j=1

wj(1− δj)
(vi − 1i=k) . (17)

As it becomes apparent from (16) opinion leadership (power) vi of some agent i is

determined by the combination of her network centrality in G (wi) and the individual

conformity δi divided by the sum of these values over all agents. Thus, there is a com-

plementary relationship between network centrality and 1 − δi: power becomes minimal

(vi → 0) if either i’s network centrality approaches zero or if i is fully conform (δi → 1).

Taking the network G as given, we can observe the comparative statics with respect

23This index of centrality in a social network is recurrently defined via the rows of G′ (i.e. via the
columns of G): An agent’s centrality is the weighted sum of centralities of the agents who listen to her.
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to δi. From (17) we get for all i ∈ N that opinion leadership is decreasing in “own”

conformity δi and increasing in other agents’ conformity δk, k 6= i, since wj ∈ [0, 1] and

1−δj ≥ 0 for all j ∈ N . Thus, low own conformity fosters opinion leadership. The same is

true if other agents are more conforming. We also may use (17) to examine which agent’s

power changes most in response to a marginal increase in her own conformity. From (17),

we calculate that∣∣∣∣∂vi∂δi

∣∣∣∣ < ∣∣∣∣∂vj∂δj

∣∣∣∣ ⇔ w2
j (1− δj)− w2

i (1− δi) < (wj − wi)
n∑
k=1

wk(1− δk). (18)

Thus, if two agents have the same network centrality wi = wj, then by (18),
∣∣∣∂vi∂δi

∣∣∣ <∣∣∣∂vj∂δj

∣∣∣ if and only if δi < δj. In other words, the agent with the already higher degree

of conformity and thus lower power loses even more power in response to a marginal

increase in conformity compared with an agent with low conformity. Holding δi = δj,

we get
∣∣∣∂vi∂δi

∣∣∣ < ∣∣∣∂vj∂δj

∣∣∣ if and only if wi < wj, which implies that for two agents with equal

conformity the agent with the higher network centrality loses more power when increasing

own conformity.

We can also use Corollary 1 to compare opinion leadership in our model, v, with

opinion leadership in the classic DeGroot model, w, (i.e. with the special case of our

model where every agent i is honest, δi = 0). For this purpose consider first a society

where all agents are characterized by the same trait, i.e. δj = δ̄ for all j ∈ N . Then

(16) yields v = w: opinion leadership is not affected by conformity when all agents are

characterized by the same level of conformity. More generally, we have vi ≥ wi if and only

if δi ≤
∑

j 6=i
wj∑
k 6=i wk

δj, i.e. an agent’s power in our model compared to the classic DeGroot

model is fostered if δi is below some average of the others’ conformity parameters. This

is illustrated in Figure 5 which depicts vi as a function of δi for two different cases.

(a) Here we reconsider the learning matrix G as given in Example 1 with δ1 = −0.5,

δ3 = 0.5, and study the effect of Player 2’s conformity level δ2 on her power v2. If

Player 2 is honest, her initial opinion’s impact on the long-run consensus is 1/3, it

completely vanishes for Player 2’s conformity level approaching 1, while counter-

conformity allows Player 2 to become more important, eventually approaching v2 =

0.5 when δ2 approaches −1.24

(b) Here we reconsider Example 2 with δ1 = −0.7: in this case, Player 2’s ability to gain

power is further bounded by the fact that too strong counter-conformity (δ2 ≤ −0.7)

leads to divergence of opinions.

24One can show that the power gain by counter-conforming is bounded by vi(δi) ≤ (2− wi)vi(0).
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Figure 5: Power as a function of own conformity level.

5 Wisdom

The discussion so far applies to any continuous opinion including those for which no true

value can be determined. In some applications, however, agents’ opinions are more or less

accurate with respect to some objective truth. As in the discrete context of Condorcet’s

Jury theorem, the question whether agents aggregate information in an efficient way is

also of interest in the context of continuous opinions (Golub and Jackson, 2010; Acemoglu

et al., 2010).

Therefore we assume that there is some true value µ ∈ R and that all agents of

the society receive independent unbiased signals about µ with individual precision (i.e.

inverse of the variance) which constitute the agents’ initial opinions. Formally, for all

i ∈ N , agent i’s initial opinion xi(0) is a random variable with expected value µ and some

individual variance σ2
i , and all xi(0) are uncorrelated random variables. Assuming that

opinion dynamics converge, a very natural question to ask is how close the different steady

state opinions will be to the true, but to the agents unknown, value µ.25 To measure this

difference between µ and an estimate µ̂, we use the mean squared error (MSE), which is

defined as E((µ̂−µ)2).26 The MSE can be decomposed into the squared bias (E(µ̂−µ))2

and the estimator’s variance Var(µ̂):

E((µ̂− µ)2) = (E(µ̂− µ))2 + Var(µ̂).

As x(∞) = M∞x(0) and M∞
1 = 1, it is obvious that E(x(∞)) = µ1, i.e. all agents’

long-run opinions are unbiased estimates for µ. Denoting by Σ the covariance matrix

of x(0), the corresponding MSEs are therefore given by the entries on the diagonal of

25Recall that in a steady state true opinions and stated opinions coincide and there is consensus within
groups.

26The mean squared error as a measure of wisdom has also been used by Rauhut and Lorenz (2010).

24



M∞Σ(M∞)′. To study the effects of conformity on wisdom, we begin with an illustrative

example.

5.1 Wisdom: an Example

Let n = 10, (σ2
1, . . . , σ

2
10)=(6, 4, 8, 7, 6, 3, 10, 12, 14, 16), and

G =



0.9 0.1 0 0 0 0 0 0 0 0

0.4 0.6 0 0 0 0 0 0 0 0

0 0 0.8 0.2 0 0 0 0 0 0

0 0 0.3 0.7 0 0 0 0 0 0

0 0 0 0 0.7 0.3 0 0 0 0

0 0 0 0 0.3 0.7 0 0 0 0

0.1 0 0 0 0 0 0.9 0 0 0

0 0 0.2 0.3 0 0 0 0.5 0 0

0.1 0 0 0.1 0 0 0 0 0.8 0

0 0 0 0 0 0.2 0 0 0.2 0.6



.

In this situation, we have K = 3 closed and strongly connected groups, C1 = {1, 2},
C2 = {3, 4}, and C3 = {5, 6}, while Players 7 to 10 form the rest of the world. If all agents

report their opinions truthfully (∆ = 0), we find the MSEs equal to (4, 4, 4, 4, 2.25, 2.25,

4, 4, 2, 1.0625). There are several notable features of this observation. First, due to the

fact that their long-run opinions are equal, all agents within a given closed and strongly

connected group share the same level of wisdom. Comparing the first two groups, we note

that the MSEs of these two groups are 4 each, although the first group enjoys significantly

better initial signals (of variances 6 and 4), while the second group seems to combine their

less precise signals (of variances 8 and 7) much more effectively. It is also remarkable that

Player 2, by communicating with Player 1, ends up with exactly the same MSE of 4 that

she would reach if she used only her own signal. With respect to the rest of the world,

notice that these agents typically have different MSEs. Furthermore, Players 7 and 8 each

end up with the same MSE as the first two groups, while Players 9 and 10 achieve MSEs

better than all members of the closed and strongly connected groups.

Now suppose that Players 2, 3, and 5 are conforming with δ2 = 5/9, δ3 = 2/3, and

δ5 = 1/2 (and δi = 0 for all other players). Then wisdom levels can be calculated to be

(4.9, 4.9, 4, 4, 2, 2, 4.9, 4, 2.225, 1.05625). Thus, increasing conformity can lead to a

decrease in wisdom (as the first group’s MSE becomes larger), the same wisdom (as the

second group’s MSE does not change), or an increase in wisdom (as the third group’s

MSE becomes smaller). We also find that the agents in the rest of the world are affected

by the changes in conformity of the agents in the closed and strongly connected groups:
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the MSE of Players 7 and 9 increases, while Player 10’s MSE decreases slightly. It still

holds that Player 7 and 8’s MSEs equal that of the first and second group, respectively.

We will now proceed by systematically analyzing the principles underlying the distri-

bution of wisdom within the society.

5.2 Wisdom of Groups

Due to (14), a group Ck will, given convergence, eventually end up reaching a consensus

where all agents’ opinions are equal to ck = v′|Ck
x(0)|Ck

=: µ̂k. Hence, we can directly

derive group Ck’s wisdom as the MSE of µ̂k.

Lemma 1. The MSE of µ̂k is given by

MSEk := E((µ̂k − µ)2) =
∑
i∈Ck

v2
i σ

2
i =

∑
i∈Ck

 (1− δi)wi∑
j∈Ck

(1− δj)wj


2

σ2
i .

We may use Lemma 1 to identify the individual contributions to the MSE in a given

group Ck. First, from Lemma 1 it follows directly that

MSEk =
∑
i∈Ck

v2
i σ

2
i ≤

∑
i∈Ck

viσ
2
i ≤ max

i∈Ck
σ2
i , (19)

since v2
i ≤ vi due to vi ∈ (0, 1] for all agents i. Thus, group Ck’s long-run opinion is on

average at least as close to the true value µ as that of the agent with the least precise

signal. This worst case is given when both inequalities in (19) become equalities, which

is the case for vi ∈ {0, 1} for all i ∈ Ck (first inequality) and vi = 0 for all i with

σ2
i < max

j∈Ck
σ2
j (second inequality). Therefore, information updating within group Ck is

worst when importance is given to only one agent whose signal is most imprecise. This

case would be approached if all other agents were close to full conformity, i.e. δi close to

1. We now consider the comparative static effect of one agent’s conformity on the wisdom

of her group.

Proposition 6. The wisdom of a closed and strongly connected group Ck is increasing in

the conformity level of a group member i if and only if i′s product of signal variance and

power is larger than the group’s MSE, i.e.

∂MSEk

∂δi
≤ 0 ⇔ viσ

2
i ≥ MSEk .

To give an interpretation for Proposition 6, let us rewrite viσ
2
i = vi

1/σ2
i

and MSEk =∑
j∈Ck

vj
vj

1/σ2
j
. This shows that it is not a person’s expertise alone which is decisive for the
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question of how this person can increase the group’s wisdom, rather, it is the ratio of power

over signal precision, vi
1/σ2

i
: if agents with a high ratio as compared to the group’s average

are more conforming, then this will reduce their power within the group, decrease the

group’s MSE, and thereby increase its wisdom. Vice versa, agents who are not powerful

enough in relation to their signal precision will increase the group’s wisdom if they are

less conforming, because this will increase their power, decrease the group’s MSE, and

foster its wisdom.27

The above discussion implies that in the best possible case, the ratio of power over

signal precision is constant within a group: viσ
2
i = vjσ

2
j for all i, j ∈ Ck. This is formalized

in the following corollary of Proposition 6.

Corollary 2. For the wisdom of group Ck as measured by MSEk, we have

MSEk ≥
1∑

j∈Ck

1
σ2
j

=: MSE∗k, (20)

with equality in (20) if and only if viσ
2
i = vjσ

2
j for all i, j ∈ Ck. The latter condition is

equivalent to

δi = 1− a 1

σ2
iwi

∑
j∈Ck

1
σ2
j

for all i ∈ Ck (21)

for some constant a ∈ (0, 2
∑
j∈Ck

1
σ2
j

min
j∈Ck

wjσ
2
j ).

Corollary 2 delivers the analogue to (19). While (19) describes the worst case with

respect to wisdom, Corollary 2 considers the best scenario: all agents within the same

closed and strongly connected group share the same ratio of power over signal precision,

and this case can always be constructed if the agents’ conformity is distributed suitably.

In particular, choosing a ∈ (0,
∑
j∈Ck

1
σ2
j

min
j∈Ck

wjσ
2
j ] in (21) ensures δi ≥ 0 for all i ∈ Ck

and therefore by Proposition 5 guarantees convergence of the opinions in Ck to the best

possible consensus µ̂k. Notice also that the optimal MSE is smaller than individual signal

variance σ2
i for all agents i in group Ck, as is easily seen from (20). Therefore, under

optimal conformity all agents within Ck benefit from communication.

Reconsidering the example discussed in Subsection 5.1, we find the network centralities

(the left-hand unit eigenvectors of G) to be w1 = 0.8, w2 = 0.2, w3 = 0.6, w4 = 0.4,

w5 = 0.5, and w6 = 0.4. Therefore, in (21) the constant a can be chosen in (0, 2/3)

(group 1) and (0, 3/2) (groups 2 and 3). Choosing a = 1/3 (group 1) and a = 3/4 (groups

2 and 3) delivers δ1 = 5/6, δ3 = 5/12, and δ5 = 1/2 (and δi = 0 for all other agents).

Thus, choosing the agents’ degrees of conformity according to these values ensures the

27An analogous discussion can be already found in DeMarzo et al. (2003) for the case where agents are
honest.
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optimal wisdom within the respective groups, given by (2.4, 2.4, 3.73, 3.73, 2, 2, 2.4,

3.73, 1.53, 0.883). The same level could also be reached for other conformity levels, for

instance, choosing a = 1/4 (first group), a = 3/7 (second group), and a = 3/8 (third

group) in (21), we find that the conformity levels δ1:6 = (7/8, 1/4, 2/3, 3/7, 3/4, 1/2)

also lead to the optimal wisdom. Notice that, as in Golub and Jackson (2010), wisdom

thus is independent of the speed of convergence, as we have two examples with the same

optimal wisdom but different speeds of convergence (the last-mentioned conformity levels

lead to slightly slower convergence than the earlier mentioned ones).

5.3 Wisdom within the Rest of the World

Let us recall that agents in the rest of the world do not necessarily share a consensus

opinion in the long-run, so that we will typically have individual wisdom levels. Due

to (15), we have the following formula for the long-run opinions within the rest of the

world: x(∞)|R = Γµ̂, with µ̂ := (µ̂1, . . . , µ̂K)′. Therefore, the wisdom levels in the rest

of the world depend on the conformity levels of the agents in the closed and strongly

connected groups as these affect the consensus opinions µ̂k of these groups. On the other

hand, as neither the initial signals nor the conformity levels of the agents in the rest of

the world play any role for their long-run opinions, these agents’ wisdom is independent

of their conformity levels as well as of their initial signals. In other words, if the rest

of the world is non-empty, information processing in the society is necessarily inefficient

as the information contained in these agents’ initial signals is inevitably lost. Assuming

convergence, let γi,k denote the long-term weight of the group Ck on the opinion of agent

i ∈ R, i.e. xi(∞) =
K∑
k=1

γi,kµ̂k (cf. (15)). This immediately translates into the wisdom of

an agent i ∈ R as follows:

E((xi(∞)− µ)2) =
K∑
k=1

γ2
i,k MSEk ≤ max

k=1,...,K
MSEk . (22)

The wisdom of an agent in the rest of the world depends on the wisdom within the closed

and strongly connected groups. More precisely, an agent i’s wisdom only depends on the

wisdom of groups Ck to which there is a directed path in the network G because this

corresponds to γi,k > 0. The worst case for an agent in the rest of the world is to be

influenced only by agents of one closed and strongly connected group with maximal MSE.

With regard to the example discussed in subsection 5.1 this is the case for Players 7 and 8

who have directed paths only into group 1 and group 2, respectively, such that they share

their MSEs of 4. Player 9, however, who has directed paths into both groups with MSE of

4 reaches an MSE of 2 since the long-term weights γ9,1 = 0.5 and γ9,2 = 0.5 are squared in
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(22). Finally, Player 10 has directed paths into these groups via Player 9 and, moreover,

has a directed path into group 3. Player 10 therefore is able to combine MSEs of 4, 4, and

2.25 into an MSE as low as 1.0625. It is intuitive that for maximal wisdom of an agent in

the rest of the world, all groups’ signals have to be accessed with some kind of balanced

group weights. The following proposition confirms this intuition.

Proposition 7. For agents i ∈ R, we have:

E((xi(∞)− µ)2) ≥ 1
K∑
k=1

1
MSEk

, (23)

with equality if and only if γi,k = 1

MSEk

K∑
l=1

1
MSEl

for all k = 1, . . . , K.

Therefore, the highest wisdom is achieved if an agent in the rest of the world averages

the different groups’ opinions in such a way that the product of weight put on a group

and its MSE is constant for all groups: the better a group’s estimate, the more weight it

should get. Nevertheless, as all the optimal weights are positive, this optimum can only be

achieved if from agent i there is a directed path into all the closed and strongly connected

groups. Notice also that the optimal weights depend on the groups’ MSEs such that an

agent in the rest of the world who is initially characterized by optimal weights would no

longer average the groups’ opinions optimally if conformity levels within the groups were

to change.

It is remarkable that an agent in the rest of the world who is connected to multiple

groups can reach a significantly lower MSE than the best informed agents from those

groups. Thus, the fact that agents in the rest of the world are absolutely powerless does

not imply that they are not wise.

6 Concluding Remarks

So far, the literature on opinion dynamics has focused on truthful opinion representation

either with a Bayesian approach (Banerjee, 1992; Bikhchandani et al., 1992; Smith and

Sorensen, 2000; Gale and Kariv, 2003; Acemoglu et al., 2011) or assuming näıve updating

according to a learning matrix (DeGroot, 1974; DeMarzo et al., 2003; Golub and Jackson,

2010; Acemoglu et al., 2010). Despite some disputable assumptions in both approaches,

as Acemoglu and Ozdaglar (2011) point out, these models serve well to study conditions

under which societies will eventually reach a state of agreement, i.e. consensus. Moreover,

in both contexts the aggregation of initial opinions may, but need not, be “asymptotically

efficient,” in the sense that social learning leads to a high accuracy of information in the
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long-run. One basic force fostering efficient information aggregation even among näıve

agents is a statistical effect of growing sample size (which is also called “the wisdom of

crowds”) such as in Condorcet’s Jury Theorem. On the other hand, prominent agents

or opinion leaders might reduce the accuracy of information aggregation by superseding

valuable opinions of others.

To our best knowledge, this paper is the first contribution to incorporate misrepresen-

tation of opinions. We assume that individuals depart from their true opinion by conform-

ing or counter-conforming with their peer group which is a well documented phenomenon

(Deutsch and Gerard, 1955; Jones, 1984; Zafar, 2011). While we follow the literature

based on DeGroot (1974) in modeling informational social influence as näıve updating of

opinions through the network, we, thus, also model normative social influence by includ-

ing conforming/counter-conforming behavior. In order to study the effects of conformity

on long-run opinions and information aggregation, we characterize sufficient conditions

for convergence and characterize the long-run opinions in this dynamic framework. When

all agents are conforming or honest, then opinions converge (Proposition 5).

Assuming convergence, we then characterize the long-run (consensus) opinion in each

closed and strongly connected group under conformity (Theorem 1). Thereby, we are in

a position to study the impact of the individual levels of conformity on opinion leader-

ship and on wisdom of the society. Opinion leaders are those whose initial opinion has a

high impact on consensus. We find that this influence is increasing in network centrality

(as in the DeGroot model), but moreover decreasing in the individual level of confor-

mity (Corollary 1). Thus, taking the network as given, we conclude that low conformity

fosters opinion leadership while high conformity undermines opinion leadership. This re-

sult is fully in line with empirical evidence that opinion leaders are characterized by a

higher inclination to “publicly individuate” themselves (Chan and Misra, 1990). There-

fore, counter-conformity might be interpreted as a persuasion device since not only the

connected agents’ opinions of next period are swayed towards own opinion but a higher

impact on the consensus opinion is achieved.

The effect of heterogeneous levels of conformity on wisdom of the society is ambiguous.

Here, wisdom is defined as the mean squared error (MSE) of the consensus opinion where

agents’ initial opinions are noisy but unbiased signals about some true state of the world

with heterogeneous signal precision. Increasing conformity of a given individual need not

undermine the wisdom of the society, but can also enhance it or leave it unchanged. We

find that increasing conformity of agents with high power and low signal precision increases

the group’s wisdom (Proposition 6). In particular, optimal wisdom within a given closed

and strongly connected group is achieved if distribution of conformity levels is such that

ratio of power over signal precision is balanced across agents (Corollary 2). This result

resembles the fact that reducing prominence of individuals – in particular prominence
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of uninformed agents – increases the accuracy of information aggregation. While in the

previous literature reduction of prominence is achieved by increasing population size (see

e.g. Golub and Jackson, 2010), in our model this can be achieved by conformity and

therefore also holds for small groups. Finally, when considering agents in the rest of the

world, we find that their levels of conformity have no influence on wisdom. Although

powerless, individuals in the rest of the world can be quite wise since they may aggregate

information from different groups.

The model presented here contains some simplifying assumptions which may be relaxed

in future research. First, we assumed that the social network is exogenous and stays

fixed over time. In the literature we can find models where the network structure may

vary over time such that only agents with “close opinions” are listened to (Hegselmann

and Krause, 2002), self confidence varies (DeMarzo et al., 2003), and general changes

are possible (Lorenz, 2005). It would be interesting to see how changes in the learning

structure, either exogenously or endogenously, affect our results. Second, we assumed

that interaction neighborhood equals observation neighborhood in the sense that agents

conform or counter-conform with those agents they listen to. If this assumption is relaxed,

the group structure may no longer be preserved and interesting applications to lobbying

(addressing a certain group) become possible. We leave these ideas and possible other

extensions to future research.

A Appendix: Proofs

A.1 Expressed Opinions

Proof of Proposition 1

First, notice that s(t) by construction satisfies s(t) = (I − ∆)x(t) + ∆Y s(t) with

Y := (I − D)−1(G − D) and that for all i ∈ Aτ (t), sτi (t) is the i-th component of

(I − ∆)x(t) + ∆Y sτ−1(t). For all i ∈ Aτ (t), we therefore find sτi (t) − si(t) as the i-

th component of ∆Y (sτ−1(t)− s(t)). As Y is obviously a row-stochastic matrix, we

immediately have |sτi (t) − si(t)| ≤ δ∗||sτ−1(t) − s(t)||∞ for all i ∈ Aτ (t), with δ∗ :=

max
i∈N
|δi| < 1, while we have |sτi (t) − si(t)| = |sτ−1

i (t) − si(t)| ≤ ||sτ−1(t) − s(t)||∞ for all

i 6∈ Aτ (t). Together, we therefore have that ||sτ (t) − s(t)||∞ ≤ ||sτ−1(t) − s(t)||∞ for all

τ , showing that the distance between sτ (t) and s(t) measured using the || · ||∞-norm is a

non-increasing and therefore converging sequence.

Now, let Ui(t) := {τ ∈ N : i ∈ Aτ (t)}, for each agent i. Using the assumption that

every agent i belongs almost surely to infinitely many Aτ (t), we define τ1 := min{τ ∈
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N : (∀i ∈ N )(Ui(t) ∩ {1, . . . , τ} 6= ∅)} as the first time-step where every agent has at

least once been satisfied with her stated opinion.28 Given the above, it is easy to see that

||sτ1(t)− s(t)||∞ ≤ δ∗||s0(t)− s(t)||∞. Proceeding in the same way by recursively defining

τk+1 := min{τ > τk : (∀i ∈ N )(Ui(t)∩{τk + 1, . . . , τ} 6= ∅)} as the first time-step after τk

such that all agents have at least been once satisfied with their stated opinion, we then

have ||sτk(t)− s(t)||∞ ≤ (δ∗)k||s0(t)− s(t)||∞, yielding that ||sτk(t)− s(t)||∞ and therefore

also ||sτ (t)− s(t)||∞ converges to 0.

A.2 Rewriting I-M

Lemma A.1 (I-M). I −M = (I − (G−D)∆(I −D)−1)
−1

(I −G).

Proof of Lemma A.1 (I-M)

First, we can rewrite M , given by (6), to obtain

M = G− (G−D)(I −∆(I −D)−1(G−D))−1∆(I − (I −D)−1(G−D)).

This can be verified by the following calculation.

M = D + (G−D)(I −∆(I −D)−1(G−D))−1(I −∆)

= D + (G−D)
[
I −∆(I −D)−1(G−D)

]−1[
I −∆(I −D)−1(G−D)

+ ∆(I −D)−1(G−D)−∆
]

= D + (G−D)(I +
[
I −∆(I −D)−1(G−D)

]−1[
∆(I −D)−1(G−D)−∆)

]
= G− (G−D)

[
I −∆(I −D)−1(G−D)

]−1
∆
[
I − (I −D)−1(G−D)

]
.

Thus,

I −M = I −G+ (G−D)
[
I −∆(I −D)−1(G−D)

]−1
∆(I −D)−1(I −G)

=
(
I + (G−D)

[
I −∆(I −D)−1(G−D)

]−1
∆(I −D)−1

)
(I −G). (A.1)

Now, note that for any n×m-matrix A and any m×n-matrix B, with Ik the k-dimensional

identity matrix (k ∈ {n,m}), we have that In−AB is invertible if and only if Im−BA is

invertible, and then (In−AB)−1 = In+A(Im−BA)−1B, since (In+A(Im−BA)−1B)(In−
AB) = In−AB+A(Im−BA)−1B−A(Im−BA)−1BAB = In−AB+A(Im−BA)−1(Im−
BA)B = In. Taking A = G − D and B = ∆(I − D)−1 in (A.1) then gives I −M =

(I − (G−D)∆(I −D)−1)
−1

(I −G).

28The assumption that all Ui(t) are almost surely infinite guarantees that τ1, τ2, . . . are almost surely
well-defined.
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A.3 Steady states

Proof of Proposition 2

1. x is a “steady state of G,” i.e. Gx = x ⇔ (I − G)x = 0 ⇔
[
I − (G − D)∆(I −

D)−1
]−1

(I −G)x = 0, since by Lemma A.1
[
I − (G−D)∆(I −D)−1

]
is invertible.

Thus by Lemma A.1, Gx = x if and only if Mx = x.

It therefore suffices to show that Mx = x ⇒ q = x ⇒ q = s ⇒ Mx = x.

(a) x = Mx = Dx+ (G−D)s = Dx+ (I−D)q implies (I−D)x = (I−D)q, thus

q = x.

(b) q = x implies s = (I −∆)x+ ∆q = (I −∆)q + ∆q = q.

(c) q = s implies s = (I −∆)x + ∆q = (I −∆)x + ∆s and therefore (I −∆)s =

(I − ∆)x and s = q = x, from which we find Mx = Dx + (I − D)q =

Dx+ (I −D)x = x.

2. Suppose x = s. Note that s = (I −∆(I −D)−1(G−D))
−1

(I − ∆)x by Proposi-

tion 1. Thus,

x = s ⇔
(
I −∆(I −D)−1(G−D)

)
x = (I −∆)x

⇔ ∆
(
I − (I −D)−1(G−D)

)
x = 0

⇔ ∆(I −D)−1 (I −D − (G−D))x = 0
(∗)⇔ (I −D)−1∆ (I −D − (G−D))x = 0

⇔ ∆ (I −G)x = 0,

where (*) holds since (I −D)−1 and ∆ are diagonal.

Lemma A.2. The following statements are equivalent:

1. True opinions x(t) converge for t→∞.

2. Stated opinions s(t) converge for t→∞.

3. Perceived opinions q(t) converge for t→∞.

Moreover, if the true, stated, and perceived opinions converge, then the limits coincide:

lim
t→∞

x(t) = lim
t→∞

s(t) = lim
t→∞

q(t).
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Proof of Lemma A.2

From Proposition 1, we get that s(t) = (I −∆(I −D)−1(G−D))
−1

(I−∆)x(t). Thus

convergence of x(t) implies convergence of s(t). By definition we have that q(t) = (I −
D)−1(G−D)s(t), and hence convergence of s(t) implies convergence of q(t). To see that

convergence of q(t) implies convergence of x(t), we use that x(t + 1) = Dx(t) + (G −

D)s(t) = Dx(t) + (I −D)q(t). For all t ≥ 0, this implies x(t) = Dtx(0) +
t−1∑
l=0

Dt−1−l(I −

D)q(l), the first part of which converges to 0 because all elements of the diagonal matrix

D belong to [0, 1). The limit of x(t) therefore equals

lim
t→∞

t−1∑
l=0

Dt−1−l(I −D)q(l) = lim
t→∞

t−1∑
l=0

Dt−1−l(I −D) (q(l)− q(∞))

+ lim
t→∞

t−1∑
l=0

Dt−1−l(I −D)q(∞).

First, note that the second limit equals q(∞), because
∞∑
l=0

Dl = (I −D)−1. For the first

limit, note that for any ε > 0, we can find an index lε such that we have ||q(l)−q(∞)|| < ε

for all l > lε. Splitting the sum into small l (l ≤ lε) and large l (l > lε), we then

easily see that the first term converges to 0. Therefore, x(t) converges to q(∞). Since

s(t) = (I −∆)x(t) + ∆q(t), s(t) also shares the same limit.

A.4 Block structure

Proof of Proposition 3

Let Z := [I−∆(I−D)−1(G−D)]−1(I−∆) to simplify s = Zx and M = D+(G−D)Z.

We now proceed in three steps: we first characterize Z, then M , and finally M t. Let G be

given as in (11). Then simple but tedious block matrix algebra together with Lemma A.1

yields:

1.

Z =



Z11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 ZKK 0

ZR1 · · · · · · ZRK ZRR


with

Zkk = (I −∆kk(I −Dkk)
−1(Gkk −Dkk))

−1(I −∆kk),

ZRk = ZRR(I −∆RR)−1∆RR(I −DRR)−1GRkZkk
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for all k = 1, . . . , K, and

ZRR = (I −∆RR(I −DRR)−1(GRR −DRR))−1(I −∆RR).

2. For M = D + (G−D)Z = I − (I − (G−D)∆(I −D)−1)
−1

(I −G), we get

M =



M11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 MKK 0

MR1 · · · · · · MRK MRR


with

Mkk = Dkk + (Gkk −Dkk)(I −∆kk(I −Dkk)
−1(Gkk −Dkk))

−1(I −∆kk)

= I −
(
I − (Gkk −Dkk)∆kk(I −Dkk)

−1
)−1

(I −Gkk),

MRk = GRkZkk + (GRR −DRR)ZRk

= (I − (GRR −DRR)∆RR(I −DRR)−1)−1GRkZkk

for all k = 1, . . . , K, and

MRR = DRR + (GRR −DRR)(I −∆RR(I −DRR)−1(GRR −DRR))−1(I −∆RR)

= I −
(
I − (GRR −DRR)∆RR(I −DRR)−1

)−1
(I −GRR).

3. Finally, we claim that for every t ∈ N \ {0},

M t =



M t
11 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 M t
KK 0

(M t)R1 · · · · · · (M t)RK M t
RR


with (M t)Rk =

t−1∑
l=0

M l
RRMRkM

t−1−l
kk for all k = 1, . . . , K.

The assertion for the diagonal elements M t
11, . . . ,M

t
KK and M t

RR is trivial. We prove

the formula for M t
Rk by induction.
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• For t = 1, the assertion is trivial.

• t 7→ t + 1: first, we have (M t+1)Rk = (M tM)Rk = (M t)RkMkk + M t
RRMRk

by simple matrix multiplication. Inserting (M t)Rk =
t−1∑
l=0

M l
RRMRkM

t−1−l
kk , we

find

(M t+1)Rk =

(
t−1∑
l=0

M l
RRMRkM

t−1−l
kk

)
Mkk +M t

RRMRk

=
t+1−1∑
l=0

M l
RRMRkM

t+1−1−l
kk ,

which concludes the proof.

A.5 Convergence

Proof of Proposition 4

1. ‘Only if’: this is proven in the first part of the proof of Theorem 1.

2. ‘If’: Suppose each M t
kk converges and M t

RR converges to 0. First, since M t
kk con-

verges, its only eigenvalue with |λ| ≥ 1 is λ = 1 with algebraic and geometric

multiplicity equal to 1 for every k = 1, . . . , K. On the other hand, M t
RR → 0 im-

plies that the eigenvalues of MRR are all smaller than 1 in absolute value and, thus,

MRR − λI is invertible for all complex numbers λ with |λ| ≥ 1.

Now, let the complex number λ̃ be either outside of the unit circle (|λ̃| > 1) or

exactly on the unit circle (|λ̃| = 1), but different from 1. Taking into account the

block structure of M , we easily see that any solution of (M − λ̃I)x = 0 must satisfy

x|C1 = 0, . . . , x|CK = 0, and therefore also x|CR = 0, so that we can conclude that

λ = 1 is the only possible eigenvalue of M with |λ| ≥ 1.

In order to show convergence of M t, we therefore have to show that algebraic and

geometric multiplicity of λ = 1 coincide. With regard to algebraic multiplicity, the

block structure of M implies det(M −λI) =
K∏
k=1

det(Mkk−λI) det(MRR−λI), such

that the algebraic multiplicity of λ = 1 is the sum of the algebraic multiplicities

of M11, . . . ,MKK and MRR, which are given by 1 and 0, respectively, since Mkk

is by definition irreducible for all k = 1, ..., K. Consequently, the algebraic multi-

plicity equals K. With regard to geometric multiplicity, the block structure of M

implies that for any real numbers c1, . . . , cK , the vector x of the form x|Ck = ck1|Ck

(k = 1, . . . , K) and x|CR = (I −MRR)−1
n∑
k=1

ckMRk1|Ck is an eigenvector to M for

λ = 1, implying that the geometric multiplicity is at least K, thereby concluding
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the proof.

Proof of Proposition 5

Denote Y := (I − D)−1(G − D) which is row stochastic. Thus, as |δi| < 1 for all

i ∈ N , we have that I − ∆Y is invertible and (I −∆Y )−1 =
∑∞

k=0(∆Y )k. Moreover, if

δi ≥ 0 for all i ∈ N , the sum
∑∞

k=0(∆Y )k is a sum of non-negative matrices, implying

that (I−∆Y )−1 has only non-negative entries. Hence M = D+(G−D)[I−∆Y ]−1(I−∆)

is non-negative since it is the product of non-negative matrices (since 0 < gii < 1) added

to D, which is a diagonal matrix with strictly positive entries (0 < gii). Finally, since

M1 = 1 by Lemma A.1, we get that M is row stochastic. Since the diagonal of D is

strictly positive, we get that the diagonal of M is strictly positive, mii > 0, implying

aperiodicity of M . Thus M t converges.

A.6 Long–run

To prove Theorem 1, the following Lemma is helpful.

Lemma A.3 (Convergence to Eigenvector). Let A be an n× n-matrix with A1 = 1 and

rk(I −A) = n− 1. If At converges to A∞ for t→∞, then A∞ = 1w′, with w′ the unique

normalized left eigenvector of A associated with the eigenvalue 1.

Proof of Lemma A.3

Obviously, AA∞ = A∞ = A∞A. This implies that

• the columns of A∞ must be multiples of 1,

• the rows of A∞ must be multiples of w′,

from which we find A∞ = r 1w′ for some real number r which is found to be equal to 1

as 1 = A∞1 = r 1w′1 = r 1.

Proof of Theorem 1

We first derive the formula for M∞
kk . Then we will turn to M∞

RR and M∞
Rk.

Assume for the moment that rk(I −G) = n− 1. Then, as v′(M − I) = 0, we have due

to Lemma A.1

0 = v′(I −M) = v′
(
I − (G−D)∆(I −D)−1

)−1
(I −G),
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implying

v′
(
I − (G−D)∆(I −D)−1

)−1
= r w′

for some real number r. Using w′G = w′, we then find

v′ = r w′
(
I − (G−D)∆(I −D)−1

)
= r w′

(
I − (I −D)∆(I −D)−1

)
= r w′(I −∆).

The normalization of v then entails r = 1
w′(I−∆)1

, which shows that v =
(I −∆)w
1
′(I −∆)w

.

Now, relaxing the assumption rk(I −G) = n− 1, the formula for M∞
kk follows.

Furthermore, MM∞x = M∞x and therefore due to Proposition 2, GM∞x = M∞x

for all n-dimensional vectors x, delivering GM∞ = M∞. This implies

• M∞
RR = GRRM

∞
RR and therefore (I − GRR)M∞

RR = 0, entailing M∞
RR = 0 because

I −GRR is invertible,

• M∞
Rk = GRkM

∞
kk +GRRM

∞
Rk, and therefore M∞

Rk = (I −GRR)−1GRkM
∞
kk .

A.7 Wisdom

Proof of Lemma 1

First, µ̂k is easily seen to be unbiased for µ because
∑
i∈Ck

vi = 1. Therefore, its MSE

equals its variance which is given by
∑
i∈Ck

v2
i σ

2
i as the xi(0) are uncorrelated.

Proof of Proposition 6

∂MSEk

∂δi
=

∂
∑
j∈Ck

v2
jσ

2
j

∂δi
=
∑
j∈Ck

2σ2
j vj

∂vj
∂δi

(17)
=

2wi∑
j∈Ck

wj(1− δj)
∑
j∈Ck

σ2
j vj (vj − 1j=i) .

The assertion follows easily noting that MSEk =
∑
j∈Ck

vjvjσ
2
j .

Proof of Proposition 7 First, notice that E((xi(∞) − µ)2) =
K∑
k=1

γ2
i,k MSEk, with

K∑
k=1

γi,k = 1 for all i ∈ R. By the Cauchy-Schwarz inequality, we have

1 =
K∑
k=1

γi,k =
K∑
k=1

(
γi,k
√

MSEk

) 1√
MSEk

≤

√√√√ K∑
k=1

γ2
i,k MSEk

√√√√ K∑
k=1

1

MSEk

,
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with equality if and only if there exists some (necessarily positive) constant a such that

γi,k
√

MSEk = a 1√
MSEk

for all k. We therefore have
K∑
k=1

γ2
i,k MSEk ≥ 1

K∑
k=1

1
MSEk

, with equality

if and only if γi,k = 1

MSEk

K∑
l=1

1
MSEl

for all k.
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