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Abstract

This thesis is concerned with Markovian two-parameter semigroups (ps,t)s≤t
and the associated evolution systems of measures (also called entrance laws)
in Hilbert spaces. Evolution systems of measures corresponding to a two-
parameter semigroup are an important generalization of the concept of in-
variant measures for a one-parameter semigroup. An evolution system of
measures (νt)t∈R in a Hilbert space H satisfies the following identity:∫

H
ps,tf(x)νs(dx) =

∫
H
f(x)νt(dx), s ≤ t, s, t ∈ R.

The first part of this thesis deals with ergodic properties of Markovian
two-parameter semigroups in Hilbert spaces. An important tool here, is the
so-called asymptotic strong Feller property , which allows to prove the unique-
ness of the corresponding evolution system of measures for a two-parameter
semigroups (ps,t)s≤t. In the first part of this work, we give an analytical
criterion for the asymptotic strong Feller property and show how it can be
used to prove the uniqueness of T -periodic evolution systems of measures.
As an application, we check the validity of the asymptotic strong Feller prop-
erty for the Markovain semigroups associated with a quite general class of
stochastic partial differential equations with time-dependent coefficients.

The second part of this thesis is devoted to the analysis of the set of all
evolution systems of measures and to showing the existence of a representa-
tion for an arbitrary evolution system of measures as a convex combination
of their extremal points. Then, the extremal points of this set is completely
characterized for the particular case of generalized Mehler semigroups which
are the transition semigroup of generalized time-inhomogeneous Ornstein-
Uhlenbeck processes.

We also give an alternative proof of the uniqueness of T -periodic evolution
system of measures (in the particular case of Ornstein-Uhlenbeck processes)
by using the explicit form of the corresponding extremal points. This estab-
lishes the connection between the both parts of this work.
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Chapter 1

Introduction

This thesis is concerned with Markovian two-parameter semigroups (ps,t)s≤t
acting on the space of all bounded Borel measurable function f : H →
R, where H is a Hilbert space. They preserve positivity of this type of
function and ps,t1 = 1, s ≤ t. Furthermore, ps,s, s ∈ R, is the identity
operator and ps,rpr,t = ps,t for s ≤ r ≤ t. This type of semigroups is a
natural generalization of Markovian one-parameter semigroups which are one
of the central topics in modern stochastic analysis. An important example
of Markovian semigroups can be constructed by means of stochastic partial
differential equations (SPDEs) with time-dependent coefficients of the type

dX(t) =
(
A(t)X(t) + F (t,X(t)

)
dt+ σ(t,X(t))dL(t), s ≤ t,

X(s) = x,
(1.1)

on a Hilbert space H, where A(t) : D(A) ⊂ H → H are linear operators, F
is a non-linear part and L is a Lévy noise in H. Then, under appropriate
assumptions on the coefficients, the evolution semigroup associated with this
equation will be given by ps,tf(x) := E[f(X(s, t, x))], where X(s, t, x) is the
solution of equation (1.1).

One part of the thesis (Chapters 4 and 7) deals with ergodic properties
of Markovian two-parameter semigroups in Hilbert spaces. An important
tool here is the so-called asymptotic strong Feller property , which allows to
prove uniqueness of the corresponding evolution system of measures for the
semigroup (ps,t)s≤t under consideration. In Chapter 4, we give an analytic
criterion for the asymptotic strong Feller property and describe its role in
proving uniqueness of evolution systems of measures for the two-parameter
semigroup (ps,t)s≤t. As an application, in Chapter 7 we discuss the validity
of the asymptotic strong Feller property for the Markovain semigroups asso-
ciated with a quite general class of SPDEs of type (1.1).

1
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The uniqueness problem of invariant measures has been always crucial
in the study of stochastic differential equations. By definition, an invari-
ant measure ν for a one-parameter semigroup (pt)t≥0 fulfills the following
equation: ∫

H
ptf(x)ν(dx) =

∫
H
f(x)ν(dx), t ≥ 0, (1.2)

for all bounded measurable functions f : H → R.
An important observation is that for any invariant measure ν we can uniquely
extend (pt)t≥0 to a contractive C0-semigroup in all spaces Lp(H, ν), p ≥ 1.
Moreover, if the invariant measure ν is unique, then the dynamical system
associated with this semigroup will be ergodic, i.e., the dynamical system
has the same behavior averaged over time as averaged over the space of all
system’s states (phase space).
Here a natural question is under which conditions one can guarantee the
uniqueness of the invariant measure. Note that uniqueness is often provided
by a result due to Khasminskii and Doob (see e.g. Chapter 7 in [PZ96]) stat-
ing that, it is a consequence of the strong Feller property and irreducibility.
Recall that for diffusions in Rn a possible way to check the regularity condi-
tions for transition probabilities needed to show the strong Feller property
is by using Hörmander’s Theorem (see Theorem 7.1 in [Hör85]).
However, in infinite dimensional spaces not only these theorems are not avail-
able, but even the strong Feller property mostly fails to hold too.
Only when the forcing noise is sufficiently rough, e.g., the covariance of the
noise is non-degenerate, the Bismut-Elworthy formula (see e.g. [Mal97]) al-
lows to show the strong Feller property for a class of semilinear parabolic
SPDE. However, in the case, when the noise is rather weak, the Bismut-
Elworthy formula does not apply.
Therefore, it is extremely important to find a weaker property (as compared
to the strong Feller property) that still implies uniqueness of the invariant
measure and covers a wider class of stochastic differential equations.

This leads to the notion of asymptotic strong Feller property for the
Markovain one-parameter semigroups which for the first time has been in-
troduced in [HM06].

Now let us discuss how these considerations can be extended to the case
of Markovian two-parameter semigroups.

Clearly, equation (1.2) is not applicable for a two-parameter semigroup.
In fact, the additional second time parameter in the above semigroup calls
for an additional time parameter in the invariant measure. Thus, what we
get is a family of probability measures (νt)t∈R satisfying∫

H
ps,tf(x)νs(dx) =

∫
H
f(x)νt(dx), s ≤ t,
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for every bounded Borel measurable function f : H → R. We call this fam-
ily evolution system of measures (ESM) (see e.g. [PR08]) or entrance law
(see [Dyn71]).

The following question is fundamental here:

• How does the asymptotic strong Feller property look like for two-
parameter semigroups and whether the theory of uniqueness by using
this property is still true.

Asymptotic strong Feller property for the Markovian two-parameter semi-
group (ps,t)s≤t has been first introduced in [PD08] (see Definition 4.26 be-
low). Their approach is based on the homogenization method.

Homogenization is a well-known technique in the theory of differential
equations (see e.g. [DK74])), which reduces the problem to an autonomous
case. We apply this procedure in proving uniqueness of invariant measures.
For instance, for a given initial condition x ∈ H, equation (1.1) can be
equivalently rewritten after homogenization as follows

dZ(τ) =
[
A(y(τ))Z(τ) + F (y(τ), Z(τ))

]
dτ + σ(y(τ), Z(τ))dL(τ)

dy(τ) = dτ,
Z(0) = x, y(0) = s.

(1.3)

Then a solution
(
y(τ, t, x), Z(τ, t, x))

)
to (1.3) is a process taking values in

R×H.
We should point it out that the uniqueness theory of evolution systems

of measures by using asymptotic strong Feller property presented in [PD08]
deals with the concrete case of two-dimensional Navier-Stokes equations on a
bounded domain O ⊂ R2 with Dirichlet boundary conditions and a periodic
forcing term. Moreover, there exist some gaps and errors in proving the
main assertions which cannot be justified (see Remark 4.24 for details). This
motivated us to extend the theory to a general framework and to fill the gaps
contained in the original proofs in [PD08].
To apply the homogenization method to study ergodic properties, we need
to restrict our considerations to the T -periodic case. Consider a T -periodic
stochastically continuous Markovian semigroup (ps,t)s≤t. Let ST ∼= [0, T ] be
the torus of length T > 0. We define a Markovian semigroup (Pτ )τ≥0 acting
on bounded measurable real-valued functions f : ST ×H → R as

Pτf(t, x) = pt,t+τf(t+ τ, .)(x), τ ≥ 0, (t, x) ∈ ST ×H.

Then (Pτ )τ≥0 is called the space-time Homogenization semigroup associated
with (ps,t)s≤t. The semigroup (Pτ )τ≥0 is in fact the Markovian semigroup
corresponding to equation (1.3), i.e.,

Pτf(t, x) = E
[
f(y(τ, t, x), Z(τ, t, x))

]
.
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Now, let (νt)t∈R be a T -periodic evolution system of measures associated
with (ps,t)s≤t. Then

ν(dt, dx) :=
1

T
νt(dx)dt (1.4)

will be an invariant probability measure for (Pτ )τ≥0 on
(
ST × H,B(ST ) ⊗

B(H)
)
. And conversely, for every invariant measure of (Pτ )τ≥0, there exists

a T -periodic evolution system of measures for (ps,t)s≤t for which (1.4) is
satisfied.

It is worth noting that we suppose the T -periodicity of (ps,t)s≤t and choose
ST ∼= [0, T ] as our time-parameter space, just because we cannot normalize
Lebesgue measure on the whole of R in order to obtain an invariant proba-
bility measure for (Pτ )τ≥0.

Our main result about the uniqueness of evolution system of measures is
stated in Theorem 4.33. The sufficient conditions in our theorem is ,however,
slightly different from the corresponding ones in [PD08].

In general, it is a non-trivial problem to check whether the asymptotic
strong Feller property of two-parameter semigroups (or even one-parameter
semigroups) holds in infinite dimensions. In Theorem 4.29 below we give a
sufficient condition for the asymptotic strong Feller property which extends
a related result for one-parameter semigroups proven in [HM06].

• As an application, we consider a general SPDE and apply this theorem
in order to examine the validity of asymptotic strong Feller property
for the corresponding semigroup under appropriate conditions.

More precisely, let (Ω,F ,P) be a complete probability space with a right-
continuous filtration (Ft)t≥0. Moreover, let L be a Lévy process on a Hilbert
space G with σ-algebra B(G) and let its characteristics be (b,Q, ν).
Let us fix T > 0 and consider the following SPDE in a Hilbert space H

dX(t) = [A(t)X(t) + F (t,X(t))]dt+ σ(t)dL(t),
X(s) = x,

(1.5)

where all the coefficients are deterministic. We suppose that the linear
operators A(t) : D(A) ⊂ H → H generate a strong evolution operator
(U(s, t))s≤t which is stable, i.e., there exist M > 0 and ω ≥ 0 such that
‖U(s, t)‖L(H) ≤ Me−ω(t−s) for every s ≤ t. Furthermore, we impose the
Lipschitz continuity on F with respect to its second variable. Also, the
Lévy intensity measure ν is assumed to have strong second moments (cf.
Hypothesis 7.3 below).

Then, under these assumptions, we prove the existence and uniqueness of
the corresponding mild solutions X(s, t, x) to (1.5) in Theorem 7.14. More-
over, the statement of this theorem covers more general equations with time-
dependent random coefficients.
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As a result of applying the sufficient criteria stated in Theorem 4.33, we verify
in Theorem 7.18 that the associated two-parameter semigroup is asymptot-
ically strong Feller.

The second part of this thesis (Chapters 5 and 6) is focused on the anal-
ysis of the set of all evolution systems of measures related to a Markovian
semigroup (ps,t)s≤t and the characterization of its extremal points.

Informally speaking, ergodic measures are the simplest invariant measures
of a dynamical system. It was recognized that it is possible to decompose an
invariant measure into ergodic measures in such a way that the study of the
former reduces to the study of the latter (in our context see Theorem 4.20).

On the other hand, it is well-known that in the one-parameter case the
ergodic measures of a Markovian semigroup (pt)t≥0 exactly coincide with the
extremal points in the set of all invariant measures of (pt)t≥0 (see respectively
Theorem 2.70).
Therefore, the following motivating question arises:

• Does in the two-parameter case exist a representation of an arbitrary
evolution system of measures in terms of a unique convex combination
of their extremal points (property called simplexity in this thesis).

For the Markovian simgroups (ps,t)s≤t which we consider, the answer
is "YES". Additionally, knowing every extremal point of this set, along
with the simplexity of the set of all ESMs, can help us to understand them
completely. Therefore, these extremal points are the objects which we are
mostly interested in.

On the other hand, as we know from the first part of the thesis, the suffi-
cient conditions, which imply uniqueness of ESM, can not be easily verified,
even not for T -periodic ESM. Actually, the generic case is that more than
one ESM exist.

As a result, one of the main contributions of our work is:

• Providing an explicit description for the extremal points in the set of
all ESMs, thus identifying more than one of them.

In fact, we extend the previously known result of Dynkin (Theorem 5.1
in [Dyn88]), which was devoted to Gaussian Ornstein-Uhlenbeck processes
and we concentrate on Lévy Ornstein-Uhlenbeck processes in a Hilbert space
H. In the one-parameter case, the corresponding semigroup is called gener-
alized Mehler semigroups. They have been first introduced in [BRS96] and
then extensively studied in [FR00], [PL07], [Knä11], [OR10] etc.
This type of processes constitutes a large class of explicit examples of Markov
processes in infinite-dimensional spaces with rich mathematical structure.
Those processes may have non-trivial invariant measures, which make them
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better candidates for infinite-dimensional reference processes than Lévy pro-
cesses.

Let us summarize the main results on this type of processes. Because of
the complexity of the abstract framework which has been taken from [Dyn88],
for the reader’s convenience we separate our problem into the following two
steps.

1. We first focus on one-parameter Mehler semigroups (pt)t≥0. The gen-
eralized one-parameter (time-homogeneous) Mehler semigroup (pt)t≥0 intro-
duced in [FR00] is given by

ptf(x) =

∫
H
f(Ttx+ y)µt(dy),

where (Tt)t≥0 is a strongly continuous semigroup onH and (µt)t≥0 is a family
of probability measures defined in Proposition 5.24.

This type of one-parameter semigroups can be mainly illustrated by the
following general autonomous Ornstein-Uhlenbeck equation

dX(t) = AX(t)dt+ dL(t)
X(s) = x,

where A is a linear operators and L is a Lévy process. Then the semigroup
corresponding to this equation will be the one-parameter Mehler semigroup,
such that A is the generator of (Tt)t≥0 and the measures (µt)t≥0 are uniquely
defined by the characteristics of L in Proposition 5.24.
The ESMs will be defined by∫

H
ptf(x)νs(dx) =

∫
H
f(x)νt+s(dx), s ≤ t.

We prove that the set of all ESMs, which we denote by K(π), is a simplex.
The method of proving this fact is based on the existence of a canonical iso-
morphism between Markovian semigroups and Markov processes, identified
in [Dyn72].

In Theorem 5.34, we prove the main result about the explicit representa-
tion of extremal points in the set of all ESMs (under Assumption 5.32 below).
This theorem establishes an isomorphism between the set of all so-called T -
entrance laws (κt)t∈R ⊂ H, i.e., solutions of the equalities Ttκs = κs+t and
the set of all extremal points in K(π) (with finite first moment).

2. Next, we extend these results to the two-parameter case. In particular,
analogously to the one-parameter semigroup case we show the simplexity
(introduced before) of K(π).
The construction of the two-parameter Mehler semigroups goes as follows.
We fix a strongly continuous evolution family of operators (Us,t)s≤t on H.
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Recalling the definition from [OR10], a generalized two-parameter (non-time-
homogeneous) Mehler semigroup is given by

ps,tf(x) =

∫
H
f(Us,tx+ y)µs,t(dy),

where (µs,t)s≤t is defined in Proposition 6.11 and evolution systems of mea-
sures (νt)t∈R satisfy∫

H
ps,tf(x)νs(dx) =

∫
H
f(x)νt(dx), s ≤ t,

for every bounded Borel measurable function f : H → R.
In the next step, we prove an explicit form for the corresponding extremal

points (νt)t∈R, in Theorem 6.20, where we also establish an isomorphism
between the set of all (κt)t∈R ⊂ H with Us,tκs = κt and the set of all
extremal points in (the subset of entrance laws with finite moment from)
K(π).

This type of two-parameter semigroups can be mainly illustrated by the
following general non-autonomous Ornstein-Uhlenbeck equation

dX(t) = A(t)X(t)dt+ σ(t)dL(t)
X(s) = x,

where (Us,t)s≤t is assumed to solve the Cauchy problem d
dtU(s, t) = A(t)U(s, t).

Using the explicit form of extremal points, we can prove the uniqueness of
the T -periodic evolution system of measures (related to the non-autonomous
Ornstein-Uhlenbeck process above). This is an alternative proof of the
uniqueness of ESMs, without using asymptotic strong Feller property which
this constitutes a counterpart to the first part of this thesis.

Let us describe the contents of this work chapter by chapter.
Chapter 2 contains supporting material from the theory of stochastic

processes and operator semigroups. In Section 2.1, we clarify the required
concepts of martingales and Markov processes as well as related Markovian
semigroups. Different classes (e.g. nuclear and Hilbert-Schmidt) of oper-
ators in Hilbert spaces are described in Section 2.4. Gâteaux and Fréchet
differentiability of functions on Banach spaces is briefly discussed in Section
2.5. In Section 2.6, an introduction to the Lévy processes is given. In this
context, stochastic integration with respect to the theory of Lévy processes is
of our prime interest in Section 2.7. In Section 2.8, we introduce the Wasser-
stein distance between probability distributions and review its properties. In
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Section 2.9, we recall basic concepts of the ergodic theory to be used in the
study of Markovian semigroup below.

Chapter 3 reviews two basic techniques to prove the uniqueness of in-
variant measures. In Section 3.1, we explain the first approach, which is
by using strong Feller property. Then, in Section 3.2, we give a motivation
why in infinite dimensions it is needed to find an appropriated modification
of strong Feller property. And finally, in Section 3.3, we shortly recall the
second technique which uses the so-called asymptotic strong Feller property.

Chapter 4 is devoted to the uniqueness problem of ESM in the case of
T -periodic two-parameter semigroups. In Section 4.1, we give the necessary
definitions and assumptions concerning the Markovian two-parameter semi-
groups and evolution systems of measures. In Section 4.2, the space-time
homogenization method for semigroup is presented. Section 4.3 is devoted
to showing existence of an one-to-one correspondence between T -periodic
evolution systems of measures for (ps,t)s≤t and invariant measures for the as-
sociated space-time homogeneous semigroup (Pτ )τ≥0. This section fill some
gaps contained in the original proofs in [PD08]. The relation between the
support of an invariant measure for (Pτ )τ≥0 and the support of its disin-
tegration is considered in Section 3.5. It is the critical point which causes
doubt to the correctness of the related result in [PD08]. And finally, in
Sections 3.6 and 3.7, we prove the uniqueness criteria for evolution system
of measures employing the asymptotic strong Feller property and under the
refined assumptions as compared to [PD08].

Chapter 5 is devoted to developing a unified theory for the ESMs corre-
sponding to one-parameter semigroups. In Section 5.2, we define the Markov
process corresponding to a Markovian one-parameter semigroup with an
ESM as the initial value. A general definition of convex measurable spaces
(in the spirit of Dynkin [Dyn88]) is given in Section 5.3. A crucial issue here
is to establish an isomorphism between the set of all ESMs and the set of
such Markov processes, which is described in Section 5.4. As a result of this
isomorphism, we get the simplexity of the set of all ESMS. In Section 5.5,
we concentrate on the particular case of one-parameter Mehler semigroups.
Then in the next section, we give the main result of this chapter, (Theo-
rem 5.34), which is the explicit representation of the corresponding extremal
points in the set of all ESMs. In Section 5.7, we give an illustrative example
which satisfies all assumption required in Theorem 5.34. In the last section,
our Mehler semigroup is defined in a nuclear space in order to weaken the
assumptions imposed in the Hilbert setting of Section 5.6.

In Chapter 6 , the results of Chapter 5 are extended to the two-parameter
semigroups. In Section 6.1, in the case of two-parameter semigroups we
establish an isomorphism which is similar to that in Section 5.4. Then with
the help of the concept of a strong evolution family introduced in Section 6.2,
we construct a two-parameter Mehler semigroup in Section 6.3. An explicit
form for the extremal points in the set of all ESMs is given in Section 6.4. In
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Section 6.5, as an example of such representation, we recall the classical result
from [Dyn88] concerning the Gaussian case. In Section 6.6, an alternative
proof of the uniqueness of T -periodic ESM for Mehler semigroups by using
the results of Chapter 6 is given.

In Chapter 7 , we show the validity of the asymptotic strong Feller prop-
erty for a large class of SPDEs driven by Lévy noise. In Section 7.1, we
introduce the SPDE as well as fix the assumptions on the noises and coef-
ficients. In Section 7.2, we show the existence and uniqueness of the mild
solution, even for a larger class of SPDEs under Hypothesis 7.1 and 7.3 to be
imposed below. Differentiability of solution for the SPDE discussed in Sec-
tion 7.3 will be a key technical issue to show the main result, Theorem 7.18,
of Section 7.4. This theorem states the validity of the asymptotic strong
Feller property for the semigroup associated to the considered SPDE.
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Chapter 2

Prerequisites

In this chapter, we recall the necessary fundamentals which are needed in
our work. We collect some well-known definitions and facts concerning the
martingales and Markov processes as well as associated semigroups. Also,
we recall some basic facts from functional analysis especially the properties
of Hilbert-Schmidt and trace class operators in Hilbert spaces. Also, notions
of Gâteaux and Fréchet differentiability will be viewed in this chapter, to
help understanding the differentiability of solutions of SPDEs in chapter 7.
Furthermore, we introduce Lévy processes, which are our case in Chapters
5 and 6 and will serve as integrators for our stochastic equation in Chapter
7. Since in Chapter 4 a Wasserstein-type metrics will play a crucial role, so
we present it also in our prerequisites. We finish this chapter with a short
review on ergodic theory, with the emphasis placed on ergodic properties of
Markovian semigroups.

Let (H, 〈·, ·〉H) be a separable Hilbert space and B(H) its Borel σ-algebra.
Denote by Bb(H) the space of all bounded, Borel measurable functions f :
H → R and denote by Cb(H) the subspace of all continuous and bounded
functions.

Let (Ω,F ,P) be a complete probability space with normal filtration (Ft)t∈R,
i.e., it is right-continuous and F0 contains all P-null-sets of F .

2.1 Martingale and Markov process

Here we recall the basic definitions and properties of martingales and Markov
processes. For more details on the theory of stochastic processes, we refer
to [RY99], [BF75], [Bau96] and [PZ92].

The process (X(t))t∈R is said to be adapted to the filtration (X(t))t∈R if
X(t) is Ft-measurable for each t ∈ R.

Definition 2.1 Let (Ω,F ,P) be a probability space with a filtration (Ft)t∈R.
Let (X(t))t∈R be a family of H-valued Bochner integrable random variables on

11
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(Ω,F ,P) which is adapted to this filtration. The process (X(t))t∈R is called
a martingale with respect to the given filtration if for every pair s, t ∈ R with
s ≤ t, the following condition is fulfilled

E(X(t) | Fs) = X(s), P− a.s.,

where the concept of conditional expectation of a H-value random variable
has been taken from [PZ92], p. 27.

All integrals in Definition 2.1 are understood in the Bochner sense. For the
theory of Bochner integration in separable Hilbert spaces see Appendix A
in [PR07].

Lemma 2.2 Let (Ω,F ,P) be a probability space, (Ft)t∈R a filtration in F
and Z an integrable H-valued random variable. Then

Y (t) := E(Z | Ft), t ∈ R,

defines a martingale with respect to (Ft)t∈R.

Proof In the first place, each such Y (t) is Ft-measurable by definition of
the conditional expectation, so (Y (t))t∈R is adapted to the given filtration.
Also for every s ≤ t

E(Y (t) | Fs) = E
(
E(Z | Ft) | Fs

)
= E(Z | Fs) = Y (s), P− a.s.,

confirming the martingale property. �

Theorem 2.3 (Backwards Martingale Convergence Theorem) Let
(Y (t))t∈R be a martingale. Then without any further conditions, there exists
a random variable Y (−∞) ∈ L1(Ω,F ,P) such that

lim
t→−∞

Y (t) = Y (−∞), P− a.s.,

where the convergence is in L1(Ω,F ,P).

Proposition 2.4 Let (X(t))t∈R be a H-valued integrable process. Assume
that, for all t > s, the random variable X(t) − X(s) is independent of Fs.
Then the process Y (t) := X(t)− E

[
X(t)

]
is a martingale.

Definition 2.5 A family of H-valued stochastic processes(
Ω,F , (X(t))t∈R, (Px)x∈H

)
is called a Markov process with state space (H,B(H)), if

(i) each Px is a probability measure on (Ω,F) such that x 7→ Px(Γ ) is
B(H)-measurable for all Γ ∈ F ;
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(ii) there exists a filtration (Ft)t∈R in F such that (X(t))t∈R is Ft-adapted
and

Px(X(s+ t) ∈ B | Fs) = PX(s)(X(t) ∈ B), Px − a.e.,

for all s ∈ R and t ≥ 0, for every B ∈ B(H) and x ∈ H.

2.2 Semigroups and invariant measures

For more details see e.g. [PZ96].

Definition 2.6 A function o : H × B(H) → [0,∞) is called a transition
kernel on

(
H,B(H)

)
if

(i) x 7→ o(x,B) is measurable for every B ∈ B(H);

(ii) B 7→ o(x,B) is a σ-finite measure on
(
H,B(H)

)
for every x ∈ H.

The transition kernel o is called to be Markovian if o(x,H) = 1 for all x ∈ H,
e.g., o(x, .) is a probability measure on

(
H,B(H)

)
for each x ∈ H.

Definition 2.7 A family (pt)t≥0 of linear bounded operators on Bb(H) is
called a Markovian semigroup if

(i) p0 = 1;

(ii) ps+t = pspt for all t, s ≥ 0;

(iii) ps1 = 1;

(iv) for every t ≥ 0, ptf is non-negative whenever f is non-negative.

Definition 2.8 Any Markovian semigroup on Bb(H) defines a family of
Markovian transition kernels on

(
H,B(H)

)
by

πt(x,B) := pt1B(x), x ∈ H, B ∈ B(H).

Therefore for an arbitrary f ∈ Bb(H) we have

ptf(x) =

∫
H
f(y)πt(x, dy) (2.1)

for every x ∈ H. We call (πt)t≥0 the Markovian semigroup of transition
kernels.

Proposition 2.9 There is a one-to-one correspondence between the Marko-
vian semigroup (pt)t≥0 on Bb(H) and the Markovian semigroup of transition
kernels (πt)t≥0 over H given by πt(x,B) := pt1B(x).
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Proof See Lemma 2.4 in [Hai08]. �

Remark 2.10 From the semigroup identity ps+t = pspt for all s, t ≥ 0, we
get

πs+t(x,B) =

∫
H
πt(y,B)πs(x, dy) (2.2)

for all x ∈ H and B ∈ B(H).

Equation (2.2) is known as the Chapman-Kolmogorov equation. A heuristic
interpretation of this equality can be given as follows:
the probability for a particle starting at time 0 in x ∈ H to be in B ∈ H
at time s+ t is equal to the probability that the particle starts at time 0 in
x ∈ H and being in some infinitesimal small volume dy at time s and then
starting new in y ∈ H at time s and being in the subset B at time s + t
integrated over all intermediate points y ∈ H.

Definition 2.11 The Markovian semigroup (pt)t≥0 is called

(i) Feller at time t ≥ 0 if ptf ∈ Cb(H) for any f ∈ Cb(H). It is called Feller
if it is Feller at all times t ≥ 0.

(ii) strong Feller at time t > 0 if ptf ∈ Cb(H) for any f ∈ Bb(H). It is
called Feller if it is Feller at all times t > 0.

Definition 2.12 A Markovian semigroup (pt)t≥0 is called stochastically con-
tinuous if t 7→ ptf(x) is continuous for every f ∈ Cb(H) and x ∈ H.

Let µ be a probability measure defined on (H,B(H)) and (πt)t≥0 be a
Markovian semigroup of transition kernels on

(
H,B(H)

)
. For any t ≥ 0, we

set

p∗tµ(B) :=

∫
H
πt(x,B)µ(dx), t ≥ 0, B ∈ B(H).

Definition 2.13 A probability measure µ on (H,B(H)) is said to be invari-
ant measure with respect to the Markovian semigroup (pt)t≥0 if

p∗tµ = µ, for all t ≥ 0.

We denote the set of all invariant probability measures of (pt)t≥0 by Inv(p).

Proposition 2.14 Assume that µ is an invariant measure for (pt)t≥0. Then
for all q ≥ 1, a stochastic continuous Markovian semigroup (pt)t≥0 is uniquely
extendible to a C0-semigroup of linear bounded operators in Lq(H,µ) that we
still denote by (pt)t≥0. Moreover

‖pt‖L(Lq(H,µ)) ≤ 1, t ≥ 0.

Proof See Theorem 5.8 in [Pra06]. �
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2.3 Supporting material from stochastic analysis

Definitions and propositions of this section have been taken from [BF75],
[PR07], [FR00] and [Li11].

Lemma 2.15 (Monotone Class Theorem) Suppose that a linear space
of bounded functions contains 1 and is closed under bounded convergence.
If this space contains a family D which is closed under multiplication, then
given space contains all bounded functions which are measurable w.r.t the
σ-algebra generated by D.

Definition 2.16 For a probability measure µ on (H,B(H)), its character-
istic function is defined by the formula

µ̂(a) =

∫
H
ei〈a,x〉µ(dx), a ∈ H.

Remark 2.17 By the monotone class theorem every probability measure µ
on (H,B(H)) is determined uniquely by its characteristic function µ̂.

As usual, the dual space H∗ of the Hilbert space H, will be canonically
identified with H.

Definition 2.18 A function ψ : H → C is called positive definite if for any
n ∈ N, a1, ..., an ∈ H and c1, ..., cn ∈ C satisfying

∑n
i=1 ci = 0, we have

n∑
i,j=1

ψ(ai − aj)cic̄j ≥ 0;

respectively ψ is negative definite if
n∑

i,j=1

ψ(ai − aj)cic̄j ≤ 0.

2.4 Operators on Hilbert spaces

In this section we follow [PR07], [RS80] and [Con00]. Let (G, 〈·, ·〉G) and
(H, 〈·, ·〉H) be two separable Hilbert spaces.

Definition 2.19 i) The space of all bounded linear operators from G to H is
denoted by L(G,H). For simplicity, we write L(G) instead of L(G,G).

ii) By T ∗ ∈ L(H,G) we denote the adjoint operator of T ∈ L(G,H).

iii) An operator T ∈ L(G) is called symmetric if 〈Tu, v〉G = 〈u, Tv〉G for
all u, v ∈ G

iv) An operator T ∈ L(G) is called non-negative if 〈Tu, u〉G ≥ 0 for all
u ∈ G.
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2.4.1 Trace class operators

Definition 2.20 (trace class or nuclear operator) An operator T ∈
L(G,H) is said to be nuclear if it can be represented by

Tx =
∑
j∈N

aj〈bj , x〉G, x ∈ G,

where the series is convergent in H and (aj)j∈N ⊂ H and (bj)j∈N ⊂ G are
such that

∑
j∈N‖aj‖H · ‖bj‖G < ∞. The space of all trace class operators

from G to H is denoted by L1(G,H).

Proposition 2.21 The space L1(G,H) equipped with the norm

‖T‖L1 := inf

{∑
j∈N
‖aj‖H · ‖bj‖G

∣∣∣∣ Tx =
∑
j∈N

aj〈bj , x〉G, x ∈ G
}

is a Banach space.

Proof See [PR07], Proposition B.0.2. �

Definition 2.22 Let T ∈ L(G) and let {ek}k∈N, k ∈ N, be an orthonormal
basis of G. Then we define the trace of T by

tr(T ) :=
∑
k∈N
〈Tek, ek〉G,

if this series is convergent.

One has to notice that this definition could depend on the choice of the
orthonormal basis. However, note the following result concerning nuclear
operators.

Remark 2.23 If T ∈ L1(G) := L1(G,G), then tr(T ) is well-defined inde-
pendently of the choice of the orthonormal basis {ek}k∈N. Moreover, we have
that

|tr(T )| ≤ ‖T‖L1 .

Proof See [PR07] Remark B.0.4. �

For two following facts see for example [Con00].

Proposition 2.24 Let T ∈ L1(G) be such that T ≥ 0. Then for every two
orthonormal bases {ek}k∈N and {hk}k∈N in G, we have∑

j∈N
hj〈Thj , x〉G =

∑
j∈N

ej〈Tej , x〉G.

Therefore, the representation of Tx is independent of chosen orthonormal
basis and thus

tr(T ) = ‖T‖L1 .
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We denote the family of all non-negative symmetric operators L1(G) by
L+

1 (G).

Lemma 2.25 L1(G) is an operator ideal in L(G), i.e., L(G)L1(G)L(G) ⊂
L1(G).

2.4.2 Hilbert-Schmidt operators

Definition 2.26 (Hilbert-Schmidt operator) A bounded linear operator
T : G→ H is called Hilbert-Schmidt if∑

k∈N
‖Tek‖2H <∞,

where {ek}k∈N, k ∈ N, is an orthonormal basis of G. The space of all Hilbert-
Schmidt operators from G to H is denoted by L2(G,H).

Remark 2.27 i) The definition of the Hilbert-Schmidt operator and the
quantity

‖T‖2L2(G,H) :=
∑
k∈N
‖Tek‖2

does not depend on the choice of the orthonormal basis {ek}k∈N. Fur-
thermore, ‖T‖L2(G,H) = ‖T ∗‖L2(H,G). For notation simplicity, we write
‖T‖L2 instead of ‖T‖L2(G,H).

Proof See [PR07], Proposition B.0.7. �

Proposition 2.28 For any T, T
′ ∈ L2(G,H) and {ek}k∈N being an or-

thonormal basis of G, let us define the inner product

〈T, T ′〉L2 :=
∑
k∈N
〈T ′ek, T ek〉H .

Then (L2(G,H), 〈·, ·〉L2) is a separable Hilbert space. If {fj}j∈N, is an or-
thonormal basis of H, then fj ⊗ ek := fj〈ek, ·〉G, j, k ∈ N, is an orthonormal
basis of L2(G,H).

Proof See [PR07], Proposition B.0.7. �

Proposition 2.29 (Square root) Let T ∈ L(G) be a non-negative and
symmetric operator. Then, there exists exactly one element T 1/2 ∈ L(G),
which is non-negative and symmetric, such that

T 1/2 ◦ T 1/2 = T.

If tr(T ) < ∞, then T 1/2 ∈ L2(G) with ‖T 1/2‖
1
2 = tr(T ) and L ◦ T 1/2 ∈

L2(G,H) for all L ∈ L(G,H).

Proof See [PR07] Proposition 2.3.4. �



18 Chapter 2. Prerequisites

2.5 Different concepts of differentiability in Banach
spaces

Let us recall some well-known facts from nonlinear analysis in Banach spaces
(see e.g., [Wat84] and [Kno03]). Let E1 and E2 be two Banach spaces and
let F : E1 → E2.

Definition 2.30 (Directional derivatives) F is said to be differentiable
in the point x ∈ E1 and along direction y ∈ E1 if there exists an element
∂F (x; y) ∈ E2 such that

∂F (x; y) = lim
h→0

F (x+ hy)− F (x)

h
.

Then ∂F (x; y) is called the directional derivative of F in x0 along direction
y.

Definition 2.31 (Gâteaux differentiability) F is said to be Gâteaux
differentiable in x ∈ E1 if there exist all directional derivatives ∂F (x; y),
y ∈ E1, and if ∂F (x; ·) ∈ L(E1, E2). Then we write ∂F (x)y instead of
∂F (x; y) and ∂F (x) ∈ L(E1, E2) is called the Gâteaux derivative of F in x.
If F is Gâteaux differentiable in each x ∈ E1, we call F Gâteaux differen-
tiable.

Definition 2.32 (Fréchet differentiability) F is said to be Fréchet dif-
ferentiable in x ∈ E1 if there exists an operator DF (x) ∈ L(E1, E2) such
that for all y ∈ E1

F (x+ y) = F (x) +DF (x)y +O(x, y),

where

lim
‖y‖E1

→0

O(x, y)

‖y‖E1

= 0.

Then DF (x) is called the Fréchet derivative of F in x.
If F is Fréchet differentiable in each x ∈ E1, we call F simply Fréchet dif-
ferentiable.

Proposition 2.33 Let F : E1 → E2 be a Gâteaux differentiable. If the
mapping x 7→ ∂F (x) is continuous from E1 to L(E1, E2), then F is even
Fréchet differentiable with ∂F (x) = DF (x) for all x ∈ E1.

2.6 Introduction to Lévy processes

Our exposition and proofs are taken from [PZ07] and [App04].
Let (G, ‖ · ‖G) be a separable Banach space and let (Ω,F ,P) be a com-

plete probability space with filtration (Ft)t∈R.
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Definition 2.34 An G-valued stochastic process L = (Lt)t≥0 adapted to a
filtration (Ft)t≥0 is a Lévy process if:

(L1) L has independent increments, i.e., for any 0 ≤ t0 < t1 < ... < tn the
random variables L(t1) − L(t0), L(t2) − L(t1), ..., L(tn) − L(tn−1) are
independent;

(L2) the law of L(t)− L(s) depends only on the difference t− s;

(L3) L(0) = 0, a.s.;

(L4) the process L is stochastically continuous, i.e., for all t ≥ 0 and ε > 0
it holds

lim
s→t

P(‖L(s)− L(t)‖G > ε) = 0.

Remark 2.35 Every Lévy process has a càdlàg modification, i.e., it is right-
continuous with left limits everywhere.

Since the Lévy process is right continuous and has left limits, the only
discontinuities that can occur are of jump type.

Definition 2.36 Let ∆L(t) := L(t)−L(t−) be the jump of L at time t. We
define

N(t, B) := card {0 ≤ s ≤ t | ∆L(s) ∈ B}, B ∈ B(G \ {0}),

where B(G \ {0}) := {B ∈ H | B ∈ B(H) and 0 /∈ B}.

A set function N : N+ × B(G \ {0}) × Ω → R+ is called the Poisson
random measure corresponding to L.

Definition 2.37 We define ν(B) := E
[
N(1, B)

]
for every B ∈ B(G \ {0}).

It is called the intensity measure and it is a Lévy measure on G in the sense
of the following definition.

Definition 2.38 A (possibly infinite) measure ν on (G \ {0},B(G \ {0}))
is called a Lévy measure if∫

G\{0}

(
‖x‖2 ∧ 1

)
ν(dx) <∞.

(An alternative convention is to define the Lévy measure on the whole of G
via the assignment µ({0}) = 0.)

A set function Ñ : N+ ×B(G \ {0})×Ω → R+ with

Ñ
(
t, B

)
:= N

(
t, B

)
− tν(B), t ≥ 0, B ∈ B(G \ {0}), (2.3)

is called the compensated Poisson randommeasure (See Section 4.3 in [PZ07]).
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Theorem 2.39 (Lévy-Itô’s decomposition)If L is a G-valued Lévy pro-
cess, then there exist a drift vector b ∈ G, a Q-Brownian motion BQ on G
such that BQ is independent of N(t, B) for any B ∈ B(G \ {0}), and we
have:

L(t) = bt+BQ(t) +

∫
‖x‖<1

x(N(t, dx)− tν(dx))︸ ︷︷ ︸
Ñ(t,dx)

+

∫
‖x‖≥1

xN(t, dx), (2.4)

where N(t, ·) is the Poisson random measure associated with L and ν is the
corresponding Lévy measure.

Proof (cf. [AR05]) �

There exists a special form of the Lévy-Itô’s decomposition to be used in
the subsequent chapters.

Proposition 2.40 If the intensity measure of a Lévy process (L(t))t≥0 ad-
ditionally obeys ∫

G
‖x‖2 ν(dx) <∞,

then the Lévy-Itô decomposition can be written as

L(t) = mt+BQ(t) +

∫
G
xÑ(t, dx)

with a drift vector m ∈ G given by m = b+
∫
‖x‖≥1 xν(dx)

Proposition 2.41 (Lévy-Khinchine representation) If L is a Lévy pro-
cess, then the Fourier transform of L is equal to

E[ei〈x,L(t)〉] = etλ(x), x ∈ G, (2.5)

where λ : G→ C is measurable and takes the following form

λ(a) = i〈a, b〉 − 1

2
〈a,Qa〉+

∫
G

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
ν(dx), (2.6)

where b ∈ G, Q ∈ L+
1 (G) and ν is the same Lévy measure in (2.4). The

functional λ is called the Lévy symbol of the process (L(t))t≥0.

Definition 2.42 Since L(t) is completely characterized by its Fourier trans-
form (2.5) (or by its Lévy-Itô’s decomposition (2.4)), we will say that it is a
Lévy process with characteristics [b,Q, ν].

Definition 2.43 The family of measures (µt)t≥0 on (G,B(G)) satisfying
the following conditions:
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(i) µ0 = δ0 (δ0 is the δ-measure places at 0) and µs+t = µt ∗µs (convolution
of the measures) for all t, s ≥ 0,

(ii) µt
(
{x | ‖x‖G < r}

)
→ 0 as t → 0 for every r > 0 or equivalently µt

converges weakly to δ0 as t→ 0,

is called a convolution semigroup of measures or infinitely divisible family.

Actually the Lévy-Khinchine representation holds not only for Lévy pro-
cesses but for any infinitely divisible random variable (Chapter VI in [Par67]).

Theorem 2.44 (Lévy-Khinchin Formula) A function ψ : G→ C is the
characteristic function of an infinitely divisible distribution µ on G if and
only if it is of the form

ψ(a) = exp

{
i〈a, b〉 − 1

2
〈a,Qa〉+

∫
G

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
ν(dx)

}
,

where b ∈ G, Q ∈ L+
1 (G) and ν is a σ-finite Lévy measure.

2.7 Stochastic integration with respect to Lévy mea-
sure

Via the Lévy-Itô’s decomposition, we will define stochastic integrals with
respect to a Lévy process. As a result of Proposition 2.40, for this type of
square integrable process, two terms which need a proper analysis are the
Itô-integral with respect to the Browning motion and the stochastic integral
with respect to the compensated Poisson measure

Let G, H be two separable Hilbert spaces and we fix T > 0. Set ΩT :=
[0, T ]×Ω.

Definition 2.45 A subset BT ⊂ ΩT of the form BT = (s, t) × Γ where
Γ ∈ Fs, 0 ≤ s < t ≤ T , or {0}×Γ , Γ ∈ F0, is called a predictable rectangle.

Let RT be the σ-algebra generated by the family of predictable rectangles.
RT is called the σ-algebra of predictable sets; a stochastic process (X(t))t∈[0,T ]

measurable with respect to RT is called predictable.

2.7.1 Integration respect to Brownian motion

We will refer to [PR07] for more details.

Definition 2.46 A G-valued stochastic process BQ adapted to (Ft)t≥0 is a
Q-Brownian motion if

(B1) BQ(0) = 0 a.s. ;

(B2) BQ has increments independent of the past, i.e., BQ(t) − BQ(s) is
independent of Fs for every s ≤ t;
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(B3) BQ has stationary Gaussian increments, i.e., P◦
(
BQ(t)−BQ(s)

)−1
=

N(0, (t − s)Q) for all 0 ≤ s < t < ∞ where N(0, (t − s)Q) is normal
Gaussian distribution with mean zero and variance operator (t − s)Q
where Q is a non-negative, symmetric trace class operator in G.

(B4) BQ has P-a.s. continuous trajectories,

Proposition 2.47 The Q-Brownian motion BQ(t), t ∈ [0, T ], is a continu-
ous square-integrable martingale. Moreover, E[‖BQ(t)‖2] = t · tr(Q) <∞.

For the given G-valued non-negative, symmetric trace class operator Q,
we introduce the subspace G0 := Q

1
2 (G) ⊂ G with the inner product given

by

〈u0, v0〉0 := 〈Q−
1
2u0, Q

− 1
2 v0〉G,

u0, v0 ∈ G0, where Q−
1
2 is the pseudo inverse of Q

1
2 in the case that Q is not

one-to-one. Then (G0, 〈 , 〉0) is again a separable Hilbert space.
Let us construct the stochastic integral with respect to Brownian motion.
For each t ∈ [0, T ] and a simple process of the form X =

∑n
i=1Xi1(ti,ti+1]

where 0 = t1 < ... < tn+1 = T and Xi ∈ L2(Ω,Fti ,P;H), 1 ≤ i ≤ n, the
stochastic integral is defined by∫ t

0
X(s)dBQ(s) :=

n∑
i=1

Xi

(
BQ(ti+1 ∧ t)−BQ(ti ∧ t)

)
.

Furthermore, we have the Itô’s isometry

E
[
‖
∫ t

0
X(s)dBQ(s)‖2

]
= E

[ ∫ t

0
‖X(s)Q

1
2 ‖2L2ds

]
= E

[ ∫ t

0
‖X(s)‖2L02ds

]
.

By the Itô’s isometry, the notion of stochastic integrals can be extended to
a larger class of integrands.

Definition 2.48 Let N 2
B(T ) be the space of all mappings X on ΩT × H

taking values in L2(G0, H) (the space of all Hilbert-Schmidt operator from G0

to H), such that X is predictable, i.e., RT /B
(
L0

2 := L2(G0, H)
)
-measurable,

and we have

‖X‖N 2
B(T ) :=

(
E
[ ∫ T

0
‖X(s)Q

1
2 ‖2L2ds

]) 1
2

<∞.

Proposition 2.49 (Itô’s Isometry) For any X ∈ N 2
B(T ) the stochastic

integral ∫ t

0
X(s)dBQ(s), t ∈ [0, T ],
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is well-defined and obeys

E
[
‖
∫ t

0
X(s)dBQ(s)‖2

]
= E

[ ∫ t

0
‖X(s)Q

1
2 ‖2L2ds

]
Moreover the process (

∫ t
0 X(s)dBQ(s))t∈[0,T ] is a continuous square-integrable

martingale with respect to (Ft)t∈[0,T ].

2.7.2 Integration respect to the compensated Poisson mea-
sure

We follow the general scheme in [Kno03] and [AR05]. We recall the σ-algebra
B(G \ {0}) := {B ∈ B(G)| 0 /∈ B} on the set G \ {0}.

Definition 2.50 An H-valued process X(t) : Ω × G → H, t ∈ [0, T ], is
said to be elementary if there exists a partition 0 = t1 < ... < tn+1 = T and
B1, ..., Bn in B(G \ {0}) such that ν(Bi) < ∞ for each 1 ≤ i ≤ n, pairwise
disjoint, such that

X =
n∑
i=1

Xi1(ti,ti+1]×Bi ,

where Xi ∈ L2(Ω,Fti ,P;H), 1 ≤ i ≤ n. The linear space of all elementary
processes is denoted by E.

For X ∈ E and t ∈ [0, T ], we define the stochastic integral by

Int(X)(t) :=

∫ t

0

∫
G\{0}

X(s, x)Ñ(ds, dx)

:=
n∑
i=1

Xi

[
Ñ(ti+1 ∧ t, Bi)− Ñ(ti ∧ t, Bi)

]
Then Int(X) is P-a.s. well-defined and Int is linear in X ∈ E .

Proposition 2.51 If X ∈ E, then Int(X) is left-continuous square-integrable
Ft-martingale for t ∈ [0, T ] and

E
[
‖ Int(X)(t) ‖2H

]
= E

[ ∫ t

0

∫
G\{0}

‖X(s, x)‖2Hν(dx)ds
]
.

Now we extend the notion of this integral:

Proposition 2.52 Let N 2
ν (T ) be the space of all predictable X : ΩT ×G→

H such that X is
(
RT ×B(G)

)
/B(H)-measurable and has the finite norm

‖X‖N 2
ν (T ) :=

(∫ T

0

∫
G\{0}

‖X(s, x)‖2Hν(dx)ds

) 1
2

<∞.
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Then

E‖·‖N2
ν (T ) = N 2

ν (T ).

And the statement of Proposition 2.51 extends to every X ∈ N 2
ν (T ).

2.8 Wasserstein metric

Let X be a Polish (i.e., separable, completely metrizable) space. Wasserstein-
type metrics are used to evaluate distances between probability distributions
on X . For an extended account on this topic see [Dud89], [Rac91], [AGS08],
[Vil07] and [AGS08].

Definition 2.53 A continuous function d : X 2 → R+ is called pseudo-
metric on X , if

• d(x, x) = 0 for all x ∈ X ;

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Note that in this definition, from d(x, x) = 0 one can not conclude x = 0.

Definition 2.54 A sequence (dn)n∈N of pseudo-metric is called increasing
if dn+1 is larger than dn for all n ∈ N, i.e.,

dn(x, y) ≤ dn+1(x, y), for all (x, y) ∈ X 2 and n ∈ N.

Definition 2.55 An increasing sequence (dn)n∈N of pseudo-metrics on the
Polish space X is called totally separating system of pseudo-metrics for X if

lim
n→∞

dn(x, y) = 1, for all (x, y) ∈ X 2, x 6= y.

The above terminology is justified by the observation that the sequence
(dn)n≥1 converges pointwisely to the trivial metric

dTV (x, y) :=

{
1, x 6= y,
0, x = y,

which totally separates all the points of X and therefore loses completely all
information about the topology of X .

As we will see below, the totally separating system (dn)n∈N provides a
way of approximating the total variation distance between two probability
measures by a sequence of Wasserstein distances.
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Definition 2.56 Given a pseudo-metric d on X and let us denote by
Ld(X ) the set of all Lipschitz real-valued function f on X with the following
seminorm

‖f‖Lipd := sup
x,y∈X
x 6=y

|f(x)− f(y)|
d(x, y)

.

Then we define a pseudo-metric on the space of probability measures on X
via

‖µ1 − µ2‖d := sup
‖f‖Lipd=1

(∫
X
f(x)µ1(dx)−

∫
X
f(x)µ2(dx)

)

Definition 2.57 Let us given µ1 and µ2, two positive finite Borel measures
on X with equal mass, i.e., µ1(X ) = µ2(X ) < ∞. We denote by C(µ1, µ2)
the set of all measures on X 2 with marginals µ1 and µ2. Given a (pseudo-)
metric d on X , we define the corresponding Wasserstein distance between µ1

and µ2 as

Wd(µ1, µ2) = inf
µ∈C(µ1,µ2)

∫
X 2

d(x1, x2)µ(dx1, dx2).

Remark 2.58 When d ≤ 1 and if µ1, µ2 are probability measures, we can
prove that always Wd(µ1, µ2) ≤ 1 because

Wd(µ1, µ2) = inf
µ∈C(µ1,µ2)

∫
X 2

d(x1, x2)µ(dx1, dx2)

≤ inf
µ∈C(µ1,µ2)

∫
X 2

1 µ(dx1, dx2)

= µ1(X ).µ2(X ) = 1.

We will need this property later in proving Theorem 4.32.

Lemma 2.59 Let d be a semi-continuous pseudo-metric on X . Then by the
Kantorovich-Rubinstein duality theorem (see, e.g. [Rac91]) for every positive
measures µ1 and µ2 with µ1(X ) = µ2(X ) <∞

‖µ1 − µ2‖d = Wd(µ1, µ2).

The next result is crucial to the approach taken in this work (see Lemma
3.4 in [HM06])

Proposition 2.60 Let (dn)n∈N be a bounded and increasing sequence of con-
tinuous pseudo-metrics on a Polish space X . Define a new pseudo-metric

d(x, y) := lim
n→∞

dn(x, y)
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for all (x, y) ∈ X 2. Let µ1 and µ2 be two probability measures on
(
X ,B(X )

)
.

Then
lim
n→∞

Wdn(µ1, µ2) = ‖µ1 − µ2‖TV .

Corollary 2.61 Let X be a Polish space and {dn}n∈N be a totally separating
system of pseudo-metrics for X . Then

‖µ1 − µ2‖TV = lim
n→∞

‖µ1 − µ2‖dn = lim
n→∞

Wdn(µ1, µ2)

for any two positive measures µ1 and µ2 with equal mass on X .

An important fact about the Wasserstein distance is the following:

Theorem 2.62 If d is a bounded metric that generates the topology of X ,
then the corresponding Wasserstein metric generates the topology of weak
convergence on the space of probability measures on X .

Proof See Theorem 11.3.3 in [Dud89]. �

2.9 Ergodic theory

For a general account on the ergodic theory of Markov processes, see [PZ96].
A dynamical system on probability space (Ω,F ,P) is a collection (ϑt)t∈R

of measurable maps ϑ : Ω → Ω such that

• ϑt ◦ ϑs = ϑs+t for every s, t ∈ R;

• (ϑt)t∈R preserves measure P, i.e.,

P(ϑtΓ ) = P(Γ ), for all Γ ∈ F , t ∈ R.

We will denote this dynamical system by S = (Ω,F ,P, (ϑt)t∈R).

Definition 2.63 A dynamical system S = (Ω,F ,P, (ϑt)t∈R) is said to be
continuous if the induced group of linear transformations on L2(Ω,F ,P)
defined by

Utξ(ω) := ξ(ϑtω), ξ ∈ L2(Ω,F ,P), t ∈ R,

is continuous for every ξ ∈ L2(Ω,F ,P).

Definition 2.64 Let S = (Ω,F ,P, (ϑt)t∈R) be a continuous dynamical sys-
tem. A set Γ ∈ F is said to be invariant with respect to S if

P(ϑtΓ ∩ Γ ) = P(Γ ) = P(ϑtΓ ), for all t ∈ R.
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Definition 2.65 A dynamical system S = (Ω,F ,P, (ϑt)t∈R) is called er-
godic if

lim
T→∞

1

T

∫ T

0
P(ϑ−tΓ1 ∩ Γ2)dt = P(Γ1)P(Γ2), for all Γ1, Γ2 ∈ F .

Proposition 2.66 Let S be a continuous dynamical system. Then S is
ergodic if and only if for any invariant set Γ either P(Γ ) = 0 or P(Γ ) = 1.

Proof refer to Theorem 1.2.4 in [PZ96]. �

Now, with a given Markovian semigroup (pt)t≥0 on Bb(H) having an in-
variant probability measure µ on (H,B(H)) (cf. Definitions 2.7 and 2.13) we
will associate, in a unique way, a dynamical system Sµ = (Ω,F ,Pµ, (ϑt)t∈R).
We just sketch the proof; for more details see [Hai08].

Let Ω = HR and F = (B(H))⊗R. Consider a set of bounded cylinder
functions ϕ : HR → R which can be represented as ϕ(x) = ϕ̃(x1, ..., xn). For
every such ϕ with n-tuple of times t1 < ... < tn, we define

Pµ(ϕ) = Pt1,...,tnµ (ϕ̃)

=

∫
H
...

∫
H
ϕ̃(x1, ..., xn)ptn−tn−1(xn−1, dxn)...pt2−t1(x1, dx2)µ(dx1).

It is straightforward to check that this family of specifications is consistent
and therefore, by Kolmogorov’s extension theorem, there exists a unique
measure Pµ on HR such that above equality holds.
We introduce a group of shift operators ϑt : Ω → Ω by

(ϑtω)(s) := w(s+ t), s, t ∈ R.

Since µ is invariant, the transformations (ϑt)t∈R preserve the measure Pµ.
As a result, Sµ is a dynamical system.

Definition 2.67 Let µ be an invariant measure with respect to the semigroup
(pt)t≥0. Then µ is called ergodic if the corresponding dynamical system Sµ
is ergodic.

Let us recall the following important property of invariant measures, cf.
Proposition 2.14:
Assume that µ is an invariant Borel probability measure for the (stochas-
tically continuous) Markovian semigroup (pt)t≥0. Then for all t ≥ 0 and
q ≥ 1, (pt)t≥0 is uniquely extendible to a contractive C0-semigroup of linear
bounded operator on Lq(H,µ) that we still denote by (pt)t≥0.

Theorem 2.68 Let (pt)t≥0 be a stochastically continuous Markovian semi-
group with an invariant measure µ. Then following conditions are equivalent:



28 Chapter 2. Prerequisites

(i) µ is ergodic;

(ii) If f ∈ L2(H,µ) and we have

ptf = f, µ− a.s., for all t > 0,

then f is µ-a.s. constant;

(iii) If for a set B ∈ B(H)

pt1B = 1B, µ− a.s., for all t ≥ 0,

then either µ(B) = 0 or µ(B) = 1;

(iv) For an arbitrary f ∈ L2(H,µ)

lim
T→+∞

1

T

∫ T

0
ptfdt =

∫
H
fdµ. (2.7)

(the convergence and Bochner integrals are understood in the sense of
L2(H,µ).)

Proof For all details see the proof of Theorem 3.2.4 in [PZ96]. However, in
the proof in [PZ96], there are missing arguments which allow to show that
(i) implies (iv). Indeed, they are only able to prove the weak convergence
in (2.7) and the rest of the arguments for the strong convergence does not
work.
But by the von Neumann ergodic theorem (see, for instance, Section 5.4
in [Pra06]) the limit 1

T

∫ T
0 psfds does exist in L2(H,µ). Therefore by the

consistency of the weak and strong limits we get the strong convergence in
(2.7). �

Lemma 2.69 Let µ be an ergodic measure and ν an invariant measure of
(pt)t≥0 such that ν is absolutely continuous with respect to µ with a (µ-a.s.)
bounded ρ := dν

dµ . Then µ = ν.

Proof Fix any B ∈ B(H). From the ergodicity of µ, by Theorem 2.68 it
follows that

lim
T→+∞

1

T

∫ T

0
ps1Bds = µ(B), in L2(H,µ).

Therefore there exists a sequence (Tn)n∈N with limn→∞ Tn =∞, such that

lim
n→+∞

1

Tn

∫ Tn

0
ps1Bds = µ(B), µ− a.s.. (2.8)
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Since ν � µ, identity (2.8) holds also ν-a.s. Indeed, for any Fn → F , n→∞,
in L2(H,µ), we can write

∫
H
G Fn ρdµ =

∫
H

Gρ︸︷︷︸
∈L2(H,µ)

Fn dµ

n→∞−−−→
∫
H
Gρ F dµ =

∫
H
G F ρdµ =

∫
H
G F dν

for every G ∈ L2(H, ρµ).
Integrating with respect to ν now yields for all n ∈ N∫

H

(
1

Tn

∫ Tn

0
pt1B(x)dt

)
ν(dx) =

1

Tn

∫ Tn

0

( ∫
H
pt1B(x)ν(dx)

)
dt = ν(B)

according to the invariance of ν.
Hence, letting n→∞ we get by (2.8)

ν(B) = lim
n→∞

∫
H

(
1

Tn

∫ Tn

0
pt1B(x)dt

)
ν(dx) =

∫
H
µ(B)ν(dx) = µ(B)

Now the assertion follows due to the arbitrary choice of B ∈ B(H). �

Theorem 2.70 The set of all ergodic Borel probability measures for (pt)t≥0

coincides the set of all extremal points of Inv(p).

Proof Let µ be an ergodic measure. Assume by contradiction that µ is not
an extremal point of Inv(p). Then there exist µ1, µ2 ∈ Inv(p) with µ1 6= µ2

and α ∈ (0, 1) such that µ = αµ1 + (1 − α)µ2. Hence µ1 � µ and µ2 � µ,
this is a contradiction according to Lemma 2.69. Therefore µ is an extremal
point of Inv(p).
Conversely, let µ be an extremal point of Inv(p) and assume that µ is not
ergodic. Then there exists a set B ∈ B(H) such that 0 < µ(B) < 1 and

pt1B = 1B, µ− a.s., for all t ≥ 0. (2.9)

Define measures µ1 and µ2 by the formula

µ1(D) :=
1

µ(B)
µ(D ∩B), µ2(D) :=

1

µ(Bc)
µ(D ∩Bc), D ∈ B(H).

We should show that µ1 and µ2 are invariant measures for (pt)t≥0. We check
this for µ1 and for µ2 will be the same.

p∗tµ1(D) =

∫
H
πt(x,D)µ1(dx) =

1

µ(B)

∫
H
πt(x,D)µ(dx)

=
1

µ(B)

∫
H
πt(x,D ∩B)µ(dx) +

1

µ(B)

∫
H
πt(x,D ∩Bc)µ(dx).
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It follows from (2.9) that

πt(x,D ∩B) ≤ πt(x,B) = 0, µ− a.e., x ∈ Bc

and

πt(x,D ∩Bc) ≤ πt(x,Bc) = 0, µ− a.e., x ∈ B.

Therefore

p∗tµ1(D) =
1

µ(B)

∫
H
πt(x,D ∩B)µ(dx)

=
1

µ(B)
µ(D ∩B) = µ1(D)

so that µ1 is invariant for (pt)t≥0. Furthermore, since obviously µ1 6= µ2 and

µ = µ(B)µ1 + (1− µ(B))µ2,

µ could not be extremal which contradicts to the assumption above. �



Chapter 3

Uniqueness of Invariant
Measures

This chapter is a slightly modified version of [Hai08] and Chapters 5 and
7 in [Pra06]. Furthermore, we additionally point out to [Sch09] which has
been reviewed these results.

We present two techniques of proving uniqueness of invariant measures.
The first approach is based on the so-called strong Feller property (see [PZ96]
Theorem 4.2.1) and the second one is employs the so-called asymptotic strong
Feller property initially developed in [HM06].
We stress that the original papers were concerned with the autonomous
case, therefore the associated dynamics are governed by are one-parameter
semigroups.
For the convenience of the reader, in this chapter we point out the main issues
of the above techniques applied to the one-parameter semigroups. This can
be seen as a necessary preparation for the further constructions of Chapter
4 dealing with the two-parameter semigroups.

Recall that H is a real separable Hilbert space. By Bb(H) (resp. Cb(H))
we denote the space of all bounded, Borel measurable (resp. continuous)
functions f : H → R.

3.1 Uniqueness by using strong Feller property

In this section, our aim is to define the strong Feller property for the Marko-
vian semigroup. Thereafter the method of proving the uniqueness of invari-
ant measure by using the strong Feller property will be presented.

Definition 3.1 A Markovian semigroup p = (pt)t≥0 is called strong Feller
at time t > 0 if ptf ∈ Cb(H) for all f ∈ Bb(H). It is called strong Feller if
it is strong Feller at all times t > 0.

31
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There is a sufficient condition to check the strong Feller property for the
semigroup (pt)t≥0.

Proposition 3.2 Let H be a separable Hilbert space and (pt)t≥0 a Marko-
vian semigroup on Bb(H). If for any function f ∈ Bb(H)

|ptf(x)− ptf(y)| ≤ C(‖x‖ ∨ ‖y‖) · ‖f‖∞ · ‖x− y‖

for all x, y ∈ H and t > 0, where C : R+ → R is a fixed non-decreasing
function, then (pt)t≥0 is strong Feller.

Definition 3.3 The Markovian semigroup (pt)t≥0 is called irreducible at
time t > 0 if πt(x,B(x0, δ)) > 0, for all δ > 0 and x, x0 ∈ H and respectively
is called irreducible if it is irreducible at all times t > 0.

Definition 3.4 The Markovian semigroup (pt)t≥0 is called regular at time
t > 0 if all probability measures πt(x, .), x ∈ H, are mutually equivalent. It
is called regular if it is regular at all times t > 0.

The following uniqueness criteria is well-known, see [PZ96], Theorem
4.2.1.

Theorem 3.5 Let (pt)t≥0 be a Markovian semigroup which is strong Feller
and irreducible. Then there is at most one invariant Borel probability mea-
sure for (pt)t≥0.

3.2 Motivation to introduce the asymptotic strong
Feller property

One of the main features of the strong Feller property is given by the following
proposition.

Proposition 3.6 If a Markovian semigroup (pt)t≥0 over H has the strong
Feller property, then the topological supports of any two mutually singular
invariant measures are disjoint.

Proof See Theorem 7.7 in [Hai08]. �

Recall that the support of any probability measure µ on (H,B(H)), is de-
fined by

supp(µ) := {x ∈ H | µ(B(x, r)) > 0, for all r > 0}.

On the other hand, there is a weaker formulation of Definition 3.1 where
we can introduce the notion of being strong Feller at some x ∈ H (but not
on the whole H).
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Definition 3.7 The Markovian semigroup (pt)t≥0 is called strong Feller at
x ∈ H if the function x 7→ ptf(x) is continuous at x for all f ∈ Bb(H) and
all t > 0.

Definition 3.1 then means that Definition 3.7 holds for all x ∈ H.
As a result, the theorem about uniqueness of invariant measures can be

stated as follows:

Theorem 3.8 If the semigroup (pt)t≥0 is strong Feller (at every point in
H) and there exists some point x ∈ H such that x ∈ supp(µ) for every
invariant Borel probability measure µ for (pt)t≥0, then there exists at most
one invariant measure µ.

Definition 3.9 Let m be a finite signed measure on (H,B(H)) with Jordan
decomposition m = m+ −m−. Then the total variation norm of m is given
by

‖m‖TV :=
1

2

(
m+(H) +m−(H)

)
.

We have the following characterization of the strong Feller property by
the associated transition kernels (πt)t≥0.

Theorem 3.10 Let H be a Polish space and (pt)t≥0 be a Markovian semi-
group on Bb(H). Then (pt)t≥0 is strong Feller if and only if for all t ≥ 0 the
transition probabilities πt(x, ·) are continuous in the parameter x with respect
to the total variation norm ‖ . ‖TV .

In applications, the strong Feller property often fails to hold for infinite
dimension stochastic PDEs, simply because it is typically so far that any
two measures in such spaces be mutually singular. It would therefore be
extremely convenient to have a weaker property that still allows to get a
statement similar to Proposition 3.6.

This is the idea of asymptotic strong Feller property which, instead of
prescribing a smoothing property at a fixed time t > 0 (c.f. Theorem 3.10),
prescribes some kind of smoothing property at time∞. In fact, it is expected
that such an asymptotic smoothing property will be sufficient to conclude
that the topological supports of distinct ergodic invariant measures are dis-
joint.

Now, as we have mentioned in Section 2.8, we have by Proposition 2.60
that

lim
n→∞

Wdn(µ1, µ2) = ‖µ1 − µ2‖TV .

Furthermore, by Theorem 2.62, if d is a bounded metric that generates the
topology of H, then the corresponding Wasserstein metric generates the
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topology of weak convergence on the space of probability measures on H.
Therefore as a result, we can use the Wasserstein metricsWd to define a new
weaker property as compared to the strong Feller property.

3.3 Uniqueness by using asymptotic strong Feller
property

Let (pt)t≥0 is a Markovian one-parameter semigroup with the transition ker-
nels (πt)t≥0.

Definition 3.11 (See [HM06]) A Markovian semigroup (pt)t≥0 on Bb(H) is
called asymptotically strong Feller at a given point x ∈ H if there exists a
totally separating system of continuous pseudo-metrics (dn)n∈N on H and a
non-decreasing sequence (tn)n∈N ⊂ R+, such that we have

lim
γ→0

lim sup
n→∞

sup
y∈B(x,γ)

Wdn

(
πtn(x, .), πtn(y, .)

)
= 0, (3.1)

where B(x, γ) denotes the open ball of radius γ > 0 centered at x ∈ H. Here
Wd is the Wasserstein metric defined in Section 1.7.
The semigroup (pt)t≥0 is called asymptotically strong Feller, if it is asymp-
totically strong Feller at every x ∈ H.

Remark 3.12 For Polish (e.g., Hilbert) spaces, the above definition is equiv-
alent to the following one ( [HM06]):

Definition 3.13 A Markovian one-parameter semigroup (pt)t≥0 on a Hilbert
space H is called asymptotically strong Feller at any x ∈ H if there exists
a totally separating system of pseudo-metrics (dn)n∈N for H and a sequence
(tn)n∈N ⊂ R+ such that

inf
U∈Ux

lim sup
n→∞

sup
y∈U

Wdn(πtn(x, .), πtn(y, .)) = 0,

in which Ux is the collection of all open sets U ⊆ H containing x.

One can see that the asymptotic strong Feller property is a natural gen-
eralization of the strong Feller property.

Proposition 3.14 Let H be a Hilbert space and (pt)t≥0 a Markovian semi-
group on Bb(H) which is strong Feller. Then (pt)t≥0 is asymptotically strong
Feller.

Proof Fix an arbitrary x ∈ H and consider a total separating system of
continuous pseudo-metrics (dn)n∈N for H. Let us choose a constant sequence
(tn)n∈N with tn ≡ t, n ∈ N for some fixed t > 0. As it has been pointed in
Corollary 2.61, we have

Wdn(πt(x, .), πt(y, .)) ≤ ‖πt(x, .)− πt(y, .)‖TV
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for all n ∈ N and y ∈ H. Hence γ → 0, we get

lim
γ→0

lim sup
n→∞

sup
y∈B(x,γ)

Wdn(πt(x, .), πt(y, .))

≤ lim
γ→0

sup
y∈B(x,γ)

‖πt(x, .)− πt(y, .)‖TV .

On the other hand, since the semigroup (pt)t≥0 is strong Feller, (πt)t≥0 is
continuous in the total variation norm by Theorem 3.10. Hence the right
hand side of the above equation equals 0.
Since x ∈ H is arbitrary, the Definition 3.11 of the asymptotic strong Feller
for (pt)t≥0 is satisfied with the constant sequence tn ≡ t > 0. �

A useful criterion (comparable to Proposition 3.2) for checking the validity
of the asymptotic strong Feller property for a given Markovian semigroup is
as follows:

Proposition 3.15 Let (tn)n∈N and (δn)n∈N be two positive sequences with
tn increasing to infinity and δn converging to zero as n → ∞. A semigroup
(pt)t≥0 on a Hilbert space H is asymptotically strong Feller if, for all Fréchet
differentiable f : H → R with ‖f‖∞ <∞ and ‖∇f‖∞ <∞,

|ptf(x)− ptf(y)| ≤ C(‖x‖ ∨ ‖y‖) · (‖f‖∞ + δn · ‖∇f‖∞) · ‖x− y‖

for all n ∈ N and x, y ∈ H, where C : R+ → R is a fixed non-decreasing
function.

As an important consequence of the asymptotic strong Feller property,
one does have the following analogue of Proposition 3.6:

Proposition 3.16 Let (pt)t≥0 a Markovian semigroup on Bb(H) and con-
sider two different ergodic Borel probability measures for (pt)t≥0. If (pt)t≥0 is
asymptotically strong Feller, then the intersection of the topological support
of this two ergodic measures is empty.

The above proposition, leads to the following uniqueness criteria for in-
variant measures.

Theorem 3.17 Let (pt)t≥0 be an asymptotically strong Feller Markovian
semigroup on Bb(H) and assume that there exists a point x ∈ H such that
x ∈ supp(µ) for every invariant Borel probability measure µ for (pt)t≥0.
Then there exists at most one invariant Borel probability measure µ.

In the next chapter, we will extend these results to the case of two-
parameter semigroups.
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Chapter 4

Uniqueness of Evolution
System of Measures

In many important classes of stochastic differential equations, coefficients
are time dependent. So, their solutions are inhomogeneous Markov processes
and therefore the associated evolution operators constitute a two-parameter
semigroup.
Concerning the uniqueness of evolution system of measures for such two-
parameter semigroups, we should mention that this is a nontrivial prob-
lem. There is a theory proving uniqueness of a T -periodic evolution system
of measures when the semigroup is T -periodic irreducible at one point and
asymptotically strong Feller. This theory, being a generalization of the recent
results of Hairer and Matingly for one-parameter semigroups, was developed
in the particular case of the 2D Navier Stokes equation with time-periodic
coefficients by Da Prato and Debussche and presented in [PD08].
This chapter is an extension of the above mentioned works to an arbitrary
T -periodic semigroup, without any implicit relation to a concrete SDE gen-
erating such a semigroup. Also, in [PD08] there are some gaps and drawback
in proving the main theorem, which will be filled out and corrected in our
work.

4.1 Definitions

Let us use the notation P(H) for the set of all probability measures on
(H,B(H)). We introduce the topology of weak convergence for measures
from P(H). This is the weakest topology such that the mapping

P(H) 3 µ 7→
∫
f dµ(x)

is continuous for any f ∈ Cb(H). Note that P(H) with the weak topology is
a Polish space, i.e., there exists a metric on P(H) which is consistent with

37
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this topology and P(H) with this metric becomes a complete separable
metric space.

The generalization of Definition 2.7 for two-parameter semigroups is given
as follow:

Definition 4.1 A family (ps,t)s≤t of linear bounded operators on Bb(H) is
called a Markovian two-parameter semigroup (or Markovian evolution fam-
ily) if:

(i) ps,s = 1 for all s ∈ R, where 1 is the identity operator in H,

(ii) ps,t = ps,rpr,t for all s ≤ r ≤ t,

(iii) ps,t1 = 1.

(iv) For every s ≤ t, ps,tf is positive whenever f is positive.

Remark 4.2 A typical example of two-parameter semigroups (ps,t)s≤t arises
in the theory of infinite dimensional stochastic differential equation with co-
efficients depending on time. Namely, we define

ps,tf(x) = E
[
f(X(s, t, x))

]
, f ∈ Cb(H),

where X(s, t, x) is the solution starting at time s ∈ R and at point x (Some
classes of such semigroups will be studied in the last chapter of this thesis).
Then, in this case, an evolution system of measures (µt) indexed by t ∈ R is
a measure-valued solution of the dual Kolmogorov equation.

Definition 4.3 Any Markovian two-parameter semigroup (ps,t)s≤t on Bb(H)
(uniquely) defines a family of transition probability kernels on

(
H,B(H)

)
by

πs,t(x,B) := ps,t1B(x), x ∈ H, B ∈ B(H),

and therefore for any f ∈ Bb(H) we have

ps,tf(x) =

∫
H
f(y)πs,t(x, dy), x ∈ H. (4.1)

We call π = (πs,t)s≤t, which is indexed by s, t ∈ R, s ≤ t, the Markovian
two-parameter semigroup of transition kernels.

Remark 4.4 From the identity ps,t = ps,rpr,t for all s ≤ r ≤ t, we get

πs,t(x,B) =

∫
H
πr,t(y,B)πs,r(x, dy) (4.2)

for all x ∈ H and B ∈ B(H). This is the so-called Kolmogorov-Chapman
equality similar to equation (2.2), but now it relates to the two-parameter
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case. Therefore the heuristic interpretation of equality (4.2) which can be
given as follows:
the probability for a particle starting at time s ∈ R in x ∈ H to be in B ∈ H
at time t ≥ s is equal to the probability that the particle starts at time s in
x ∈ H and being in some infinitesimal small volume dy at time r and then
starting new in y ∈ H at time r ∈ [s, t] and being in the subset B at time t
integrated over all intermediate points y ∈ H.

Definition 4.5 The semigroup p = (ps,t)s≤t is called forward continuous if
for all f ∈ Cb(H), x ∈ H and s ≤ t

lim
r→t
r>s

ps,rf(x) = ps,tf(x).

Definition 4.5 just means, for each x ∈ H, the continuity of the map

[s,+∞) 3 t 7→ πs,t(x, ·) ∈P(H)

in the topology of weak convergence of measures on (H,B(H)).

Definition 4.6 A family (p∗s,t)s≤t of operators on P(H) is called the semi-
group of transposed operators associated with (ps,t)s≤t if

p∗s,tµs(B) =

∫
H
πs,t(x,B)µs(dx), s ≤ t, B ∈ B(H),

where clearly p∗r,tp∗s,r = p∗s,t.

Let us consider a Markovian two-parameter semigroup (ps,t)s≤t with the
corresponding Markovian two-parameter semigroup of transition kernels (πs,t)s≤t.
Now we will give a natural generalization of the notion of invariant measures
for two-parameter semigroups.

Definition 4.7 Consider a mapping

R 3 t 7→ µt ∈P(H)

such that for every f ∈ Bb(H)∫
H
ps,tf(x)µs(dx) =

∫
H
f(x)µt(dx), s ≤ t; (4.3)

or equivalently
p∗s,tµs = µt.

Then every such (µt)t∈R will be called an evolution system of measures (e.g.
[PR08], [KLL10]).
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Remark 4.8 If (πs,t)s≤t are transition kernels of (ps,t)s≤t, then one can
rewrite equation (4.3) as∫

H
πs,t(x,B)µs(dx) = µt(B), s ≤ t, B ∈ B(H).

From this point of view, in the literature (µt)t∈R is called the π-entrance law.
We denote the set of all π-entrance laws (or evolution systems of measures)
by K(π).

Remark 4.9 If (ps,t)s≤t is forward continuous, then obviously t 7→ µt is
continuous in the topology of weak convergence of measures from P(H),
i.e.,

R 3 t 7→
∫
H
f(x)µt(dx)

is continuous for every f ∈ Cb(H).

Hypothesis: In what follows we will always assume that t 7→ µt
is weakly continuous.

Definition 4.10 Let for a given T > 0, the two-parameter semigroup (ps,t)s≤t
obeys

ps+T,t+T = ps,t.

Then, we call it a T -periodic two-parameter semigroup.

Definition 4.11 Given T > 0, the family (µt)t∈R is called T -periodic if

µt+T = µt, t ∈ R.

When we are dealing with a T -periodic semigroup p = (ps,t)s≤t, it seems
natural to restrict our considerations only to T -periodic entrance laws (µt)t∈R
(for a further motivation see e.g. [PD08]).
In the case of dissipative stochastic equations (cf. [PR06], [PL07]), one has
under reasonable assumptions that

lim
s→−∞

ps,tf(x) =

∫
H
f(y)µt(dy), x ∈ H, f ∈ Cb(H),

and therefore the unique evolution system of measures corresponding to this
T -periodic semigroup (ps,t)s≤t ought to be T -periodic.
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4.2 Space-time homogenization semigroup

Let us fix some T > 0 and identify the end points of the time interval
[0, T ]. Then we get a circle (torus) ST of length T . Then ST ∼= [0, T ] with
t+ kT = t (mod T ) for all k ∈ Z.

We introduce the space Bb(ST × H) consisting of all Borel measurable
bounded functions f : ST ×H → R. Obviously, Bb(ST ×H) is isomorphic to
Bperb (R×H) being the space of all Borel measurable and T -periodic bounded
functions f : R ×H → H such that f(t + T, .) = f(t, .) for each t ∈ R. In
what follows, we will not distinguish between functions f ∈ Bb(ST ×H) and
the functions from Bperb (R×H).

Note that Bb(ST ×H) is a Banach space with the norm

‖f‖ := sup
(t,x)∈ST×H

|f(t, x)|.

In this space we define the family of operators (Pτ )τ≥0 acting by

Pτf(t, x) = pt,t+τf(t+ τ, .)(x), τ ≥ 0, (t, x) ∈ R×H. (4.4)

It is called the space-time homogenization semigroup associated with (ps,t)s≤t
(see [PL07], [Knä11]).

Note that we need to assume that (ps,t)s≤t is also T -periodic and we will
keep this assumption everywhere we use the homogenization semigroup.

Lemma 4.12 Pτ (Bb(ST ×H)) ⊂ Bb(ST ×H) for all τ ≥ 0.

Proof Since for any f ∈ Bb(ST ×H) ∼= Bperb (R×H) we have f(t+ T, ·) =
f(t, ·), therefore for every x ∈ H and τ ≥ 0, t ∈ R

Pτf(t+ T, x) = pt+T,t+T+τf(t+ T + τ, ·)(x) = pt,t+τf(t+ τ, ·)(x) = Pτf(t, x),

where the second equality was obtained from the T -periodicity of (ps,t)s≤t
and f ∈ Bperb (R×H). �

Lemma 4.13 (Pτ )τ≥0 is a Markovian semigroup (in the sense of Definition
2.7) in Bb(ST ×H).

Proof Since (ps,t)s≤t is an Markovian evolution family, for every η, τ ≥ 0
and f ∈ Bb(ST ×H) we have

PηPτf(s, x) = ps,s+ηPτf(s+ η, .)(x)

= ps,s+ηps+η,s+η+τf(s+ η + τ, .)(x)

= ps,s+η+τf(s+ η + τ, .)(x)

= Pη+τf(s, x)
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for all s ∈ R and x ∈ H.
It remains to check the Markovian property Pτ1 = 1 for every τ ≥ 0. Indeed,

(Pτ1)(t, x) = pt,t+τ1(t, .)(x)

=

∫
H
1(t, .)(y)πt,t+τ (x, dy) = 1

for any x ∈ H and t ∈ R. �

Remark 4.14 Since the semigroup (Pτ )τ≥0 is defined by (ps,t)s≤t, we can
think about its transition kernels and how they are related with (πs,t)s≤t.
Indeed, for any f ∈ Bb(ST ×H)

Pτf(s, x) = ps,s+τf(s+ τ, ·)(x)

=

∫
H
f(s+ τ, ·)(y)πs,s+τ (x, dy)

=

∫
ST

∫
H
f(t, y)δs+τ (t)πs,s+τ (x, dy)dt.

So Pτ obeys a transition kernel, denoted by Sτ , which acts by

Sτ ((s, x), dt dy) = δs+τ (dt)πs,s+τ (x, dy), (s, x) ∈ R×H, τ ≥ 0,

where δτ (dt) is the δ-measure on ST placed at τ .

4.3 Relation between T -periodic evolution systems
of measures for (ps,t)s≤t and invariant measures
for the corresponding space-time homogeneous
semigroup (Pτ)τ≥0

Our next aim is to show that there exists a one-to-one correspondence be-
tween T -periodic evolution system of measures associated with T -periodic
Markovian two-parameter semigroup (ps,t)s≤t and invariant measures for
(Pτ )τ≥0.

Let us start with looking for candidates to be invariant measures for
semigroup (Pτ )τ≥0,

Definition 4.15 Let (µt)t∈R be a T -periodic evolution system of measures
for (ps,t)s≤t, which is equivalent to say that (µt)t∈ST is an evolution system
of measures for (ps,t)s≤t. We define a probability measure mµ on

(
ST ×

H,B(ST )⊗B(H)
)
by

mµ(dt, dx) :=
1

T
µt(dx)dt.
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Lemma 4.16 The probability measure mµ = 1
T µt(dx)dt is invariant for

(Pτ )τ≥0 for τ ≥ 0.

Proof Let f ∈ Bb
(
ST ×H

)
. We have by the above definitions∫

ST×H
Pτf(t, x)mµ(dt, dx) =

1

T

∫ T

0

∫
H
pt,t+τf(t+ τ, .)(x)µt(dx)dt

=
1

T

∫ T

0

∫
H
f(t+ τ, .)(x)µt+τ (dx)dt.

Now by the T -periodicity of both f and (µt)t∈R we have

1

T

∫ T

0

∫
H
f(t+ τ, .)(x)µt+τ (dx)dt

=
1

T

∫ T

0

∫
H
f(t, .)(x)µt(dx)dt

=

∫
ST×H

f(t, x)mµ(dt, dx),

which implies the required invariance of mµ. �

Definition 4.17 The set of all invariant measures of (Pτ )τ≥0 will be denote
by Inv(P). Equivalently, each m ∈ Inv(P) obeys

P∗τm = m, τ ≥ 0,

where (P∗τ )τ≥0 is the transposed semigroup on P(ST ×H) defined by

P∗τm(I ×B) =

∫
ST×H

Sτ
(
(s, x), I ×B

)
m(ds, dx),

for every I ∈ B(ST ) and B ∈ B(H).

It is important to know how each element of Inv(P) looks like.

Proposition 4.18 If m ∈ Inv(P), then

m(dt dx) =
1

T
mt(dx)dt

where (mt)t∈R is a T -periodic weakly continuous evolution system of mea-
sures for the forward continuous (ps,t)s≤t, i.e., (mt)t∈R ∈ K(π).

Proof Consider the projection map

θ1(t, x) : ST ×H → ST , θ1(t, x) := t ∈ ST .
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Then the image measure of m under θ1 is defined by

λ(dt) := m ◦ θ−1
1 (dt).

By the disintegration theorem ( [Rip76], [Dud89]), there is a family of prob-
ability kernels

(
mt(dx)

)
t∈ST

on B(H) such that

m(dt, dx) = mt(dx)λ(dt).

Note that the disintegration (mt)t∈ST is defined λ-almost surely.
In the next step, we prove that λ is a Lebesgue measure. By definition,

we have ∫
ST×H

Pτf(t, x)m(dt dx) =

∫
ST×H

f(t, x)m(dt dx)

for every Bb(ST ×H).
On the other hand, by choosing f(t, x) := u(t) independent of x, we get

Pτu(t) = u(t+ τ), τ > 0, t ∈ ST ,

so that ∫ T

0
u(t+ τ)λ(dt) =

∫ T

0
u(t)λ(dt).

Therefore, λ is invariant w.r.t translations of the torus ST ∼= [0, T ], so it coin-
cides with the Lebesgue measure on [0, T ] multiplied by a positive constant.
So we have

m(dt dx) = cmt(dx)dt,

and since m is a probability measure, it should hold c = 1/T .
Clearly, (mt)t∈ST can be extended to almost every t ∈ R by T -periodicity
(for which we keep the same notation).

It remains to show that there exists a version of (mt)t∈ST such that
p∗s,tms = mt for all s ≤ t. Since m ∈ Inv(Pτ ), for every f ∈ Bb(H) and
every u ∈ Bb(ST ) we have for any τ ≥ 0∫

ST×H
Pτ
(
u(t)f(x)

)
m(dt, dx) =

∫
ST×H

u(t)f(x)m(dt, dx)

and thus∫ T

0
u(t+ τ)

∫
H
pt,t+τf(x)mt(dx)dt =

∫ T

0
u(t)

∫
H
f(x)mt(dx)dt.

So we obtain∫ T

0
u(t+ τ)

∫
H
pt,t+τf(x)mt(dx)dt =

∫ T

0
u(t+ τ)

∫
H
f(x)mt+τ (dx)dt.
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Therefore ∫
H
pt,t+τf(x)mt(dx) =

∫
H
f(x)mt+τ (dx), (4.5)

for almost all t ∈ ST (depending on f and τ).

Next we are going to show that it is possible to construct a continuous
disintegration of m. To this end, for a given f ∈ Cb(H) let us consider the
maps

R× R+ 3 (t, τ) 7→
∫
H
pt,t+τf(x)mt(dx) (4.6)

and

R× R+ 3 (t, τ) 7→
∫
H
f(x)mt+τ (dt).

By construction, for each fixed τ ≥ 0

R 3 t 7→
∫
H
pt,t+τf(x)mt(dx)

and

R 3 t 7→
∫
H
f(x)mt+τ (dt)

are measurable.
On the other hand, we claim that these mappings are stochastically contin-
uous at every fixed t . We will prove this for τ 7→

∫
H pt,t+τf(x)mt(dx) and

the same also will hold for τ 7→
∫
H f(x)mt+τ (dt). Indeed, it would suffice to

show that for any sequence τn ≥ 0, limn→∞ τn = τ ,

lim
n→∞

∫ T

0

∣∣∣∣ ∫
H

(
pt,t+τ − pt,t+τn

)
f(x)mt(dx)

∣∣∣∣dt = 0. (4.7)

But τ 7→ pt,t+τ is forward continuous and∣∣(pt,t+τ − pt,t+τn)f ∣∣ ≤ 2‖f‖∞.

So via Lebesgue’s convergence theorem the claim is proved.
Therefore by Proposition 3.2 in [PZ92] both maps in (4.6)

(t, τ) 7→
∫
H
pt,t+τf(x)mt(dx)

and

(t, τ) 7→
∫
H
f(x)mt+τ (dt)
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have measurable modifications. In what follows, we will work with these
measurable modifications (keeping the same notation for them). Now we
can rewrite (4.5) as∫ T

0

[ ∫
H

(
pt,t+τf(x)mt(dx)− f(x)mt+τ (dx)

)]
dt = 0, τ ≥ 0,

which obviously implies∫ ∞
0

∫ T

0

[ ∫
H

(
pt,t+τf(x)mt(dx)− f(x)mt+τ (dx)

)]
dt dτ = 0.

Using Fubini’s theorem yields∫ T

0

∫ ∞
0

∫
H

(
pt,t+τf(x)mt(dx)− f(x)mt+τ (dx)

)
dτ dt = 0

and hence∫ ∞
0

∫
H

(
pt,t+τf(x)mt(dx)− f(x)mt+τ (dx)

)
dτ = 0, t ∈ [0, T ] (a.a.).

Therefore, for almost every t ∈ [0, T ] (depending on f and τ)∫
H
pt,t+τf(x)mt(dx) =

∫
H
f(x)mt+τ (dx), τ ≥ 0 (a.a).

Actually, the above equation holds for each τ ∈ Ξt,f ∈ B(R+), where the set
Ξt,f has the full measure. Since P(H) (endowed with the weak topology)
is a Polish space, by taking a proper countable set (fN )N∈N ⊂ Cb(H) (see
Section 15.7 of [Kal83]) we conclude that for almost all t ∈ [0, T ]

p∗t,t+τmt = mt+τ , τ ≥ 0 (a.a), (4.8)

in which Ξt =
⋂
N Ξt,fN ∈ B(R+) has again the full measure. By T -

periodicity we can extend (4.8) to almost all t ∈ R. Indeed, for every k ∈ Z

p∗kT+t,kT+(t+τ)mt = p∗t,t+τmkT+t = mt+τ = mkT+t+τ , τ ≥ 0 (a.a).

Let us choose a sequence tn → −∞, n ∈ N, such that

p∗tn,tn+τmtn = mtn+τ , τ ∈
⋂
n∈N

Ξtn =: Ξ.

Clearly Ξ also has the full measure.
For n ∈ N and all ξ ≥ tn, we define

m̃n
ξ := p∗tn,ξmtn .
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Then we have m̃n
ξ = mξ almost surely for all ξ ≥ tn, because

m̃n
ξ = p∗tn,ξmtn = p∗tn,tn+(ξ−tn)mtn = mtn+(ξ−tn) = mξ.

Therefore m̃n
ξ = m̃n+1

ξ almost surely for ξ ≥ tn.
On the other hand, for each n, m̃n

ξ is continuous in ξ w.r.t. the topology
of weak convergence. Indeed, from Definition 4.6 of the transposed operators
we have for every f ∈ Bb(H)∫

H
f(y)m̃n

ξ (dy) =

∫
H
f(y)(p∗tn,ξmtn)(dy)

=

∫
H
f(y)

∫
H
πtn,ξ(x, dy)mtn(dx)

=

∫
H

(∫
H
f(y)πtn,ξ(x, dy)

)
mtn(dx)

=

∫
H
ptn,ξf(x)mtn(dx).

So, the continuity of m̃n
ξ means that for any f ∈ Bb(H) and any sequence

ξk → ξ as k →∞, such that tn ≤ ξk, k ∈ N,

lim
k→∞

∫ ∞
tn

∣∣∣∣ ∫
H

(
ptn,ξ − ptn,ξk

)
f(x)mtn(dx)

∣∣∣∣dt = 0.

And via the argument similar to that used in the proof of (4.7), we get the
claim.
Thus we conclude that m̃n

ξ = m̃n+1
ξ for all ξ ≥ tn. So, we can define the

family (m̃ξ)ξ∈R by

m̃ξ := m̃n
ξ , for all ξ ≥ tn.

Obviously m̃ξ = mξ almost surely, so that (m̃ξ)ξ∈R is a continuous disinte-
gration of m.
Finally, we check that (m̃ξ)ξ∈R is an evolution system of measures. For every
t ∈ R we choose some tn0 from the sequence (tn)n≥1 such that tn0 ≤ t. Then
we have

p∗t,t+τm̃t = p∗t,t+τp
∗
tn,tmtn

=
(
ptn,tpt,t+τ

)∗
mtn

= p∗tn,t+τmtn

= m̃t+τ , τ ≥ 0.

Thus (m̃ξ)ξ∈R is a continuous T -periodic evolution system of measures for
(ps,t)s≤t. �
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4.4 On the property of ergodic measures

Now we put a closer look at ergodic invariant measures.

Theorem 4.19 Let m1 and m2, m1 6= m2, be two ergodic invariant proba-
bility measures for (Pτ )τ≥0. Then m1 and m2 are singular.

Proof Let I × B ∈ B
(
ST ×H

)
such that m1(I × B) 6= m2(I × B). Since

m1 and m2 are ergodic, there exist a sequence (Tn)n∈N, Tn → ∞, and sets
J1 ×M, J2 × N ∈ B

(
ST × H

)
with m1(J1 ×M) = m2(J2 × N) = 1 such

that

lim
n→∞

1

Tn

∫ Tn

0
Pτ1I×B(t, x)dτ =

∫
ST×H

1I×B(t, x)m1(dt, dx) = m1(I ×B)

for all (t, x) ∈ J1 ×M and

lim
n→∞

1

Tn

∫ Tn

0
Pτ1I×B(t, x)dτ =

∫
ST×H

1I×B(t, x)m2(dt, dx) = m2(I ×B)

for all (t, x) ∈ J2 ×N .
Since m1(I ×B) 6= m2(I ×B), this implies (J1 ×M)∩ (J2 ×N) = ∅ and so
m1 and m2 are singular. �

The following theorem gives a presentation of the set of all invariant
measure for a given Markovian semigroup.

Theorem 4.20 For every m ∈ Inv(P) there exists a probability measure ρm
on the set of all ergodic measures for (Pτ )τ≥0 such that

m(B) =

∫
Inv(Pτ )

m̃(B) dρm(m̃), B ∈ B(H)⊗B(ST ). (4.9)

Proof See Theorem 5.1 in [Hai08]. �

Remark 4.21 Since we need to extend this fact to the case of two-parameter
semigroups, in the next chapter we will give a alternative proof to this the-
orem. There we will also give a precise meanings how to understand the
integral in (4.9).

4.5 Connection between the support of an invariant
measure and the support of its disintegration

The support (supp(m)) of a probability measure m on a Polish space is
defined as the intersection of all closed subsets having probability 1.
The following Lemma (which proof is based on the so-called strong Lindelöf)
is a general fact valid for measures on Banach spaces.
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Lemma 4.22 Let µ be a probability measure on (H,B(H)). Then

supp(µ) = {x ∈ H | µ(B(x, r) > 0 for all r > 0}.

Proof See Theorem 2.1 in [Par67]. �

The next lemma describes the support of the invariant measure m ∈
Inv(P) in terms of the support of its disintegration (mt)t∈R.

Lemma 4.23 Let m be a element of Inv(P) then

a) supp(m) ⊆ {(t, x) ∈ ST ×H : x ∈ supp(mt)};
b) {(t, x) ∈ ST ×H : x ∈ supp(mt)} ⊆ supp(m),

where (mt)t∈ST is the (continuous) disintegration of m.

Proof Set A := {(t, x) ∈ ST ×H : x ∈ supp(mt)} so that

supp(mt) = At := {x ∈ H : (t, x) ∈ A}.

Since by the disintegration of m in Proposition 4.18 we have

m(A) ≥ 1

T

∫ T

0
mt(A

t)dt = 1,

this yields that supp(m) ⊂ A.
Now we prove that A ⊂ supp(m). Suppose (t0, x0) /∈ supp(m), then from
Lemma 4.22 there exist ε > 0 such that

m
(
B
(
(t0, x0), ε

))
= m

(
(t0 − ε, t0 + ε)×B(x0, ε)

)
= 0

implying ∫
(t0−ε,t0+ε)×B(x0,ε)

m(dt, dx) = 0

=⇒
∫ t0+ε

t0−ε

∫
B(x0,ε)

mt(dx)dt = 0

=⇒
∫ t0+ε

t0−ε

∫
H
1B(x0,ε)mt(dx)dt = 0

As a result we have

=⇒
∫
H
1B(x0,ε)mt(dx) = 0, a.s. t ∈ (t0 − ε, t0 + ε). (4.10)

Let f : H → R be a continuous function such that

f(x) =

{
1, if x ∈ B(x0, ε/2),
0, if x ∈ B(x0, ε)

c,
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and 0 ≤ f(x) ≤ 1 for all x ∈ H. Therefore, by (4.10)∫
H
f(x)mt(dx) = 0, a.s. t ∈ (t0 − ε, t0 + ε).

Now from the continuity of t→
∫
H f(x)mt(dx) we can deduce that∫

H f(x)mt0(dx) = 0. Hence mt0(B(x0, ε/2)) = 0, which implies x0 ∈
supp(mt0). �

Remark 4.24 In Lemma 5.4 of [PD08] it has been claimed that for every
m ∈ Inv(P)

supp(m) = {(t, x) ∈ R×H : x ∈ supp(mt)},

where (mt)t∈R is the (continuous) disintegration of m. But it seems to be
wrong at least for the following reasons.

(1) In general, we can not claim that the set A defined in Lemma 4.23
is a Borel and even a closed set. If we assume that A is closed then Lemma
4.23 yields that A = supp(m). This issue was over looked in the [PD08].

(2) Furthermore, in general the support of the measure m can not be rep-
resented as a product of the supports of its disintegrations. The assumption
that (mt)t∈R is weakly continuous is not helpful in this case. We can reference
to Proposition 5.1.8 in [AGS08] which states in following.

Proposition 4.25 If (mn)n∈N ⊂ P(X) (where X is a separable metric
space) is weakly convergent to m ∈P(X), then

supp(m) ⊂ lim inf
n→∞

supp(mn),

i.e., for each x ∈ supp(m) there exists a sequence {xnj}j≥1 with xnj ∈
supp(mn) such that limnj→∞ xnj = x.

As a simple counterexample let us define (mt)t≥1 so that

mt({x}) =

{
t−1
t , if x = 0

1
t , if x = 1

Then each mt can be considered as a probability measure on R. Obviously,
supp(mt) = {0, 1} ⊂ R for every t > 1 and supp(m1) = 1. We observe that:

(1) A is not closed. Indeed, for every n ≥ 1, {0} ∈ supp(mn), (n, {0}) ∈
A and (n, {0})→ (1, {0}), but {0} /∈ supp(m1) and (1, {0}) /∈ A. Thus A is
not closed in [1,∞)× R.

(2) Despite of the weak convergence mt → m1 as t→ 1, we have

supp(mt) 9 supp(m1).
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4.6 Sufficient condition for the asymptotic strong
Feller property of (ps,t)s≤t

Let us first define the asymptotic strong Feller property for semigroup (ps,t)s≤t.
Note that in this section we do not need to assume the T -periodicity of
(ps,t)s≤t.
We adapt to our setting Definition 5.2 in [PD08].

Definition 4.26 The semigroup (ps,s+r)r≥0 on Bb(H) is called asymptoti-
cally strong Feller at x0 ∈ H and s0 ∈ R, if there exists a totally separating
system of continuous pseudo-metrics (dn)n∈N on H and a non-decreasing
sequence (rn)n∈N ⊂ R+, such that

lim
γ→0

lim sup
n→∞

sup
x∈B(x0,γ)

sup
s∈[s0−γ,s0+γ]

Wdn(πs,s+rn(x0, .), πs,s+rn(x, .)) = 0,

(4.11)
where π is the transition kernel of p and B(x0, γ) denotes the open ball of
radius γ > 0 centered at x0 ∈ H.
Respectively, (ps,t)s≤t is called asymptotically strong Feller, if it is asymptot-
ically strong Feller at every x ∈ H and s ∈ R.

Recall that for f ∈ Cb(H),

‖f‖∞ := sup
x∈H
‖f(x)‖.

We need some lemmas for preparation to set the main result.

Lemma 4.27 Let f ∈ C1
b (H). Then

‖∇f‖∞ = ‖f‖Lipd

with d(x, y) := ‖x− y‖ for all x, y ∈ H.

Proof See Lemma 7.1.5 in [PZ96]. �

Lemma 4.28 Let d be a pseudo-metric on H and f ∈ Ld(H) (see Definition
2.56). Then there exists a sequence (fm)m∈N ⊂ C∞b (H) such that:

1. fm → f pointwisely as m→∞;

2. ‖fm‖∞ ≤ ‖f‖∞ for all m ∈ N;

3. ‖fm‖Lipd ≤ ‖f‖Lipd for all m ∈ N.

Proof See [PZ96] and [Cer99]. �

Here, we present the sufficient criteria (comparable to Proposition 3.15)
that guarantees the asymptotic strong Feller property for the two-parameter
semigroups.
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Theorem 4.29 Let H be a separable Hilbert space. If for every two posi-
tive sequences (rn)n∈N and (δn)n∈N such that rn ≤ rn+1 for all n ∈ N and
limn→∞ δn = 0, we have

|ps,s+rnf(x)− ps,s+rnf(y)| ≤ Cs(‖x‖ ∨ ‖y‖)(‖f‖∞ + δn‖∇f‖∞) · ‖x− y‖

for every f ∈ C1
b (H) and all x, y ∈ H, s ∈ R, n ∈ N where Cs : R+ → R

are non-decreasing functions, then the semigroup (ps,t)s≤t is asymptotically
strong Feller.

Proof For ε > 0 define on H the metric

dε : H ×H → R+

(x1, x2) → dε(x1, x2) := 1 ∧ 1

ε
· ‖x1 − x2‖.

This is a metric on H, because for any x, y, z ∈ H

dε(x, y) + dε(y, z) =
(
1 ∧ 1

ε
‖x− y‖

)
+
(
1 ∧ 1

ε
‖y − z‖

)
≥ 1 ∧ 1

ε

(
‖x− y‖+ ‖y − z‖

)
≥ 1 ∧ 1

ε
‖x− z‖

)
= dε(x, z),

and the non-negativity, coincidence axiom and symmetry follows immedi-
ately from the metric properties of d.

Also (dδn)n∈N, as limn→∞ δn = 0, is a totally separating system of con-
tinuous metrics for H, since:

• δn ≥ δn+1 > 0, for all n ∈ N, supplies that for all (x1, x2) ∈ H2

dδn(x1, x2) = 1∧ 1

δn

(
‖x1−x2‖

)
≤ 1∧ 1

δn+1
‖x1−x2‖ = dδn+1(x1, x2);

• limn→∞ dδn(x1, x2) = limn→∞

(
1 ∧ 1

δn
· ‖x1 − x2‖

)
= 1, for all x1 6=

x2.

Now, for every Fréchet differentiable function f : H → R, we have by our
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assumption and Lemma 4.27∣∣∣∣ ∫H f(x)
[
πs,s+rn(x1, dy)− πs,s+rn(x2, dy)

]∣∣∣∣
= |ps,s+rnf(x1)− ps,s+rnf(x2)|

≤ Cs(‖x1‖ ∨ ‖x2‖).(‖f‖∞ + δn · ‖∇f‖∞) · ‖x1 − x2‖

≤ Cs(‖x1‖ ∨ ‖x2‖).(‖f‖∞ + δn · ‖f‖Lipd) · ‖x1 − x2‖

≤ Cs(‖x1‖ ∨ ‖x2‖).(‖f‖∞ + δn
ε · ‖f‖Lipdε ) · ‖x1 − x2‖,

(4.12)

The last inequality is true because

‖f‖Lipd =
1

ε
· sup
x,y∈H
x 6=y

|f(x)− f(y)|
ε−1 · d(x, y)

≤ 1

ε
· sup
x,y∈H
x 6=y

|f(x)− f(y)|
1 ∧ ε−1 · d(x, y)︸ ︷︷ ︸

=dε(x,y)

=
1

ε
· ‖f‖Lipdε .

Observe that, by Lemma 4.28 for every dε-Lipschitz continuous f : H → R
with ‖f‖Lipdε ≤ 1, there exists a sequence (fm)m∈N of Fréchet differential
functions fm : H → R such that fm → f pointwisely as m → ∞ and
‖fm‖Lipdε ≤ ‖f‖Lipdε ≤ 1 for all m ∈ N.
Therefore by Lebesgue’s dominated convergence theorem, we have the result
similar to (4.12) also for Lipschitz continuous functions f . Indeed, for any
x1, x2 ∈ H∣∣∣∣ ∫

H
f(x)

(
πs,s+rn(x1, dy)− πs,s+rn(x2, dy)

)∣∣∣∣
= lim

m→∞

∣∣∣∣ ∫
H
fm(x)

(
πs,s+rn(x1, dy)− πs,s+rn(x2, dy)

)∣∣∣∣
≤ lim

m→∞
Cs(‖x1‖ ∨ ‖x2‖).

(
‖fm‖∞ +

δn
ε
.‖fm‖Lipdε

)
.‖x1 − x2‖

≤ Cs(‖x1‖ ∨ ‖x2‖).
(
‖f‖∞ +

δn
ε
.‖f‖Lipdε

)
.‖x1 − x2‖.

Since in the definition of Wasserstein metric, it suffices to consider Lips-
chitz functions f such that f(0) = 0. So, without losing generality, from
‖f‖Lipdε ≤ 1 we can assume ‖f‖∞ ≤ 1. Then again from lemma 4.28 we
have ‖fm‖∞ ≤ ‖f‖∞ ≤ 1. Thus we have

‖πs,s+rn(x1, .)− πs,s+rn(x2, .)‖dε =

∣∣∣∣ ∫
H
f(x)

(
πs,s+rn(x1, dy)− πs,s+rn(x2, dy)

)∣∣∣∣
≤ Cs(‖x1‖ ∨ ‖x2‖).(1 +

δn
ε

).‖x1 − x2‖.
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But applying Lemma 2.59 yields

Wdε(πs,s+rn(x1, .), πs,s+rn(x2, .)) ≤ Cs(‖x1‖ ∨ ‖x2‖).(1 +
δn
ε

).‖x1 − x2‖

Choosing ε = an =
√
δn, we obtain

Wdan (πs,s+rn(x1, .), πs,s+rn(x2, .)) ≤ Cs(‖x1‖ ∨ ‖x2‖).(1 + an).‖x1 − x2‖,

for all n ∈ N, which in turn implies that (ps,t)s≤t is asymptotically strong
Feller, since an → 0 for n→∞. �

4.7 Uniqueness of evolution system of measures

Lemma 4.30 For every two mutually singular measures µ and ν of Inv(P),
their corresponding disintegrations (µt)t∈R and (νt)t∈R are also almost surely
singular.

Proof See Lemma 5.5 in [PD08]. �

Lemma 4.31 Let d ≥ 1 be a pseudo-metric in H. Let µ and ν be two ergodic
invariant measures for (Pτ )τ≥0 with disintegrations (µt)t∈R and (νt)t∈R, re-
spectively, and B ∈ B(H). Then we have

Wd(µs+r, νs+r) ≤ 1− µs(B) ∧ νs(B)

(
1− max

y,z∈B
Wd(πs,s+r(y, .), πs,s+r(z, .)

)
.

Proof See Lemma 5.6 in [PD08]. �

As we have discussed in Remark 4.24, there is a serious gap in the original
proof in [PD08]. Therefore we put here the complete statement and the proof
of the main results.

Theorem 4.32 Let (ps,s+r)r≥0 be a Markovian semigroup on Cb(H) with
its associated (Pτ )τ≥0 and let µ, ν be two ergodic invariant measures for
(Pτ )τ≥0. If (ps,s+r)r≥0 is asymptotically strong Feller at the given (s0, x0) ∈
R×H, then x0 /∈ supp(µs0) ∩ supp(νs0) where (µt)t∈R and (νt)t∈R are con-
tinuous disintegration of µ and ν.

Proof Every two ergodic invariant probability measures of any one-parameter
semigroup are singular. Thus µ and ν are singular. Therefore for their total
variation of their difference, we obtain

‖µ− ν‖TV = 1
2 ·
(
(µ− ν)+(ST ×H) + (µ− ν)−(ST ×H)

)
= 1

2 ·
(
µ(ST ×H) + ν(ST ×H)

)
= 1.

(4.13)
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Assume now by contradiction that x0 ∈ supp(µs0) ∩ supp(νs0), respec-
tively. Therefore

min
{
µs0(B(x0, δ/2)), νs0(B(x0, δ/2))

}
> 0

Now we use the continuity of

s 7→
∫
H
f(x)µs(dx), s 7→

∫
H
f(x)νs(dx), f ∈ Cb(H).

Let f = 1 on B(x0, δ/2) then we see that there exists δ̃ > 0 such that

min

{
µs(B(x0, δ)), νs(B(x0, δ))

}
> 0

for any |s− s0| < δ̃.
On the other hand, by the definition of the asymptotic strong Feller prop-

erty for (ps,t)s≤t, there exists δ > 0, N ∈ N such that

Wdn

(
πs,s+rn(y, .), πs,s+rn(z, .)

)
≤ 1

2
, n ≥ N,

for any y, z ∈ B(x0, δ) and |s− s0| ≤ δ.
Taking B = B(x0, δ) and d = dn in Lemma 4.31, we get then

Wdn(µs+rn , νs+rn) ≤ 1− µs(B) ∧ νs(B)

(
1− 1

2

)
= 1− 1

2
min{µs(B), νs(B)}

for every |s− s0| < δ̃ ∧ δ. So

1

T

∫ T

0
Wd(µs+rn , νs+rn)ds ≤ 1− 1

T

∫
|s−s0|<δ̃∧δ

µs(B) ∧ νs(B)ds < 1

for every n ≥ N .

But Lemma 4.31

1

T

∫ T

0
‖µs − νs‖TV ds = lim

n→∞

1

T

∫ T

0
Wdn(µs, νs)ds

= lim
n→∞

1

T

∫ T

0
Wdn(µs+rn , νs+rn)ds < 1

which is in contradiction to the fact that

1

T

∫ T

0
‖µs − νs‖TV ds = 1

by equation (4.13). �
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Theorem 4.33 Let (ps,t)s≤t be an asymptotically strong Feller evolution
family on Bb(H), and suppose there is a point (s0, x0) ∈ R × H such that
x0 ∈ supp(mt0) for every T -periodic evolution system of measures (mt)t∈R in
K(π). Then there exists at most one T -periodic evolution system of measures
(mt)t∈R.

Proof Suppose, there is more than one invariant measure for (Pτ )τ≥0. Now
Inv(P) is simplex i.e., for everym ∈ Inv(P) there exists a probability measure
ρm on the set of all ergodic measures for (Pτ )τ≥0 such that

m(B) =

∫
Inv(Pτ )

m̃(B) dρm(m̃), B ∈ B(H)⊗B(ST ).

Therefore we have at least two extremal points of Inv(P) which we denote
by µ and ν. Now we know the set of all ergodic Borel probability measures
for any one-parameter semigroup is coincides the set of all extremal points
in the set of all its corresponding invariant measures, so these two extremal
points are ergodic measures for (Pτ )τ≥0. Let us denote the corresponding
T -periodic continuous disintegrations by (µt)t∈R and (νt)t∈R.
Since (ps,t)s≤t is asymptotically strong Feller, it follows from the previous
theorem x /∈ supp(µt) ∩ supp(νt) for any t ∈ R and x ∈ H, i.e., supp(µt) ∩
supp(νt) = ∅ for all t ∈ R.

On the other hand, if we have a x0 ∈ supp(ms0) for every T -periodic
evolution system of measures (mt)t∈R then (s0, x0) ∈ {(s, x) ∈ ST ×H : x ∈
supp(mt)}. But from Lemma 4.23, (s0, x0) ∈ supp(m) for every m ∈ Inv(P).

In conclusion, it should be at most one invariant measure and by the
one-to-one corresponding between members of K(π) and Inv(P) there exists
also at most one T -periodic evolution family of measures for (ps,t)s≤t. �

Remark 4.34 The conditions of our Theorem 4.33 is a stronger than the
similar ones in Proposition 5.7 in [PD08] because x0 ∈ supp(s0) means
(s0, x0) ∈ {(s, x) ∈ ST × H : x ∈ supp(mt)}. But by Lemma 4.23 we
get (s0, x0) ∈ supp(m). As we mentioned above, we had to impose this as-
sumption because Lemma 5.4 in [PD08] is incorrect and we have to substitute
it by Lemma 4.23.



Chapter 5

Extremal π-Entrance Laws for
One-Parameter Mehler
Semigroups

A standard result in convex analysis is that any point in a convex set in Rn
can be represented as a convex combination of the extremal points.
In the ergodic theory, this fact is well-known as "Ergodic Decomposition
theorem" (see Theorem 5.2.16 in [DS89]). This chapter is devoted to the
possible decomposition of an evolution system of measures with the help of
their extremal points.

Furthermore, in Theorem 5.34, we give an explicit formula for the ex-
tremal points in the set of evolution systems of measures for the particular
case of Mehler semigroup.

Finally, we discuss this ergodic representation on nuclear spaces (instead
of Hilbert spaces) and show how our assumptions can be refined in this
framework.

5.1 Definitions

Recall that H is assumed to be a real separable Hilbert space with inner
product and norm respectively by 〈·, ·〉H and ‖ · ‖H , and let B(H) be the
Borel field on H. As usual, we identify H with its dual space H∗. If it does
not lead to misunderstanding, we will denote the inner product and norm of
H respectively by 〈·, ·〉 and ‖·‖.

Remark 5.1 Suppose (πt)t≥0 is a Markovian one-parameter semigroup of
transition kernels on (H,B(H)). Then, as follows from Definition 4.7 and
Remark 4.8, every π-entrance law ν = (νs)s∈R ⊂ P(H) associated with
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(πt)t≥0 satisfies the following identity∫
H
πt(x,B)νs(dx) = νt+s(B), t ≥ 0, s ∈ R, B ∈ B(H).

Lemma 5.2 The set of all probability π-entrance laws (which we denote by
K(π), see the previous chapter) is convex.

Proof Suppose ν = (νs)s∈R, η = (ηs)s∈R are elements of K(π) and α ∈
[0, 1]. Then for any B ∈ B(H) we have∫

H
πt(x,B)(ανs + (1− α)ηs)(dx)

= α

∫
H
πt(x,B)νs(dx) + (1− α)

∫
H
πt(x,B)ηs(dx)

= ανs+t(B) + (1− α)ηs+t(B)

= (ανs+t + (1− α)ηs+t)(B)

for all t ≥ 0 and s ∈ R. Therefore

αν + (1− α)η =

(
ανs + (1− α)ηs

)
s∈R
∈ K(π). �

Definition 5.3 An element ν = (νt)t∈R ∈ K(π) is called extremal if every
ν̃ = (ν̃t)t∈R ∈ K(π) dominated by ν (which means that ν̃t is absolutely con-
tinuous with respect to νt for every t ∈ R) is equal to ν, i.e., ν̃t(B) = νt(B)
for every B ∈ B(H) and every t ∈ R.
We denote the set of all extremal points of K(π) by Ke(π).

5.2 Markov processes associated with one-parameter
semigroups

We refer for more details concerning the material of this section to [SV06],
[RY99] and [Röc11].

Definition 5.4 We say that a Markov process
(
Ω,F , (Xs)s∈R,P

)
corresponds

to the one-parameter semigroup of transition kernels (πt)t≥0 and write P ∈
M(π) if for any t ≥ 0 and s ∈ R

P(Xt+s ∈ B | Fs) = πt(Xs, B), P− a.s., (5.1)

where B ∈ B(H) and Fs = σ(Xr | r ≤ s).

The following theorem shows that for every Markovian one-parameter
semigroup of transition kernels and every π-entrance law of this semigroup,
there exists a unique corresponding Markov process.
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Proposition 5.5 Given a Markovian semigroup (πt)t≥0 over
(
H,B(H)

)
and a π-entrance law ν := (νs)s∈R on B(H), there exists a Markov pro-
cess

(
Ω,F , (Xs)s∈R,Pν

)
in the sense of Definition 5.4 with the state space(

H,B(H)
)
such that Ω = HR and F := σ(Xs | s ∈ R). Furthermore, νt is

the law of Xt for any t ∈ R.

Proof Put Xs(ω) := ω(s) for every s ∈ R and ω ∈ HR and set Fs = σ(Xr |
r ≤ s). In more words, Fs is the σ-algebra generated by the cylinder sets
{ω ∈ Ω | Xr(ω) ∈ B} with all possible B ∈ B(H) and r ≤ s.

The first aim is to show the existence of a measure Pν on HR.
For any n-tuple of times −∞ < t1 < ... < tn < +∞, we define its finite
dimensional distributions Pt1,...,tn by

Pt1,...,tn
[
Xt1 ∈ dx1, ..., Xtn ∈ dxn

]
:

= πtn−tn−1(xn−1, dxn)...πt2−t1(x1, dx2)νt1(dx1).
(5.2)

Since (πt)t≥0 satisfies the Chapman-Kolmogorov equation and (νs)s∈R is a
π-entrance law, definition (5.2) is independent of choosing ti. Furthermore,
{Pt1,...,tn} is consistent in the sense that if {s1, ..., sn−1} is obtained from
{t1, ..., tn} by deleting the kth element tk, 1 ≤ k ≤ n then Ps1,...,sn−1 coin-
cides with the marginal distribution of Pt1,...,tn obtained by removing the kth
coordinate.
Therefore, by Kolmogorov’s extension theorem, there exists a unique mea-
sure Pν on (Ω,F) such that equality (5.2) is true.

In the next step, we construct a Markov process(
HR+ , F̃ = σ((Xt) | t ≥ 0), (Xt)t≥0, (Px)x∈H

)
in the sense of Definition 2.5 corresponding to the transition kernels (πt)t≥0

and initial distributions δx for x ∈ H at t = 0.
For every given x ∈ H, let us define

Ex
[
f(Xt1 , ..., Xtn)

]
:=∫

H
...

∫
H
f(x1, ..., xn)πtn−tn−1(xn−1, dxn)...πt2−t1(x1, dx2)πt1(x, dx1)

for any n-tuple of times 0 ≤ t1 < ... < tn < ∞ and f : Hn → R bounded
and

(
B(H)

)⊗n-measurable. Equivalently, each measure Px is defined by
Kolmogorov’s theorem via its family of finite dimensional distributions

Pt1,...,tn [Xt1 ∈ dX1, ..., Xtn ∈ dXn]

:= πtn−tn−1(xn−1, dxn)...πt2−t1(x1, dx2)πt1(x, dx1).
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First of all, we should prove that x→ Px(Γ ) is H-measurable for all Γ ∈ F̃ .
Let us consider cylinder sets Γ ∈ F̃ of the form

Γ = {ω | Xt1(ω) ∈ B1, ..., Xtn(ω) ∈ Bn}

with arbitrary 0 ≤ t1 < ... < tn <∞ and Bi ∈ B(H), 1 ≤ i ≤ n ∈ N. Note
that such sets generate F̃ . Letting f(x1, ..., xn) = 1B1(x1)...1Bn(xn), we get

Px
[
Xt1 ∈ B1, ..., Xtn ∈ Bn

]
= Ex[f(Xt1 , ..., Xtn)]

=

∫
H
πt1(x, dx1)

∫
H
πt2−t1(x1, dx2)...

∫
H
πtn−tn−1(xn−1, dxn)f(x1, ..., xn),

so that the measurability of x 7→ Px(Γ ) is clear from the measurability of
(πt)t≥0. By the monotone class argument, the required measurability can be
proved for arbitrary Γ ∈ F̃ .
In order to check the Markov property for (Px)x∈H , see Definition 2.5, we
show a stronger fact

Ex[f(Xt1+s, ..., Xtn+s) | 1∆] = Ex
[
EXs [f(Xt1 , ..., Xtn)] | 1∆

]
holding for all x ∈ H, s ∈ R+, 0 ≤ t1 < ... < tn <∞ and ∆ ∈ Fs.
By the monotone class theorem (applied to ∆), this follows from

Ex
[
f(Xt1+s, ..., Xtn+s)g(Xs0 , ..., Xsm)

]
= Ex

[
EXs [f(Xt1 , ..., Xtn)]g(Xs0 , ..., Xsm)

]
for all

(
B(H)

)⊗(m+1)-measurable bounded g : Hm+1 → R and 0 ≤ s0 <
s1 < ... < sm = s. So, the left hand side is equal to∫

H
πs0(x, dx0)...

∫
H
πsm−sm−1(xm−1, dxm)

×
∫
H
πt1(xm, dy1)...

∫
H
πtn−tn−1(yn−1, dyn)f(y1, ..., yn)︸ ︷︷ ︸

=Exm [f(Xt1 ,...,Xtn )]

g(x0, x1, ..., xm)

= Ex[EXsm [f(Xt1 , ..., Xtn)g(Xs0 , ..., Xsm)]].

Now by previous steps, we can prove that

Pν [Xt+s ∈ B | Fs] = PXs [Xt ∈ B] = πt(Xs, B), Pν − a.s., (5.3)

for all t ≥ 0, s ∈ R and B ∈ B(H).
One can prove this claim similarly to the proof of the Markov property in
previous step. It means that is enough to show

Eν
[
f(Xt1+s, ..., Xtn+s)g(Xs0 , ..., Xsm)

]
= Eν

[
EXs [f(Xt1 , ..., Xtn)]g(Xs0 , ..., Xsm)

] (5.4)
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for all 0 ≤ t1 < ... < tn <∞ and −∞ < s0 < ... < sm = s. The expectation
on the both sides of equation (5.4) can be rewritten in terms of transition
probabilities analogously to previous step.

So Pν belongs to M(π), which ends the proof. �

Remark 5.6 Conversely, if X is a Markov process with values in H, then
there exist an entrance law ν = (νt)t∈R and a Markovian transition kernel
(πt)t≥0 such that equation (5.1) holds and the law of Xt is νt. Indeed, we
define the kernels πt(x, dy) as the regular version of the conditional probabil-
ities

πt(x, dy) = P{Xt+s | Xs = x}, B ∈ B(H).

5.3 Convex measurable space

The following definitions and facts are taken from [Dyn72] and [Dyn78] and
will be used later.

Consider a set M of non-negative functions m : W → R+ defined on
some abstract space W. On M we introduce a σ-algebra M, which is the
smallest σ-algebra generated by all mappings

M3 m 7→ m(w), w ∈ W.

Then (M,M) is a measurable space.

Definition 5.7 A function mρ :W → R+ is called the barycentre of a given
probability ρ on (M,M) if

mρ(w) =

∫
M
m(w) dρ(m), w ∈ W.

Definition 5.8 We say that m ∈ M is an extremal point ofM if m is not
barycentre of any measure ρ except the measure concentrated on m.
The set of all extremal point ofM will be denoted byMe.

Definition 5.9 We say that a convex structure is introduced into measurable
space (M,M) if for every probability measure ρ on M, there is an associated
mρ ∈M.
A space

(
M,M

)
provided with such a structure will be called a convex mea-

surable space.

Definition 5.10 A convex measurable spaceM is called a simplex if the set
of its extremal pointsMe is M-measurable and each m ∈M is a barycentre
of one and only one probability measure ρ concentrated onMe.
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Definition 5.11 Let (M,M) and (M′
,M

′
) be convex measurable spaces.

A one-to-one mapping φ between M and M′ is called an isomorphism if it
preserves measurability of sets and if φ(mρ) = mρ′ where ρ

′
(U) := ρ[φ−1(U)],

U ∈M
′ . Then it is clear that under this isomorphism extremal points go to

extremal points and a space isomorphic to a simplex is itself a simplex.

Now let assume until the end of this section thatM be a subset of prob-
ability measures on a measurable space (Ω,F). This is a particular case of
the previous situation since each measure m ∈M is a non-negative function
F 3 Γ 7→ m(Γ ) ≥ 0.

Remark 5.12 We define a natural σ-algebra onM as

M := σ
{
ΦΓ | Γ ∈ F

}
where ΦΓ :M→ R with ΦΓ (m) := m(Γ ).
For a probability distribution ρ on (M,M), we define as before(∫

M
m dρ(m)

)
(Γ ) :=

∫
M
m(Γ ) dρ(m), Γ ∈ F .

Definition 5.13 For any probability distribution ρ on (M,M), if the mea-
sure mρ given by

mρ(Γ ) =

∫
M
m(Γ )ρ(dm), Γ ∈ F , (5.5)

belongs toM, then the convex structure defined by (5.5) onM will be called
the natural convex structure.

Note that ifM is a simplex, then the formula

mρ(Γ ) =

∫
Me

m(Γ )ρ(dm)

establishes a one-to-one correspondence betweenM and the set of all prob-
ability distributions onMe.

Definition 5.14 Given a measure m ∈ M, two sets Γ1, Γ2 ∈ F are called
m-equivalent if 1Γ1 = 1Γ2 , m − a.s.. Two σ-algebra F1,F2 ⊂ F are M-
equivalent if, for each m ∈ M, every Γ1 ∈ F1 is m-equivalent to some
Γ2 ∈ F2 and vice verse.

Definition 5.15 A σ-algebra F0 ⊂ F is called sufficient for M if all mea-
sures m ∈M have a common conditional distribution relative to F0; in other
words, if for each ω ∈ Ω there exists a probability measure δω on F0 such
that, for each Γ , δω(Γ ) is F-measurable and

m(Γ | F0) = δω(Γ ) m− a.s.,
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for all m ∈M.
A sufficient σ-algebra is called H-sufficient if in addition,

δω ∈M, m− a.s..

Theorem 5.16 (cf. Theorem 3.1 in [Dyn78]) Let M be a separable class
on (Ω,F), i.e., F contains a countable family which separate the measures
inM. Assume F0 be an H-sufficient σ-algebra forM. Then the setMe is
measurable and each m ∈M is a barycentre of one and only one probability
measure ρm concentrated onMe. IfM is convex, it is a simplex.

Theorem 5.17 (cf. Theorem 3.2 in [Dyn78]) Let a separable classM have
an H-sufficient σ-algebra and let F̌ be the class of all sets Γ ∈ F with the
following property:

m(Γ ) = 0 or m(Γ ) = 1, for all m ∈Me.

Then a σ-algebra F0 is H-sufficient forM if and only if it isM-equivalent
to F̌ .

5.4 Correspondence between Markov processes and
π-entrance laws

We introduce a measurable structure on K(π). Each ν ∈ K(π) can be con-
sidered as a non-negative mapping

R×B(H) 3 (t, B) 7→ Ft,B(ν) := νt(B).

The natural σ-algebra on K(π) is the minimal σ-algebra generated by the
family of mapping

ν 7→ Ft,B(ν), t ≥ 0, B ∈ B(H).

We denote this σ-algebra by K .

Lemma 5.18 The formula

νs(B) =

∫
K(π)

ν̃s(B)ρ(dν̃), B ∈ B(H), (5.6)

associates with each probability measure ρ on (K(π),K ) an element ν =
(νs)s∈R of K(π).
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Proof Obviously for each s ∈ R, νs is a probability measure. Similarly to
(4.1) one can define ν̃s(f) =

∫
H f(x)ν̃s(dx) for any non-negative Borel mea-

surable function f . For any such f , by using the monotone class argument
we can conclude that K(π) 3 ν̃ 7→ ν̃(f) ∈ R is measurable. Then by (5.6)
one can rewrite

νs(1B) =

∫
K(π)

ν̃s(1B)ρ(dν̃), B ∈ B(H),

which implies (by the same argument) that

νs(f) =

∫
K(π)

ν̃s(f)ρ(dν̃).

In particular, for f(x) = πt−s(x,B) we have from Definition 4.6 and the
definition of evolution system of measures that

p∗t−sνs(B) : =

∫
H
πt−s(x,B)νs(dx)

=

∫
K(π)

∫
H
πt−s(x,B)ν̃s(dx)ρ(dν̃)

=

∫
K(π)

νt(B)ρ(dν̃)

= νt(B), B ∈ B(H),

which shows that ν ∈ K(π). �

Therefore there is a natural convex measurable structure on K(π).

Since M(π) is a subset of probability measures on
(
Ω = HR,F = σ(Xs |

s ∈ R)
)
, we can introduce a measurable structure onM(π) via the arguments

in Remark 5.12. Furthermore, for every probability distribution on M(π),
its barycentre also belongs to M(π). This can be shows by the arguments
similar to that used in the proof of Lemma 5.18.

Now we are in a position to prove the existence of an isomorphism between
M(π) and K(π). The idea for the proof of the following lemma is taken from
Theorem 3.1 in [Dyn72]:

Lemma 5.19 The correspondence ν → Pν which is defined by (the proof of)
Proposition 5.5 is an isomorphism of the convex measurable spaces K(π) and
M(π) in the sense of Definition 5.9.

Proof By Proposition 5.5, Pν ∈M(π) for all ν ∈ K(π).
Now let P be any element of M(π). Define ν = (νs)s∈R by

νs(B) = P{Xs ∈ B}, s ∈ R, B ∈ B(H). (5.7)
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Then formula (5.1) implies that for any −∞ < s1 < ... < sn < ∞ and
B1, ..., Bn ∈ B(H)

P{Xs1 ∈ B1, ..., Xsn ∈ Bn} =∫
B1

...

∫
Bn

νs1(dx1)πs2−s1(x1, dx2)...πsn−sn−1(xn−1, dxn).

Hence P = Pν .
Furthermore, for every B ∈ B(H)

νs+t(B) = P(Xs+t ∈ B), s ∈ R, t ≥ 0, (5.8)

and so∫
H
πt(x,B)νs(dx) = P(Xs ∈ H,Xs+t ∈ B) = νs+t(B), s ∈ R, t ≥ 0

Hence it is clear that ν is a π-entrance law.
On the other hand, P{Xs ∈ B} = νs(B). Thus, no element P of M(π) can
have two different inverse images in K(π).

We have proved that the mapping ν ↔ Pν defines a one-to-one corre-
spondence between K(π) and M(π) and that the inverse mapping is given
by (5.7).
The inverse mapping (5.7) obviously preserves the convex and measurable
structures.

To prove that the mapping ν → Pν has the same properties it is sufficient
to check that for any measurable function f ≥ 0:
a) Eν(f) is measurable with respect to ν;
b) if ν is the barycentre of a probability distribution ρ, then

Eν(f) =

∫
K(π)

Eν̃(f)ρ(dν̃).

By the monotone class theorem, it is sufficient to prove both these asser-
tions when f = 1B1(Xs1)...1Bn(Xsn) for −∞ < s1 < ... < sn < ∞ and
B1, ..., Bn ∈ B(H).
But in this case

Eν(f) = νs1(Φ),

where

Φ(x1) = 1B1(x1)

∫
B2

...

∫
Bn

πs2−s1(x1, dx2)...πsn−sn−1(xn−1, dxn)

so that our assertion is obvious. �
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In this position, we are able to prove one of the crucial result in our work.
Let us recall that Fs is the σ-algebra in Ω generated by Xr, r ∈ [−∞, s].
Then by F∞ we denote the intersection of all Fs taken over all s > −∞.

Theorem 5.20 K(π) is simplex, i.e., each ν ∈ K(π) can be uniquely repre-
sented as

νt =

∫
Ke(π)

ν̃tρ(dν̃), t ∈ R, (5.9)

where ρ is a probability measure on Ke(π).

Proof Since we know from Theorem 9.1 in [Dyn78] that F∞ is H-sufficient
forM(π) andM(π) is convex measurable space, soM(π) is simplex. On the
other hand, it was proved in Lemma 5.19 that ν → Pν is an isomorphism of
convex measurable space K(π) and M(π).
Consequently K(π) is also simplex. �

5.5 Construction of Mehler semigroups

We start with two known facts from [Par67] which play an important role in
the subsequent considerations.

Theorem 5.21 Let K : H2 → C be of the form

K(x, a) = ei〈a,x〉 − 1− i〈a, x〉
1 + ‖x‖2

, (x, a) ∈ H2,

and φ : H → C be a function of the form

φ(a) = e
∫
H K(x,a)dF (x), a ∈ H,

where F is a σ-finite measure on (H,B(H)) which has finite mass outside
every neighborhood of the origin and for which∫

H

(
1 ∧ ‖x‖2

)
dF (x) <∞.

Then φ is the characteristic function of an infinitely divisible distribution in
the sense Definition 2.43.

Proof See Theorem 4.8, Chapter VI in [Par67]. �

Definition 5.22 Given a separable Hilbert space H. Let L1(H) denote the
family of all trace class linear operators on H. The class of sets

{a ∈ H | (Sa, a) < 1}

indexed by all S ∈ L1(H), defines a system of neighborhoods at the origin
for the Sazonov topology on H.
By definition, Sazonov’s topology is stronger than the topology induced by the
inner product on H.
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A Bochner-type theorem in Hilbert spaces, which is called Minlos-Sazonov
theorem, states the following:

Theorem 5.23 In order that a complex-valued function φ(a), a ∈ H, to
be the characteristic function of a probability measure on (H,B(H)) the
following three conditions are necessary and sufficient:

(i) φ(0) = 1,
(ii) φ is positive definite on H,
(iii) φ is Sazonov continuous on H.

Proof See Theorem 2.4 Chapter VI in [Par67]. For the definition of prop-
erty (ii) see the Introduction. �

We are going to define a one-parameter Mehler semigroup with parame-
ters A and λ:

Proposition 5.24 Assume that A is the generator of a C0-semigroup (Tt)t≥0

on H and the Lévy symbol λ : H → C is a negative-definite Sazonov-
continuous function with λ(0) = 0. Then there exists (µt)t≥0 ⊂P(H) whose
characteristic function are of the form

µ̂t(a) =

∫
H
ei〈a,x〉µt(dx) = e−

∫ t
0 λ(T ∗s a)ds, a ∈ H,

where T ∗ is the adjoint operator of T .

Proof By the same argument as in [FR00], our assumptions on λ imply
that, for every t > 0, the function exp(−tλ) are positive-definite and Sazonov
continuous. Therefore, by Minlos-Sazonov theorem, they are characteristic
functions of probability measures on H. Then exp(−λ) is obviously the
characteristic function of an infinitely divisible probability measure on H.
Now by Lévy-Khinchin Theorem, λ can be written in the form

λ(a) = −i〈a, b〉+
1

2
〈a,Ra〉 −

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
M(dx) (5.10)

where b ∈ H, R : H → H is a symmetric non-negative trace class operator
and M is a Lévy measure on (H,B(H)). Now let us consider the extended
form of e−

∫ t
0 λ(T ∗s a)ds (see [FR00], [Wie11])

exp

(
−
∫ t

0 λ(T ∗s a)ds

)
= exp

(
i〈a, bt〉 − 1

2〈Rta, a〉+
∫
H

(
ei〈a,x〉 − 1− i〈a,x〉

1+‖x‖2
)
Mt(dx)

)
,

(5.11)
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where

Rt =

∫ t

0
TsRT

∗
s ds

bt =

∫ t

0
Tsb ds+

∫ t

0

∫
H
Tsx

(
1

1 + ‖Tsx‖2
− 1

1 + ‖x‖2

)
M(dx)ds,

and the measures Mt are defined by

Mt(B) :=

∫ t

0
M
(
(Ts)

−1(B \ {0})
)
ds, B ∈ B(H).

Here (Ts)
−1(B \ {0}) :=

{
y ∈ H | Tsy ∈ B \ {0}

}
. In other words,

Mt(B) =

∫ t

0

(∫
H

(1B\{0})(Tsy)M(dy)

)
ds,

where the integrand s 7→
∫
H 1B\{0}(Tsx)M(dx) is obviously measurable.

From the Lévy-Khinchin formula (Theorem 2.44) and Bochner-type theorem
one can see that

e−
∫ t
0 λ(T ∗s a)ds (5.12)

is positive definite. So, if H 3 a 7→
∫ t

0 λ(T ∗s a)ds is continuous in Sazonov’s
topology, then by Theorem 5.23 there is a probability measure µt on H such
that µ̂t(a) = e−

∫ t
0 λ(T ∗s a)ds. Thus, it remains to prove that a 7→

∫ t
0 λ(T ∗s a)ds

is a Sazonov continuous functional. Let us discuss the continuity of every
part in the right side of (5.11) separately.

About the first part, i.e.,

a 7→ exp
(
− i〈a, bt〉

)
, (5.13)

note that b is just a vector in H and for every fixed t, bt ∈ H is correctly
defined via Bochner integrals. Obviously, H 3 a 7→ 〈a, bt〉bt ∈ H defines a
trace class linear operator in H and therefore (5.13) is Sazonov continuous.

Now concerning the second part,

a 7→ exp
(
− 1

2
〈Rta, a〉

)
. (5.14)

We know that R is a non-negative trace class operator. Since L1(H) is an
operator ideal in L(H), so TsRT ∗s is also trace class operator for every s.
Meanwhile, every TsRT

∗
s is non-negative due to the same property of R.

The Bochner integral in the definition of Rt is taken in the Banach separable
space L1(H) of all trace class operators in H. This definition is correct since∫ T

0
‖TsRT ∗s ‖L1(H)ds ≤ TMT · sup

0≤s≤T
‖R‖L1(H) <∞,
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where concerning MT , one can say that since (Tt)t≥0 is a strongly continuous
semigroup, by Hida-Yoshida Theorem (see [Paz83]) we have

MT := sup
0≤t≤T

‖Tt‖L(H) <∞.

Then Rt is a non-negative trace class operator with

‖Rt‖L1(H) ≤
∫ T

0
‖TsRT ∗s ‖L1(H)ds <∞

and

〈Rta, a〉 =

∫ t

0
〈RT ∗s a, T ∗s a〉 ds ≥ 0, a ∈ H.

Therefore (5.14) is Sazonov continuous, too.
The last part is

a 7→ exp

(∫
H

[
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2
]
Mt(dx)

)
. (5.15)

Note that∫
H

(
1 ∧ ‖x‖2

)
Mt(dx) =

∫ t

0

∫
H

(
1 ∧ ‖Tsx‖2

)
M(dx)ds

≤
∫ T

0

∫
H

(
1 ∧MT · ‖x‖2

)
M(dx)ds

≤ T max{1,M2
T }
∫
H

(
1 ∧ ‖x‖2

)
M(dx) <∞.

Therefore by Theorem 5.21 we observe that (5.15) is a characteristic function
of a probability measure on H, and finally Theorem 5.23 shows Sazonov
continuity of the last term.
In conclusion, (5.12) is Sazonov continuous and the proof of the proposition
is complete. �

Definition 5.25 Let πt(x, dy) be the translation of µt by Ttx, i.e.,

πt(x, dy) := µt(dy − Ttx), t ≥ 0, x ∈ H.

In other words, for all f ∈ Bb(H), we have∫
H
f(y)πt(x, dy) =

∫
H
f
(
Ttx+ y

)
µt(dy), x ∈ H.

Then (pt)t≥0 is given by

ptf(x) =

∫
H
f(y)πt(x, dy) =

∫
H
f(Ttx+ y)µt(dy), t ≥ 0

is called the generalized one-parameter Mehler semigroup.
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In fact, based on Proposition 2.2 in [BRS96], the semigroup property of
(pt)t≥0 exists if and only if µs+t = µs ∗ (µt ◦ T −1

s ) or equivalently,

µ̂s+t(a) = µ̂s(a)µ̂t(T
∗
s a), a ∈ H, t, s ≥ 0

and we have

µ̂s(a)µ̂t(T
∗
s a) = e−

∫ s
0 λ
(
T ∗r a
)
dre−

∫ t
0 λ
(
T ∗r T

∗
s a
)
dr

= e−
∫ s
0 λ
(
T ∗r a
)
dre−

∫ s+t
s λ

(
T ∗r−sT

∗
s a
)
dr

= e−
∫ s
0 λ
(
T ∗r a
)
dre−

∫ s+t
s λ

(
(TsTr−s)∗a

)
dr

= e−
∫ s+t
0 λ

(
T ∗r a
)
dr

= µ̂s+t(a),

(5.16)

for all t, s ≥ 0 and a ∈ H. Therefore (pt)t≥0 is a semigroup and by the
property (5.16) of µ, (pt)t≥0 is also a Markovian semigroup.

Remark 5.26 The typical examples of these semigroups are the correspond-
ing semigroup to the autonomous Ornstein-Uhlenbeck process of type

dX(t) = AX(t) + dL(t),
X(0) = x

Here, A is the mentioned linear operator in the representation of Mehler
semigroup and L in a Lévy process with Lévy symbol λ (see e.g. [App06]
or [Sto05]).
Mehler semigroups were first introduced by Bogachev, Röckner, and Schmu-
land [BRS96] within an axiomatic approach to transition semigroups of Ornstein-
Uhlenbeck processes with Brownian motion and have been extended to the
non-Gaussian case in [FR00].

Lemma 5.27 The characteristic function of (πt)t≥0 is given by

∫
ei〈a,y〉πt(x, dy) = ei〈a,Ttx〉−

∫ t
0 λ(T ∗s a)dy, a ∈ H. (5.17)
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Proof For any a ∈ H and s, t ≥ 0 we have

π̂t(x, .)(a) =

∫
H
ei〈a,y〉πt(x, dy)

=

∫
H
ei〈a,y〉µt(dy − Ttx)

=

∫
H
ei〈a,y+Ttx〉µt(dy)

= ei〈a,Ttx〉
∫
H
ei〈a,y〉µt(dy)

= ei〈a,Ttx〉−
∫ t
0 λ(T ∗s a)dy.

This end the proof. �

5.6 Structure of extremal π-entrance laws

Let ν = (νs)s∈R ∈ K(π) for which∫
H
|〈a, x〉|νs(dx) <∞, a ∈ H, s ∈ R. (5.18)

Since every νs is a probability measure, therefore for any t ∈ R, the linear
functional a 7→

∫
H〈a, x〉νs(dx) is continuous on H (see Proposition 07 in

[PR07]) and therefore by the Riesz representation theorem there exists κs ∈
H such that ∫

H
〈a, x〉νs(dx) = 〈a, κs〉, a ∈ H, s ∈ R. (5.19)

We denote the set of all ν ∈ K(π) which satisfy (5.18) by K1(π).

Definition 5.28 For each ν ∈ K1(π), the family (κs)s∈R obtained from
(5.19) is called the projection of ν and will be denoted by κ = p(ν).

Definition 5.29 Consider the semigroup (Tt)t≥0 on H. A family (κs)s∈R ⊂
H, is called a T -entrance law if Ttκs = κs+t for all s ∈ R and t ≥ 0. The
set of all such laws is denoted by K(T ).

Lemma 5.30 Let (pt)t≥0 be a Mehler semigroup. If∫
〈a, y〉πt(x, dy) = 〈a, Ttx〉, (5.20)

then for each ν ∈ K1(π), κ = p(ν) is a T -entrance law.

Proof If we show that
∫
H〈a, x〉νs+t(dx) = 〈a, Ttκs〉 for every t ≥ 0 and

s ∈ R, the assertion is complete. By the definition of ν = (νt)t∈R∫
H
〈a, x〉νs+t(dx) =

∫
H

(∫
H
〈a, x〉πt(y, dx)

)
νs(dy).
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Now if (5.20) is satisfied, then∫
H

(∫
H
〈a, x〉πt(y, dx)

)
νs(dy) =

∫
H
〈a, Tty〉νs(dy)

=

∫
H
〈T ∗t a, y〉νs(dy)

= 〈T ∗t a, κs〉 = 〈a, Ttκs〉,

which was needed to show. �

But, in order to have equality (5.20), we need to impose some conditions
to our structure. The next proposition concerns this point.

Proposition 5.31 Suppose that in the representation of λ in (5.10), we have
that b = 0 and M is symmetric, i.e., M(dx) = M(−dx). Also assume that∫

H
|〈a, y〉|µt(dy) <∞

for all a ∈ H and t ≥ 0. Then∫
H
〈a, y〉πt(x, dy) = 〈a, Ttx〉. (5.21)

Proof i) We claim that M is symmetric and b = 0 if and only if the
characteristic function of (µt)t≥0 is real valued, i.e., µ̂t = µ̂t.
Proof of i) Since

λ(a) = i〈a, b〉+
1

2
〈a,Ra〉 −

∫
H

(
e−i〈a,x〉 − 1 +

i〈a, x〉
1 + ‖x‖2

)
M(dx),

so that

λ = λ⇐⇒M(dx) = M(−dx)

and b = 0.
On the other hand, λ = λ =⇒ λt = λt where λt(a) =

∫ t
0 λ(T ∗s a)ds.

So we conclude that µ̂t = µ̂t.

ii) We claim if µ̂t = µ̂t then
∫
〈a, y〉µt(dy) = 0 for a ∈ H.

Proof of ii) Indeed,

µ̂t = µ̂t ⇐⇒
∫
H
ei〈a,x〉µt(dx) =

∫
H
e−i〈a,x〉µt(dx) =

∫
H
ei〈−a,x〉µt(dx),

so that µ̂t(a) = µ̂t(−a) for all a ∈ H.
Now let us substitute a by ua, u ∈ R, then by Lebesgue’s convergence
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theorem we can calculate that

d

du

(
µ̂t(ua)

)∣∣∣∣
u=0

=
d

du

(∫
H
eiu〈a,x〉µt(dx)

)∣∣∣∣
u=0

=

(∫
H
i〈a, x〉eiu〈a,x〉µt(dx)

)∣∣∣∣
u=0

=

∫
H
i〈a, x〉µt(dx).

It is obvious that

µ̂t(a) = µ̂t(−a)⇒ d

du
µ̂t(ua)

∣∣∣∣
u=0

=
d

du
µ̂t(−ua)

∣∣∣∣
u=0

,

which implies ∫
i〈a, x〉µt(dx) = −

∫
i〈a, x〉µt(dx)

and hence ∫
i〈a, x〉µt(dx) = 0.

iii) Now we can complete the proof of the proposition. We have defined
πt(x, dy) = µt(·+ Ttx), hence∫

H
〈a, y〉πt(x, dy) =

∫
H
〈a, y〉µt(Ttx− dy)

=

∫
H
〈a, Ttx+ y〉µt(dy)

= 〈a, Ttx〉+

∫
H
〈a, y〉µt(dy)

and by applying i) and ii) the proof is complete. �

Now we are able to present the main result of this paper. But first,
the following assumption should be imposed to our setting which plays a
technical role in the progress of the proof of the main theorem.

Assumption 5.32 Let π be a Mehler semigroup with parameters R, M and
A in the sense of Proposition 5.24 (see (5.10)). We assume that

H 3 a 7→
∫ t

−∞
λ(T ∗t−sa)ds, t ≥ 0,

is well-defined and Sazonov continuous.
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Remark 5.33 If instead of the Hilbert space H, we will use a nuclear space
as a state space for our semigroup, then Sazonov continuity in Assumption
5.32 will be reduced to the continuity of a 7→

∫ t
−∞ λ(T ∗t−sa)ds in the corre-

sponding projective topology. We will discuss it in the last section of this
chapter.

The following theorem, which is our main result in this chapter establishes
the relation between K1

e(π) and K(T ). Furthermore, it gives an explicit rep-
resentation for the characteristic function of every element in K1

e(π) in terms
of the elements in K(T ). In the case of Ornstein-Uhlenbeck processes with
Brownian motion this relationship has been already indicated in [Dyn88]).

Theorem 5.34 Let (pt)t≥0 be a Mehler semigroup on P(H) with the fol-
lowing Fourier transform for corresponding (πt)t≥0∫

H
ei〈a,y〉πt(x, dy) = ei〈a,Ttx〉−

∫ t
0 λ(T ∗s a)ds,

where T = (Tt)t∈R is a C0-semigroup of linear operators on H and λ has the
representation (cf. (5.10))

λ(a) =
1

2
〈a,Ra〉 −

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
M(dx), a ∈ H,

with a symmetric Lévy measure M on (H,B(H)). Then under Assumption
5.32, for every κ ∈ K(T ) there exists a unique extremal probability π-entrance
law νκ such that ∫

H
ei〈a,y〉νκt (dy) = ei〈a,κt〉−

∫ t
−∞ λ(T ∗t−sa)ds. (5.22)

Moreover, formula (5.22) establishes a one-to-one correspondence between
K(T ) and the set of all extremal elements of K1(π).

Proof Three following Claims (i), (ii) and (iii) will give us a complete proof
of the theorem:
Claim (i): For every κ ∈ K(T ), there exists νκ ∈ K1(π) which satisfies
equation (5.22).
Proof of Claim (i): By Assumption 5.32 a 7→

∫ t
−∞ λ(T ∗t−sa)ds is Sazonov

continuous. Also, note that∫ t

−∞
λ(T ∗t−sa)ds = lim

r→+∞

∫ t

−r
λ(T ∗t−sa)ds = lim

r→+∞

∫ t+r

0
λ(T ∗s a)ds

is negative definite from the Lévy-Khinchin formula. Thus,

ei〈a,κt〉−
∫ t
−∞ λ(T ∗t−sa)ds, a ∈ H,
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is Sazonov continuous and positive definite, and therefore by the Minlos-
Sazonov theorem it is a characteristic function of a certain probability mea-
sure νκt on (H,B(H)). Now we will prove that (νκt )t∈R belongs to K1(π).
Indeed, for every t ≥ 0, r ∈ R and a ∈ H

̂(p∗t νκr )(a) =

∫
H

(∫
H
ei〈a,y〉πt(x, dy)

)
νκr (dx)

=

∫
H
ei〈a,Ttx〉−

∫ t
0 λ(T ∗s a)dsνκr (dx).

=

∫
H
ei〈T

∗
t a,x〉νκr (dx). e−

∫ t
0 λ(T ∗s a)ds

= ei〈T
∗
t a,κr〉−

∫ r
−∞ λ

(
T ∗r−s(T

∗
t a)
)
ds. e−

∫ t
0 λ(T ∗s a)ds

= ei〈a,Ttκr〉−
∫ r
−∞ λ((TtTr−s)∗a)ds−

∫ t
0 λ(T ∗s a)ds

= ei〈a,κr+t〉−
∫ r
−∞ λ(T ∗r+t−sa)ds−

∫ r+t
r λ(T ∗r+t−sa)ds

= ei〈a,κr+t〉−
∫ r+t
−∞ λ(T ∗r+t−sa)ds

= ν̂κr+t(a),

which implies (p∗t ν
κ
r ) = νκr+t.

Claim (ii): If ν is an extremal element of K1(π), then the relation (5.22)
holds with κ = p(ν).

Let first recall from [Dyn78] the following

Proposition 5.35 Let ν ∈ Ke(π) and let (Xt,Pν) be the corresponding
Markov process on the time interval (−∞,+∞) which we have constructed
in Proposition 5.5. Then Pν is trivial.

Proof From Theorem 9.1 in [Dyn78], we know that F∞ is a H-sufficient
σ-algebra for M(π), so Theorem 5.17 implies that F∞ is M(π)-equivalent to
F̌ in Theorem 5.17 and hence Pν is trivial on F∞. �

And we need the following remark to prove the claim.
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Remark 5.36 Let f be a non-negative measurable function on H such that
Eνf(Xt) <∞. Since Pν is trivial on F∞, we have

Eνf(Xt) = Eν{f(Xt)|F∞}

= lims→−∞ Eν{f(Xt)|Fs}

= lims→−∞ EXsf(Xt−s), Pν − a.s.,

where in the the second line we applied the Backwards Martingale convergence
theorem (cf. Theorem 2.3). We can use this theorem because according to
Lemma 2.2 the process Eν{f(Xt)|Fs} is a martingale. And finally, in the
third line we used the Markov property of our process.

Proof of Claim (ii): Indeed, by (5.17) and Remark (5.36) we have the
following identities, Pν − a.s.,

Eνei〈a,Xt〉 = lim
r→−∞

EXrei〈a,Xt−r〉

= lim
r→−∞

ei〈T
∗
t−ra,Xr〉−

∫ t−r
0 λ(T ∗s a)ds

= lim
r→−∞

ei〈T
∗
t−ra,Xr〉−

∫ t
r λ(T ∗t−sa)ds.

Then equation (5.21), Remark 5.36, Lemma 5.30 and Remark 5.36 give us

〈T ∗t−ra,Xr〉 = EXr〈a,Xt−r〉
r→−∞−−−−→ Eν〈a,Xt〉 = 〈a, κt〉, Pν − a.s..

Claim (iii): If κ and νκ are related by (5.22), then νκ is extremal.

The following notion plays an important role in the proof of Claim (iii).

Definition 5.37 ν ∈ K1(π) is called the lifting of % ∈ K(T ) and will be
denoted by ν = l(%), if for each t ∈ R, a ∈ H

ν̂t(a) = lim
r→−∞

̂πt−r(%r, .)(a).

Proof of Claim (iii): We will divide the proof of Claim (iii) into five steps.
Step1: The π-entrance law νκ is the lifting of κ.
Proof: By the definition of νκt we have

ν̂κt (a) = ei〈a,κt〉−
∫ t
−∞ λ(T ∗t−sa)ds = lim

r→−∞
ei〈a,κt〉−

∫ t
r λ(T ∗t−sa)ds

= lim
r→−∞

ei〈a,κt〉−
∫ t−r
0 λ(T ∗s a)ds = lim

r→−∞
ei〈a,Tt−rκr〉−

∫ t−r
0 λ(T ∗s a)ds

= lim
r→−∞

̂πt−r(κr, .)(a).
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Step2: Every ν ∈ K1
e(π) is the lifting of its projection, i.e.,

l
(
p(ν)

)
= ν. (5.23)

Proof: We need to prove that for each t ∈ R and a ∈ H

ν̂t(a) = lim
r→−∞

̂πt−r(p(νr), .)(a).

But since ν ∈ K1
e(π) we know from the Claim (ii) that

ν̂t(a) = ei〈a,p(νt)〉−
∫ t
−∞ λ(T ∗t−sa)ds.

On the other hand

̂πt−r(p(νr), .)(a) = ei〈a,Tt−rp(νr)〉−
∫ t−r
0 λ(T ∗s a)ds

= ei〈a,p(νt)〉−
∫ t
r λ(T ∗t−sa)ds.

Hence clearly we have the required property.
Step3: There is the following representation

l(κ) =

∫
K1
e(π)

l(%̃t) ξ(dl(%̃)), (5.24)

where %̃ = p(ν̃) and η is the image of ξ under the projection p.
Proof: Since K1(π) is a simplex by Theorem 5.20, we have for each t ∈ R

νκt =

∫
K1
e(π)

ν̃tξ(dν̃)

with some probability distribution ξ on K1(π) (which is indeed supported
by K1

e(π)). By Step1 we have that νκ = l(κ) and from Step2 we know that
ν̃ = l(p(ν̃)) for every ν̃ ∈ K1

e(π), which yields ν̃ = l(%̃). Now let us denote
by η the image of ξ under the projection p. Then

l(κ) =

∫
K1
e(π)

l(%̃t) ξ(dl(%̃))

and formally we can write for each t ∈ R

κt =

∫
K(T )

%̃t η(d%̃).

Step4: We claim that for every t ∈ R

ei〈a,κt〉 =

∫
K(T )

ei〈a,%̃t〉η(d%̃), a ∈ H,
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with κ =
∫
K(T ) %̃ η(d%̃).

Proof: From Step3 we have l(κ) =
∫
K(T ) l(%̃) η(d%̃), therefore∫

H
ei〈x,a〉l(κ)(dx) =

∫
H
ei〈x,a〉

∫
K(T )

l(%̃)η(d%̃) (dx)

=

∫
K(T )

∫
H
ei〈x,a〉l(%̃)(dx) η(d%̃), a ∈ H

and hence

l̂(κt) =

∫
K(T )

l̂(%̃t) η(d%̃).

Finally, from the definition of lifting we get

ei〈a,κt〉 =

∫
K(T )

ei〈a,%̃t〉η(d%̃). (5.25)

Step5: η is concentrated at a singleton, so that νκ is an extremal point.
Proof: It is easy to see that

ei〈a,κt〉 =

∫
ei〈a,%̃t〉εκt(d%̃),

since the barycentre for a measure on the unit circle can lie on this circle
only if the measure is concentrated at one point (Here we are speaking about
the probability law of ei〈a,%̃t〉). Therefore, clearly from equation (5.25) and
recent equality it holds η = εκ, which means that η is concentrated at a
singleton.
Now the theorem follows from Claim i, Claim ii and Claim iii. �

5.7 An example: stable measures

In the Hilbert space H, let us consider the semigroup Tt = e−t1, t ≥ 0,
where 1 is the identity operator in H. Suppose that λ : H → C has the same
representation as in (5.10) (so it is negative definite and Sazonov continuous)
and satisfies

λ(γa) = γpλ(a), a ∈ H, γ > 0

for some real number p ∈ (0, 2]. Since∫ t

−∞
λ(T ∗t−sa)ds =

∫ ∞
0

λ(T ∗s a)ds =
1

p
λ(a),

the integral
∫ t
−∞ λ(T ∗t−sa)ds appearing in Assumption 5.32 is well-defined

and Sazonov continuous, so that Assumption 5.32 is satisfied. Hence our
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main Theorem 5.34 applies to this case.
Note that now

ptf(x) =

∫
H
f(e−tx+ y)µt(dy), x ∈ H,

where (µt)t≥0 is defined via its Fourier transform

µ̂t(a) = exp

{
− 1

p
λ

[
(1− e−pt)1/pa

]}
, a ∈ H.

In the case p = 2, the measures (µt)t≥0 are Gaussian and the presentation
for (pt)t≥0 is given by the classical Mehler formula. For 0 < p < 2, (µt)t≥0

are (strictly) p-stable measure (see e.g. [Lin86], Chapter 6).

5.8 Mehler semigroups in nuclear spaces

For more details on topological properties of nuclear space see, e.g., [HKPS93]
and [BK88].

Definition 5.38 Let H be a Hilbert space with scalar product 〈·, ·〉. Sup-
pose that a sequence of Hilbert spaces (Si)i∈N is given. Assume that the set
S =

⋂
i∈N Si is dense in each Si and that the family (Si)i∈N is directed by

embedding, i.e.,

∀i1, i2 ∈ N, i1 ≤ i2 : Si2 ↪→ Si1 ,

where all the embeddings are continuous.
Also, assume that for any i ∈ N, one can find i

′ ∈ N such that Si′ is
embedded into Si with a Hilbert-Schmidt embedding operator Oi,i′ : Si′ ↪→ Si
and also every Si is continuously dense embedded in S0 ≡ H.

Then S is called a (Fréchet) nuclear space and we write S = pr limi∈N S+i.

On S we introduce a projective limit topology τp with respect to the
families of Hilbert spaces (Si)i∈N and natural embeddings Oi : S ↪→ Si,
i.e., the weakest topology on S for which all the mappings Oi, i ∈ N, are
continuous. An open neighborhood base at zero of this topology is given by
the sets Uε,i = {x ∈ S, ‖x‖i < ε} with all possible choices of ε > 0 and
i ∈ N where ‖ · ‖i is the corresponding norm of Si.

A sequence {xn, n ∈ N} in S converges to x ∈ S with respect to τp if and
only if it converges to x in every space Si. It turns out (cf. [GV64]) that
(S, τp) is metrizable and complete (i.e., Polish).
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Definition 5.39 Let us denote the dual space of Si, i ∈ N (with respect to
pairing in H), by S−i and set S0 := H. Then we obtain a triple

Si ⊂ H ⊂ S−i.

Note that Si′ ↪→ Si implies S−i ↪→ S−i′ . Moreover, if we have the Hilbert-
Schmidt embedding operator Si′ ↪→ Si, then the embedding S−i ↪→ S−i′ is
also Hilbert-Schmidt with the same norm.
We define S∗ :=

⋃
i∈N S−i and equip it with following σ-algebra

B(S∗) := σ

( ∞⋃
i=1

σ(S−i)
)
.

Then we have S ⊂ H ⊂ S∗, which will be called a Gelfand triple.

The following two propositions will be important for us.

Theorem 5.40 (Bochner-Minlos Theorem): A function Ψ : S → C is
the characteristic functional of a probability measure ν on (S∗,B(S∗)), i.e.,

Ψ(a) =

∫
S∗
ei〈a,x〉dν(x), a ∈ S,

if and only if
(i) Ψ(0) = 1,
(ii) Ψ is continuous on S,
(iii) Ψ is positive definite.
Moreover such measure ν is uniquely determined by Ψ .

Theorem 5.41 (Lévy Continuity Theorem): Let Ψ : S → C be continu-
ous and let νn, n ∈ N, be a sequence of probability measures on (S∗,B(S∗)).
If

ν̂n(a) =

∫
S∗
ei〈a,x〉dνn(x)

n→∞−−−→ Ψ(a), a ∈ S,

then there exists a probability measure ν on (S∗,B(S∗)) such that ν̂ = Ψ .

In this section, we concentrate on the following Gelfand triple S ⊂ H ⊂ S∗
(cf. [Kol88]).
Let us given a non-negative self-adjoint operator A in H. Moreover, we
suppose thatA has a purely discrete spectrum {αk}∞k=1, i.e., Aek = αkek with
αk > 0, where {ek}∞k=1 is a complete orthonormal system inH. Furthermore,
we suppose that

∑∞
k=1

1
αk

<∞, i.e., the inverse operator A−1 has finite trace.
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Define the Hilbert space Si := {x ∈ H
∣∣ ‖x‖2i =

∑∞
k=1 α

i
k 〈x, ek〉2H < ∞}

which will be equipped with the inner product

〈x, y〉i :=
∞∑
k

α i
k 〈x, ek〉H〈y, ek〉H , x, y ∈ Si.

Claim 1: Denote eik := ek
(
√
αk)i

, then {eik}k∈N is an ONB for Si.
Proof : Obviously, each eik ∈ Si and〈

(
1
√
αk

)iek, (
1
√
α`

)ie`

〉
i

: = α
− i

2
k α

− i
2

` 〈ek, e`〉i

= α
− i

2
k α

− i
2

`

∞∑
j=1

α i
j 〈ek, ej〉H〈e`, ej〉H

=

{
0, if k 6= `,
1, if k = `,

= δk`.

Claim 2: Si ↪→ Si−1 (continuously embedded) for any i ∈ N.
Proof : It is enough to prove that ‖x‖2i−1 ≤ ‖x‖2i for any x ∈ Si. Since S is
dense in Si and ‖x‖2i−1 ≤ ‖x‖2i for each x ∈ S by the definition, so our claim
is true.

Claim 3: Ii : Si → Si−1, with identity operator Ii is a Hilbert-Schmidt
operator for any i ∈ N.
Proof :

∞∑
k=1

‖Iieik‖2i−1 =
∞∑
k=1

‖( ek
(
√
αk)i

)‖2i−1

=
∞∑
k=1

αi−1
k

〈
(

1
√
αk

)iek, ek

〉2

=
∞∑
k=1

αi−1
k

αik

=
∞∑
k=1

1

αk
<∞.

Obviously, S is a dense subset of H, since {ek}k∈N ⊂ S is linearly dense
in H. So, each Si can be seen as a completion of S in the corresponding
norm ‖·‖i.
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Denoting by S−i (with norm ‖ · ‖−i) the dual of Si w.r.t H = S0, we have
the chain⋂

i

Si ⊂ ... ⊂ Si ⊂ ... ⊂ S1 ⊂ H ⊂ S−1 ⊂ ... ⊂ S−i ⊂ ... ⊂
⋃
i

S−i. (5.26)

Setting S :=
⋂
i Si and S∗ :=

⋃
i S−i, we get the Gelfand triple S ⊂ H ⊂ S∗.

Remark 5.42 An important feature of this construction is that the semi-
group Tt = e−tA, t ≥ 0, maps continuously S into S. Indeed we can show
that for each i ∈ N

e−tA : Si → Si,

is continuous and we have

‖e−sAa‖2i =

∞∑
k=1

α i
k 〈e−sAa, ek〉 2 <∞,

but

〈e−sAa, ek〉 2 = 〈a, e−sAek〉 2 = 〈a, e−sαkek〉 2
H = e−2sαk〈a, ek〉H .

Note that e−2sαk ≤ 1, since αk ≥ 0 for all k ∈ N. Now a ∈ S, therefore
a ∈ Si for any i ∈ N and we obtain

‖e−sAa‖2i =

∞∑
k=1

α i
k 〈e−sAa, ek〉 2 ≤

∞∑
k=1

α i
k 〈a, ek〉 2 = ‖a‖2i <∞.

Now since the operators e−tA, t ≥ 0, are self-adjoint on H, we can extend
this semigroup to the bounded continuous operators e−tA : S∗ → S∗ by the
duality

〈e−tAx, a〉 := 〈x, e−tAa〉, x ∈ S∗, a ∈ S.

Also, we can consider symmetric non-negative linear continuous operators
R : S → S∗ obeying

〈Ra1, a1〉 ≥ 0

〈Ra1, a2〉 = 〈a1, Ra2〉

for any a1, a2 ∈ S.
The continuity of R : S → S∗ means that for each i1 ∈ N there exists
i2 ∈ N such that R : Si1 → S−i2 is continuous. We denote the class of such
continuous operators by L(S,S∗).

The following analogue of Proposition 5.24 takes place in the nuclear case.
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Proposition 5.43 Assume that A ≥ 0 is a self-adjoint infinitesimal gen-
erator of the C0-semigroup Tt = e−tA, t ≥ 0, on S and R : S → S∗ is a
symmetric non-negative linear continuous operator. Let λ : H → C is a
function with the below representation

λ(a) =
1

2
〈a,Ra〉 −

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
M(dx)

where R : S → S∗ is a symmetric non-negative linear continuous operator
and M is a symmetric Lévy measure on H. Then there exists a family of
measures (µt)t≥0 on (S∗,B(S∗)) whose characteristic function is of the form

µ̂t(a) =

∫
S∗
ei〈a,x〉µt(dx) = e−

∫ t
0 λ(e−sAa)ds, a ∈ S.

Proof : Comparing the result in Hilbert space, since in the nuclear space
similar result to the Lévy-Khinchin formula does not exist, we need to apply
another arguments. Consider the extended form of exp

( ∫ t
0 λ(e−sAa)ds

)
exp

(
−
∫ t

0 λ(e−sAa)ds

)
= exp

(
i〈a, bt〉 − 1

2〈Rta, a〉+
∫
H

(
ei〈a,x〉 − 1− i〈a,x〉

1+‖x‖2
)
Mt(dx)

)
,

(5.27)
where

Rt =

∫ t

0
e−sARe−sAds ∈ L(S,S∗),

bt =

∫ t

0

∫
H
e−sAx

(
1

1 + ‖e−sAx‖2
− 1

1 + ‖x‖2

)
M(dx)ds ∈ S∗,

and

Mt(B) :=

∫ t

0
M

(
(e−sA)−1(B \ {0})

)
ds, B ∈ B(H).

We need to check that a →
∫ t

0 λ(e−sAa)ds is a positive-definite and contin-
uous functional on S. Then by the Bochner-Milnos theorem there exists a
probability measure µt on S∗ such that µ̂t(a) = e−

∫ t
0 λ(e−sAa)ds.

Let us to examine of each part in the right side of (5.27) separately.
About the first part, i.e.,

S 3 a 7→ exp
(
− i〈a, bt〉

)
we observe the following.
Since b ∈ S−i for some i ∈ N and e−tA, t ≥ 0, maps continuously S−i to some
S−i′ (i

′ ≥ i), we can define bt ∈ S−i′ via Bochner integrals in S−i′ . Now, for
every fix t, bt is a vector in S−i′ , so the first part is clearly continuous.



84
Chapter 5. Extremal π-Entrance Laws for One-Parameter

Mehler Semigroups

Concerning the second part,

S 3 a 7→ exp
(
− 1

2
〈Rta, a〉

)
, (5.28)

we first need to define the integral Rt =
∫ t

0 e
−sARe−sAds. By the definition

of S, a ∈ Si0 for every fixed i0 ∈ N, so that we have

∀i1 ∈ N ∃i0 ∈ N, such that e−sA : Si0 ↪→ Si1 ,
∃i2 ∈ N, such that R : Si1 ↪→ S−i2 ,
∃i3 ∈ N, such that e−sA : S−i2 ↪→ S−i3 ,

so e−tARe−tA ∈ L(Si0 ,S−i3). Since S is nuclear, this implies that for some
i4 ∈ N we have e−sARe−sA ∈ L1(Si0 ,S−i4) i.e., a trace class operator. Also
e−sARe−sA is positive, i.e., 〈e−sARe−sA, a〉 ≥ 0, for any a ∈ S. Hence the
Bochner integral can be taken in the separable Banach space L1(Si0 ,S−i4)
of all trace class operators similar to Proposition 5.24. So Rt ∈ L1(Si0 ,S−i3)
and therefore Rt ∈ L(S,S∗). Obviously, the result does not depend on the
concrete choice of the spaces Si0 ,Si1 , ...,Si4 .
Equivalently, we can define the integral (5.28) in the weak sense, so that

〈Rta, a〉 :=

∫ t

0
〈e−sARe−sAa, a〉ds, a ∈ S.

The last part is

S 3 a 7→ exp

(∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2
)
Mt(dx)

)
. (5.29)

The integral overM lives in H, thus the Lévy-Khinchin formula and Milnos-
Sazonov theorem gives the positive definiteness and continuity of the third
part in (5.27).
And proof of the proposition is complete. �

Now we are in a position to present a similar result to Theorem 5.34, but
now related to the nuclear case.
First, we need to define the concept of K(π) and K(T ) in the nuclear spaces.

Definition 5.44 Let P(S∗) be the set of all probability measures on (S∗,B(S∗)),
then we define similarly to the Hilbert space, K(π) to be the set of all π-
entrance law (νt)t∈R ⊂P(S∗) associated with Markovian semigroup (πt)t≥0

on (S∗,B(S∗)) which satisfying following identity∫
S∗
πt(x,B)νs(dx) = νt+s(B), t ≥ 0, s ∈ R, B ∈ B(S∗),

for each x ∈ S. Similarly to the Hilbert space state space, K1(π) is the
notation for the set of all probability π-entrance laws with finite weak first
moments.
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Definition 5.45 Consider the semigroup (Tt = e−tA)t≥0 to S∗ (continuous
extended form of (e−tA)t≥0 on S). A family (κs)s∈R ⊂ S∗, is called a T -
entrance law if Ttκs = κs+t for all s ∈ R and t ≥ 0. The set of all such laws
is denoted by K(T ).

We define similarly to the Hilbert space case, πt(x, dy) to be the transla-
tion of µt by e−tAx, i.e.,

πt(x, dy) := µt(dy − e−tAx), t ≥ 0, x ∈ S∗.

Theorem 5.46 Let π be a Mehler semigroup on (S∗,B(S∗)) with the cor-
responding Fourier transform∫

S∗
ei〈a,y〉πt(x, dy) = ei〈a,Ttx〉−

∫ t
0 λ(Tsa)ds,

where T = (Tt)t∈R is a family of C0-semigroups generated by a self-adjoint
A ≥ 0 with positive discrete spectrum (αk)k≥0 such that

∑
k α
−1
k < ∞. Let

λ have a representation

λ(a) =
1

2
〈a,Ra〉 −

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
M(dx), a ∈ S,

with parameters R and M in the sense of Proposition 5.43. In addition
assume that M is a symmetric Lévy measure on (H,B(H)) and that also

S 3 a 7→
∫ t

−∞
λ(Tt−sa)ds, t ≥ 0,

is well-defined and continuous.
Then for every κ ∈ K(T ) there exists a unique extremal probability π-entrance
law νκ such that∫

S∗
ei〈a,y〉νκt (dy) = ei〈a,κt〉−

∫ t
−∞ λ(Tt−sa)ds, a ∈ S, (5.30)

in which (κt)t∈R ⊂ S∗.
Moreover, formula (5.30) establishes a one-to-one correspondence between
K(T ) and the set of all extremal elements of K1(π).

Proof The proof of theorem is almost the same Theorem 5.34. The only
major difference is to show the existence of a certain probability measure νκt
on (S∗,B(S∗)) obeying the characteristic function (5.30), (cf. Claim i). For
a fix t ∈ R by using (6.13) we have the sequence

M̂r(a) = ei〈a,κt〉−
∫ t
r λ(Tt−sa)ds

where Mr(dy) := πt−r(κr, dy) when r → −∞. On the other hand, by the
assumptions of theorem we have continuity of the right-hand side of (5.30)
and our statement follows from the Lévy continuity theorem. �
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Remark 5.47 Concerning the above construction of the Gelfand triple (5.26),
we note that the following more general fact is valid (cf. Section 1, Chapter
4 in [BK88]).
Let A ≥ 0 be self-adjoint operator acting in a real separable Hilbert space H,
having a spectrum of finite multiplicity. Then one can construct a nuclear
Gelfand triple S ⊂ H ⊂ S∗ such that:

1. S = pr limi∈N S+i where each (Si, 〈·, ·〉i) is a separable Hilbert space
with a Hilbert-Schmidt embeddings Si ↪→ S0 := H, Si+1 ↪→ Si, i ∈ N.

2. S ⊂ D(A), A ∈ L(S,S) and e−tA ∈ L(S,S) for all t ≥ 0.

In the case of general self-adjoint A ≥ 0, we can construct a nuclear space
S = pr limi∈Λ Si with a not necessarily countable index set Λ = {i}.



Chapter 6

Two-Parameter Mehler
Semigroups and Corresponding
Extremal π-Entrance Laws

Evolution systems of measures corresponding to a two-parameter semigroup
are an important generalization of the concept of invariant measures for a
one-parameter semigroup. Similarly to the previous chapter, we will show
that the set K(π) of all π-entrance laws associated with the two-parameter
semigroup (ps,t)s≤t, is a simplex. Furthermore, we will prove an explicit rep-
resentation for the extremal points of K(π) corresponding the two-parameter
Mehler semigroup with Lévy processes. This is one of the main results of
the whole thesis and will be stated in Theorem 6.20.
The above theorem will be illustrated by one example in Section 6.5.
Finally, in Section 6.6, we will show the uniqueness of T -periodic evolution
system of measures by using the explicit representation of extremal points
obtained in Section 6.4.

Let us recall again:

Definition 6.1 Suppose (πs,t)s≤t is a Markovian two-parameter semigroup
of transition kernels on H. Every one-parameter family of probability mea-
sures (νs)s∈R which are connected by the relation∫

H
πs,t(x,B)νs(dx) = νt(B), s ≤ t, s, t ∈ R, B ∈ B(H)

is called a π-entrance law. The set of all such (νs)s∈R is denoted by K(π).

The proof of convexity for K(π) is more or less similar to the non-
autonomous case but we will put it again:

Lemma 6.2 K(π) is convex.

87
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Proof Suppose (νs)s∈R, (ηs)s∈R are in K(π) and α ∈ [0, 1]. Then for every
arbitrary B ∈ B(H), we have∫

H
πs,t(x,B)(ανs + (1− α)ηs)(dx)

= α

∫
H
πs,t(x,B)νs(dx) + (1− α)

∫
H
πs,t(x,B)ηs(dx)

= ανt(B) + (1− α)ηt(B)

= (ανt + (1− α)ηt)(B)

for all s ≤ t and s, t ∈ R. Therefore

αν + (1− α)η =

(
ανs + (1− α)ηs

)
s∈R
∈ K(π). �

Note that the concept of extremal point on the set K(π) is defined exactly
like as in the previous chapter (cf. Definition 5.3).

6.1 The Markov process associated with two-parameter
semigroups

Definition 6.3 We say that a Markov process
(
Ω,F , (Xt)t∈R,P

)
corresponds

to the two-parameter semigroup of transition kernels (πs,t)s≤t and write P ∈
M(π) if for any s ≤ t and s, t ∈ R

P(Xt | Fs) = πs,t(Xs, B), P− a.s., (6.1)

where B ∈ B(H) and Fs = σ(Xr | r ≤ s).

Here we will extend the statement of Proposition 5.5 to the case of Marko-
vian two-parameter semigroups:

Proposition 6.4 Given a Markovian semigroup (πs,t)s≤t over
(
H,B(H)

)
and a π-entrance law ν := (νs)s∈R on B(H), then there is a Markov process(
Ω,F , (Xs)s∈R,Pν

)
in the sense of Definition 6.3 with state space

(
H,B(H)

)
,

where Ω = HR and F := σ((Xs)|s ∈ R). Furthermore, νt is the law of Xt

for any t ∈ R.

Proof Put Xs(ω) := ω(s) for every s ∈ R and every ω ∈ HR and set Fs to
be the σ-algebra generated by {Xr | r ≤ s}.

The first is to check the existence of a measure Pν with the following finite
dimensional distributions

Pt1,...,tn
[
Xt1 ∈ dx1, , ..., Xtn ∈ dxn

]
:

= πtn−1,tn(xn−1, dxn)...πt1,t2(x1, dx2)νt1(dx1)
(6.2)
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for each n-tuple of times −∞ < t1 < ... < tn < +∞, which can be done
similarly to the one-parameter semigroup case considered in Proposition 5.5.

In the next step, we construct a Markov process(
HR,F = σ((Xt) | t ∈ R), (Xt)t∈R, (Pν)

)
with state space

(
H,B(H)

)
, which corresponds to the given (πs,t)s≤t and

the initial distribution (νt)t∈R in the sense of Definition 6.3.

To this end, for any s ∈ R and x ∈ H, we define the corresponding
probability measure P(s,x) on

(
HR,F>s := σ(Xr | r ≥ s)

)
by following

formula

E(s,x)

[
f(Xt1 , ..., Xtn)

]
:

=
∫
H ...

∫
H f(x1, ..., xn)πtn−1,tn(xn−1, dxn)...πt1,t2(x1, dx2)πs,t1(x, dx1)

(6.3)

for any n-tuple of times s < t1 < ... < tn < ∞ and f : Hn → R bounded
and

(
B(H)

)⊗n-measurable.
Given (νt)t∈R, we then set

Eν
[
f(Xt1 , ..., Xtn)

]
:

=

∫
H
...

∫
H
f(x1, ..., xn)πtn−1,tn(xn−1, dxn)...πt1,t2(x1, dx2)νt1(dx1)

for any n-tuple of times −∞ < t1 < ... < tn <∞ and f : Hn → R bounded
and

(
B(H)

)⊗n-measurable.
By checking the Markov property in the sense of Definition 2.5, namely
showing that

Eν [Xt ∈ B | Fs] = P(s,Xs)[Xt ∈ B] (6.4)

for every s ≤ t and B ∈ B(H), our assertion will be proven because from
definition (6.3) we have

P(s,Xs)[Xt ∈ B] = πs,t(Xs, B).

Indeed, instead of (6.4) we will show a stronger fact

Eν [f(Xt1 , ..., Xtn) | 1∆] = Eν
[
E(s,Xs)[f(Xt1 , ..., Xtn)] | 1∆

]
holding for each entrance law (νt)t∈R, every s < t1 < ... < tn < ∞ and
∆ ∈ Fs.
By the monotone class theorem (applied to ∆), this follows from the identity

Eν
[
f(Xt1 , ..., Xtn)g(Xs1 , ..., Xsm)

]
=

Eν
[
E(s,Xs)[f(Xt1 , ..., Xtn)]g(Xs1 , ..., Xsm)

]
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holding for all
(
B(H)

)⊗(m)-measurable bounded g : Hm → R and −∞ <
s1 < ... < sm = s. So, the left hand side is equal to∫

νs1(dx1)

∫
πs1,s2(x1, dx2)...

∫
πsm−1,sm(xm−1, dxm)

×
∫
πs,t1(xm, dy1)...

∫
πtn−1,tn(yn−1, dyn)f(y1, ..., yn)︸ ︷︷ ︸

=E(s,xm)[f(Xt1 ,...,Xtn )]

g(x1, ..., xm)

= Eν [E(s,Xs)[f(Xt1 , ..., Xtn)g(Xs0 , ..., Xsm)]].

So Pν belongs to M(π), which ends the proof. �

Remark 6.5 Conversely, if X is a Markov process with values in H, then
there exist an entrance law ν = (νt)t∈R and a Markovian transition kernel
(πs,t)s≤t such that equation (6.1) holds and the law of Xt is νt

Like as in the one-parameter case, we can establish the isomorphism be-
tween K(π) and M(π) also for the Markovian two-parameter semigroup of
transition kernels (πs,t)s≤t. The proof is quite similar to the one-parameter
case dealt with in Lemma 5.19. For the convenience of the reader, we will
sketch the proof here.

Lemma 6.6 The correspondence ν → Pν defined by proposition 6.4 is an
isomorphism of convex measurable spaces K(π) and M(π).

Proof Similarly to the previous chapter one can define a measurable struc-
ture for M(π). Also, by Lemma 5.18 there is a natural convex structure
associated to K(π). Via Proposition 6.4, Pν ∈M(π) for any ν ∈ K(π). Now
let P be any element of M(π). Define ν = (νs)s∈R by

νs(B) = P{Xs ∈ B}, s ∈ R, B ∈ B(H). (6.5)

Then formula (6.1) implies that for any −∞ < s1 < ... < sn < ∞ and
B1, ..., Bn ∈ B(H)

P{Xs1 ∈ B1, ..., Xsn ∈ Bn} =∫
B1

...

∫
Bn

νs1(dx1)πs1,s2(x1, dx2)...πsn−1,sn(xn−1, dxn).

Hence P = Pν .
Furthermore, for every B ∈ B(H)

νt(B) = P{1B(Xt)}, t ∈ R, (6.6)

and thus∫
H
πs,t(x,B)νs(dx) = P(Xs ∈ H,Xt ∈ B) = νt(B), s ≤ t
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Hence it is clear that ν is a π-entrance law.
On the other hand, P{Xs ∈ B} = νs(B). Thus, no element P of M(π) can
have two different inverse images in K(π).

We have proved that the mapping ν ←→ Pν defines a one-to-one cor-
respondence between K(π) and M(π) and that the inverse mapping given
by (6.6) obviously preserves the convex and measurable structures. Proving
that the mapping ν → Pν has the same properties can be done in the similar
way as it has been done in Lemma 5.19. The previous scheme works with an
obvious modification that the mapping Φ in the proof of Lemma 5.19 should
be substituted by

Φ(x1) = 1B1(x1)

∫
B2

...

∫
Bn

πs1,s2(x1, dx2)...πsn−1,sn(xn−1, dxn).

And the proof is complete. �

Remark 6.7 Similarly to Proposition 5.5, the measure Pν introduced above
belongs to M(π).

6.2 Strong evolution operators

We present the definition of an strong evolution operator from [Yad86]:

Definition 6.8 Let us define

∆ :=
{

(s, t) ⊂ R2 | T∗ ≤ s ≤ t ≤ T ∗
}

where T∗ ∈ R ∪ {−∞} and T ∗ ∈ R ∪ {+∞}.
A family U = (U(s, t))T∗≤s≤t≤T ∗ ⊂ L(H) is called an strong evolution family
if the following holds:

(i) Ut,t = I for all t ∈ [T∗, T
∗], where I denotes the identity operator in H;

(ii) Ur,tUs,r = Us,t for T∗ ≤ s ≤ r ≤ t ≤ T ∗;

(iii) U is strongly continuous, i.e., the map U(·,·)x : ∆ → H is continuous
for any x ∈ H and

MT := sup
∆
‖Us,t‖ <∞;

(iv) For any t ∈ [T∗, T
∗], there exists a closed linear operator A(t) on H

such that Us,t : D(A(s))→ D(A(t)) for all s < t and∫ t

s
A(r)Us,rfdr = (Us,tI)f

for any f ∈ Ds,t(A) := {f ∈ H | Us,rf ∈ D(A(r)) for all r ∈ [s, t]}.
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(v) Obviously (iv) implies that for every f ∈ Ds,t(A)

∂

∂t
Us,tf = A(t)Us,tf

for Lebesgue-almost all t ∈ [T∗, T
∗], which justifies the terminology.

Analogously to the theory of one-parameter semigroups, (A(t))t∈[T∗,T ∗] is
called the generator of U .

Remark 6.9 From (iii) in the Definition 6.8 we have

t 7→ Us,tx ∈ H, for all t ∈ [s, T ∗],

is a continuous mapping for any s ∈ R and x ∈ H and

s 7→ Us,tx ∈ H, for all s ∈ [T∗, t],

is a continuous mapping for any t ∈ R and x ∈ H.

Remark 6.10 In fact, despite an extensive literature on the solution of non-
autonomous Cauchy problem (see [Paz83])

X
′
(t) = A(t)X(t), X(s) = xs ∈ D(A(s)), s ≤ t, (6.7)

but there is by now, a basically missing an existence result analogous to the
well-known Hille- Yoshida theorem giving a characterization of the infinites-
imal generators of C0-semigroups. Since this issue is beyond the scope of
this thesis, it will be assumed that we are readily given an evolution family
U = (Us,t)s≤t which is properly associated with the Cauchy problem (6.7).

6.3 Two-parameter Mehler semigroup

In this section, we define a two-parameter Mehler semigroup. The idea to
introduce this type of Mehler semigroup belongs to [OR10].

Proposition 6.11 Let (Us,t)s≤t be a strong evolution family of linear oper-
ators on H, σ : R → H be a strongly continuous and bounded in operator
norm and the Lévy symbol λ is a negative-definite and Sazonov continuous
function on H with λ(0) = 0. Then there exists (µs,t)s≤t ⊂ P(H) whose
characteristic functions are of the form

µ̂s,t(a) =

∫
H
ei〈a,x〉µs,t(dx) = e−

∫ t
s λ(σ∗(r)U∗r,ta)dr, a ∈ H, (6.8)

where U∗ is the adjoint operator of U .
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Proof In fact, by applying the same argument as in Chapter 5 concerning
the property of λ and using Minlos-Sazonov theorem and Lévy-Khinchin For-
mula, we conclude that exp(−λ) is the characteristic function of an infinitely
divisible probability measure on H with

λ(a) = −i〈a, b〉+
1

2
〈a,Ra〉 −

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
M(dx) (6.9)

where b ∈ H, R ∈ L+
1 (H) and M is a Lévy measure on H.

Now, if we consider the extended form of e−
∫ t
s λ(σ(r)∗U∗r,ta)dr

exp

(
−
∫ t
s λ(σ∗(r)U∗r,ta)dr

)

= exp

(∫ t
s i〈a, Ur,tσ(r)b〉dr −

∫ t
s

1
2〈σ
∗(r)U∗r,ta,Rσ

∗(r)U∗r,ta〉dr

+
∫ t
s

∫
H

(
ei〈a,Ur,tσ(r)x〉 − 1− i〈a,Ur,tσ(r)x〉

1+‖x‖2
)
M(dx)dr

)

= exp

(
i〈a, bs,t〉 − 1

2〈Rs,ta, a〉+
∫
H

(
ei〈a,x〉 − 1− i〈a,x〉

1+‖x‖2
)
Ms,t(dx)

)
,

(6.10)
where

Rs,t =

∫ t

s
Ur,tσ(r)Rσ∗(r)U∗r,tdr

bs,t =

∫ t

s
Ur,tσ(r)bdr +

∫ t

s

∫
H
Ur,tσ(r)x

(
1

1 + ‖Ur,tσ(r)x‖2
− 1

1 + ‖x‖2

)
M(dx)dr,

and the measures Ms,t are defined by

Ms,t(B) :=

∫ t

s
M

(
(Ur,tσ(r)) −1(B \ {0})

)
dr, B ∈ B(H).

Here

(Ur,tσ(r))−1(B \ {0}) :=

{
y ∈ H | Ur,tσ(r)y ∈ B \ {0}

}
.

From the Lévy-Khinchin formula, if one prove that for every fixed s and t,
bs,t is well-defined in H, Rs,t ∈ L+

1 (H) and Ms,t is a Lévy measure, then
there is a probability measure µs,t on H such that

µ̂s,t(a) = e−
∫ t
s λ(σ∗(r)U∗r,ta)dr. (6.11)

Let us discuss the required properties of every part separately.
note that b is just a vector in H and for every fixed s and t, bs,t ∈ H is
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correctly defined via Bochner integrals.

Concerning (Rs,t)s≤t, since by our assumption (Ur,t)r≤t is a strong evolu-
tion operators, strongly continuity of (Ur,t)r≤t give us

MT := sup
T∗≤r≤t≤T ∗

‖Ur,t‖L(H) <∞.

Now, note that the strong measurability of σ is equivalent to measurability
of r 7→ σ(r)ek ∈ H for every ONB, {ek}k∈N on H and furthermore the
measurability of r 7→ σ∗(r)Rσ(r)ek ∈ H. Since L1(H) is ideal in L(H)
so we get the measurability of σ∗(r)Rσ(r) in the separable Banach space
L1(H). Then t 7→ Ur,tσ(r)Rσ∗(r)U∗r,t is also strongly measurable, i.e.,

t 7→ Ur,tσ(r)Rσ∗(r)U∗r,tx ∈ L+(H),

and we are able to define Rs,t as the Bochner integral of Ur,tσ(r)Rσ∗(r)U∗r,t.
We know that R is a non-negative trace class operator. Since L1(H) is an
operator ideal in L(H), so Ur,tσ(r)Rσ∗(r)U∗r,t is also trace class operator for
every r and t. Meanwhile, every Ur,tσ(r)Rσ∗(r)U∗r,t is non-negative due to
the same property of R. Furthermore, it is also symmetric because

〈Ur,tσ(r)Rσ∗(r)U∗r,ta, a〉 = 〈Rσ∗(r)U∗r,ta, σ∗(r)U∗r,ta〉
= 〈σ∗(r)U∗r,ta,Rσ∗(r)U∗r,ta〉 = 〈a, Ur,tσ(r)Rσ∗(r)U∗r,ta〉.

Next, the Bochner integral in the definition of Rs,t is taken in the Banach
separable space L1(H) of all trace class operators in H. This definition is
correct since∫ T ∗

T∗

‖Ur,tσ(r)Rσ∗(r)U∗r,t‖L1(H)dr ≤ (T ∗ − T∗)MT · sup
T∗≤r≤t≤T ∗

‖R‖L1(H) <∞.

Then Rs,t is a symmetric non-negative trace class operator with

‖Rs,t‖L1(H) ≤
∫ T ∗

T∗

‖Ur,tσ(r)Rσ∗(r)U∗r,t‖L1(H)dr <∞

and

〈Rs,ta, a〉 =

∫ t

s
〈σ(r)Rσ∗(r)U∗r,ta, U

∗
r,ta〉dr ≥ 0, a ∈ H

and

〈Rs,ta, a〉 =

∫ t

s
〈Ur,tσ(r)Rσ∗(r)U∗r,ta, a〉dr

=

∫ t

s
〈a, Ur,tσ(r)Rσ∗(r)U∗r,ta〉dr = 〈a,Rs,ta〉
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The last part is (Ms,t)s≤t. Note that clearly Ms,t(0) = 0 and also∫
H

(
1 ∧ ‖x‖2

)
Ms,t(dx) =

∫ t

s

∫
H

(
1 ∧ ‖Ur,tσ(r)x‖2

)
M(dx)dr

≤
∫ T ∗

T∗

∫
H

(
1 ∧MT · ‖x‖2

)
M(dx)dr

≤ max{1,M2
T }(T ∗ − T∗)

∫
H

(
1 ∧ ‖x‖2

)
M(dx) <∞.

In conclusion, similarly to one-parameter case, (6.11) is Sazonov continuous
and the proof of the proposition is complete. �

Definition 6.12 Let πs,t(x, dy) be the translation of µs,t(dy) by Us,tx, i.e.,

πs,t(x, dy) = µs,t(dy − Us,tx), s ≤ t, x ∈ H.

In other words, for all f ∈ Bb(H), we have∫
H
f(y)πs,t(x, dy) =

∫
H
f
(
Us,tx+ y

)
µs,t(dy), x ∈ H.

Following Definition 4.3, the semigroup (ps,t)s≤t is given by

ps,tf(x) =

∫
H
f(y)πs,t(x, dy) =

∫
H
f(Us,tx+ y)µs,t(dy), s ≤ t

is called the generalized two-parameter Mehler semigroup.

In fact, the semigroup property can be concluded in following.

Proposition 6.13 (ps,t)s≤t is a semigroup on Bb(H) if and only if for all
s ≤ r ≤ t

µs,t = (µs,r ◦ U −1
r,t ) ∗ µr,t (6.12)

(where ∗ is convolution operator) or equivalently, in terms of the character-
istic functions,

µ̂s,t(a) = µ̂r,t(a)µ̂s,r(U
∗
r,ta), a ∈ H, s ≤ r ≤ t.

(Note that this proposition can be found in [OR10], Proposition 2.2.)

Proof First we prove that (ps,t)s≤t is a semigroup if we have (6.12). Let
f ∈ Bb(H) and s ≤ r ≤ t. Then we calculate for all x ∈ H

ps,r(pr,tf)(x) = (µs,r ∗ pr,tf)(Us,rx)

= (µs,r ∗ (µr,t ∗ f)(Ur,t·))(Us,rx)

=
(
((µs,r ◦ U −1

r,t ) ∗ µr,t) ∗ f
)
(Us,tx).
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Now using (6.12) in the right-hand side we get that

ps,r(pr,tf)(x) = (µs,t ∗ f)(Us,tx) = ps,tf(x).

Repeating the above arguments in the inverse direction, we show that (6.12)
is also necessary for each semigroup (ps,t)s≤t. �

On the other hand, (µs,t)s≤t satisfies the following relation

µ̂s,r(U
∗
r,ta)µ̂r,t(a) = e−

∫ r
s λ
(
σ∗(`)U∗`,r(U

∗
r,ta)
)
d` e−

∫ t
r λ
(
σ∗(`)U∗`,ta

)
d`

= e−
∫ r
s λ
(
σ∗(`)(Ur,tU`,r)

∗a
)
d` e−

∫ t
r λ
(
σ∗(`)U∗`,ta

)
d`

= e−
∫ r
s λ
(
σ∗(`)U∗`,ta

)
d` e−

∫ t
r λ
(
σ∗(`)U∗`,ta

)
d`

= e−
∫ t
s λ
(
σ∗(`)U∗`,ta

)
d`

= µ̂s,t(a).

Therefore (ps,t)s≤t is a semigroup. Moreover by the property of (µs,t)s≤t, we
get that (ps,t)s≤t is clearly Markovian semigroup.

Lemma 6.14 The characteristic function of (πs,t)s≤t is given by∫
ei〈a,y〉πs,t(x, dy) = ei〈a,Us,tx〉−

∫ t
s λr(U

∗
r,ta)dr. (6.13)

Proof

̂πs,t(x, .)(a) =

∫
ei〈a,y〉πs,t(x, dy)

=

∫
ei〈a,y〉µs,t(dy − Us,tx)

=

∫
ei〈a,y+Us,tx〉µs,t(dy)

= ei〈a,Us,tx〉
∫
ei〈a,y〉µs,t(dy)

= ei〈a,Us,tx〉−
∫ t
s λr(U

∗
r,ta)dr. �

6.4 Extremal π-entrance laws

The set K1(π) will be defined in the whole section the same Definition 5.18
in previous chapter, i.e.,
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Definition 6.15 By K1(π) we denote the set of all ν ∈ K(π) for which∫
H
|〈a, x〉|νt(dx) <∞, a ∈ H, t ∈ R.

Similarly to Chapter 5, we will have the family (κt)t∈R ⊂ H such that∫
H
〈a, x〉νt(dx) = 〈a, κt〉, a ∈ H, t ∈ R (6.14)

and we call it the projection of ν and denote it by κ = p(ν).

Definition 6.16 Consider the semigroup (Us,t)s≤t which has been introduced
in Section 6.2. A family (κt)t∈R ⊂ H, is a U -entrance law, if Us,tκs = κt
for all s, t ∈ R and s ≤ t. The set of all such laws is denoted by K(U).

Lemma 6.17 For any Mehler semigroup (ps,t)s≤t if∫
〈a, y〉πs,t(x, dy) = 〈a, Us,tx〉, (6.15)

then for each ν ∈ K1(π), κ = p(ν) is a U -entrance law.

Proof If we show that
∫
H〈a, x〉νt(dx) = 〈a, Us,tκs〉 for every s ≤ t, the

assertion is complete. By the definition of ν = (νt)t∈R∫
H
〈a, x〉νt(dx) =

∫
H

(∫
H
〈a, x〉πs,t(y, dx)

)
νs(dy).

Now if (6.15) is satisfied, then∫
H

(∫
H
〈a, x〉πs,t(y, dx)

)
νs(dy) =

∫
H
〈a, Us,ty〉νs(dy)

=

∫
H
〈U∗s,ta, y〉νs(dy)

= 〈U∗s,ta, κs〉 = 〈a, Us,tκs〉,

which was needed to show. �

But, the similar proposition to Proposition 5.31 related to the first mo-
ment of πs,t(x, ·) which should be imposed to our structure:

Proposition 6.18 Suppose that in the representation of λ in (6.9), we have
b = 0 and M is symmetric. Also, assume that∫

H
|〈a, y〉|µs,t(dy) <∞, a ∈ H, s ≤ t

for the (µs,t)s≤t obtained by (6.8). Then∫
〈a, y〉πs,t(x, dy) = 〈a, Us,tx〉. (6.16)
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Now we are able to present the main result of this paper. But first,
the following assumption should be imposed to our setting which plays a
technical role in the progress of the proof of the main theorem.

Assumption 6.19 We assume that

H 3 a 7→
∫ t

−∞
λ(σ∗(r)U∗r,ta)dr, t ∈ R (6.17)

is well-defined and Sazonov continuous.

Our main result in this chapter will be presented in the following Theorem.
It establishes the relation between K1

e(π) and K(U). Furthermore, it gives
an explicit representation for the characteristic function of every element in
K1
e(π) in terms of the elements in K(U).

Theorem 6.20 Let (πs,t)s≤t be the family of transition kernels of a Mehler
semigroup on H with corresponding Fourier transform∫

ei〈a,y〉πs,t(x, dy) = ei〈a,Us,tx〉−
∫ t
s λ(σ∗(r)U∗r,ta)dr,

where U = (Us,t)s≤t is a strong evolution family on H, σ : R → L(H) is
strongly measurable and bounded and λ is a negative-definite and Sazonov
continuous function on H which satisfies the following representation

λ(a) =
1

2
〈a,Ra〉 −

∫
H

(
ei〈a,x〉 − 1− i〈a, x〉

1 + ‖x‖2

)
M(dx), a ∈ H,

where R ∈ L+
1 (H) and M is a symmetric Lévy measures. Then under As-

sumption 6.19, for every κ ∈ K(U) there exists a unique extremal probability
π-entrance law νκ such that∫

H
ei〈a,y〉νκt (dy) = ei〈a,κt〉−

∫ t
−∞ λ(σ∗(r)U∗r,ta)dr. (6.18)

Moreover, formula (6.18) establishes a one-to-one correspondence between
K(U) and the set of all extremal elements of K1(π).

Proof Three following claims (i), (ii) and (iii) give us a complete proof of
the theorem:
Claim (i) For every κ ∈ K(U), there exists νκ ∈ K(π) which satisfies
equation (6.18).
Proof of Claim (i): Since mapping (6.17) by Assumption 6.19 is Sazonov
continuous and meanwhile

exp

(∫ t

−∞
λ(σ∗(r)U∗r,ta)dr

)
= lim

s→−∞
exp

(∫ t

s
λ(σ∗(r)U∗r,ta)dr

)
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is positive definite. Thus one have that

ei〈a,κt〉−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr

is Sazonov continuous and positive definite. Thus, it is a characteristic func-
tion of a measure νκt on (H,B(H)) by using Minlos-Sazonov Theorem. Now
we will prove that (νκt )t∈R belongs to K(π).

̂(p∗s,t ν
κ
s )(a) =

∫
H

(∫
H
ei〈a,y〉πs,t(x, dy)

)
νκs (dx)

=

∫
H
ei〈a,Us,tx〉−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
drνκs (dx).

=

∫
H
ei〈U

∗
s,ta,x〉νκs (dx). e−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈U
∗
s,ta,κs〉−

∫ s
−∞ λ

(
σ∗(r)U∗r,s(U

∗
s,ta)
)
dr. e−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈a,Us,tκs〉−
∫ s
−∞ λ

(
σ∗(r) (Us,tUr,s)∗a

)
dr−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈a,κt〉−
∫ s
−∞ λ

(
σ∗(r)U∗r,ta

)
dr−

∫ t
s λ
(
σ∗(r)U∗r,ta

)
dr

= ei〈a,κt〉−
∫ t
−∞ λ

(
σ∗(r)U∗r,ta

)
dr

= ν̂κt (a)

which implies the claim.

Claim (ii) If ν is an extremal element of K1(π), then the relation (6.18)
holds with κ = p(ν).
Proof of Claim (ii): For every positive measurable function f on H which
Eνf(Xt) <∞, since Pν is trivial on F∞ so we have

Eνf(Xt) = Eν{f(Xt)|F∞}

= lims→−∞ Eν{f(Xt)|Fs}

= lims→−∞ E(s,Xs)f(Xt), Pν − a.s.

(6.19)
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where in the the second line we applied the Backwards Martingale conver-
gence theorem. We can use this theorem because the process Eν{f(Xt)|Fs}
is a martingale. And finally, in the third line we used the Markov property
of our process. Indeed by (6.19) and (6.13),

Eνei〈a,Xt〉 = lim
s→−∞

E(s,Xs)e
i〈a,Xt〉

= lim
s→−∞

ei〈U
∗
s,ta,Xs〉−

∫ t
s λ(σ∗(r)U∗r,ta)dr, Pν − a.s..

Then (6.15), (6.19) and equality (6.14) and Lemma 6.17 give us

〈U∗s,ta,Xs〉 = E(s,Xs)〈a,Xt〉
s→−∞−−−−→ Eν〈a,Xt〉 = 〈a, κt〉, Pν − a.s..

Claim (iii) If κ and νκ are connected by (6.18), then νκ is extremal.
Let us first define the concept of Lifting for the elements of K(U).
ν ∈ K(π) is called the lifting of % ∈ K(U) denoted by ν = l(%) if

ν̂t(a) = lim
s→−∞

̂πs,t(%s, .)(a).

Proof of (iii): We will divide the proof of Claim (iii) to five steps.
Step1: The π-entrance law νκ is the lifting of κ.
Proof: By the definition of νκt we get

ν̂κt (a) = ei〈a,κt〉−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr = lim

s→−∞
ei〈a,κt〉−

∫ t
s λ(σ∗(r)U∗r,ta)dr

= lim
s→−∞

ei〈a,Us,tκs〉−
∫ t
s λ(σ∗(r)U∗r,ta)dr

= lim
s→−∞

̂πs,t(κs, .)(a).

step2: Every ν ∈ K1
e(π) is the lifting of its projection, i.e.,

l
(
p(ν)

)
= ν. (6.20)

Proof: We need to prove that for each t ∈ R and a ∈ H

ν̂t(a) = lim
s→−∞

̂πs,t(p(νs), .)(a).

But since ν ∈ K1
e(π) we know from the Claim (ii) that

ν̂t(a) = ei〈a,p(νt)〉−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr.

On the other hand

̂πs,t(p(νs), .)(a) = ei〈a,Us,tp(νs)〉−
∫ t
s λ(σ∗(r)U∗r,ta)dr

= ei〈a,p(νt)〉−
∫ t
s λ(σ∗(r)U∗r,ta)dr.
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Hence clearly we have the required property.
Whereas the proofs of step3 , step4 and step5 are implicitly the same ones
in Theorem 5.34, we will only put them without their proofs and we refer
for more details to proof of Theorem 5.34.

Step3: There is the following representation

l(κ) =

∫
K1
e(π)

l(%̃t) ξ(dl(%̃)),

where %̃ = p(ν̃) and η is the image of ξ under the projection p.
Step4: We claim that for every t ∈ R

ei〈a,κt〉 =

∫
K(U)

ei〈a,%̃t〉η(d%̃), a ∈ H,

with κ =
∫
K(U) %̃ η(d%̃).

Step5: η is concentrated at a singleton, so that νκ is an extremal point.

In conclusion, the theorem follows from Claim i, Claim ii and Claim
iii. �

6.5 An example: Gaussian Ornstein-Uhlenbeck pro-
cess

In this section we will give an example for the representation of extremal
points in the concrete case of Ornstein-Uhlenbeck processes driven by Brow-
nian motion.
Let S ⊂ H ⊂ S∗ be a Gelfand triple.
Consider a family (µs,t)s≤t of centered Gaussian probability measures on(
S∗,B(S∗)

)
. The measures µs,t, s ≤ t, are determined by the Fourier trans-

form, which is given by Proposition 6.11 in the spacial case b = 0 andM = 0.
Therefore, for every s ≤ t, we have

µ̂s,t(a) =

∫
H
ei〈a,x〉µs,t(dx) = e−

∫ t
s λ(σ∗(r)U∗r,ta)dr, a ∈ S,

where λ(a) = 1
2〈a,Ra〉. Recall that, (Us,t)s≤t is a strong evolution family

of the self-adjoint operators and R is a symmetric non-negative trace class
operator on H.

Set Qt(a) = 2λ(σ∗(r))(a). Then we have Theorem 5.1 in [Dyn78] that
states:

Theorem 6.21 Let (πs,t)s≤t be the above introduced two-parameter Mehler
semigroup on

(
S∗,B(S∗)

)
. The set K1(π) is empty unless

a 7→ φ(a) =

∫ t

−∞
Qs(Us,ta)ds
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is a continuous functional on S. If this condition is satisfied, then for every
κ ∈ K(U) there exist a unique extremal π-entrance law νκ such that∫

H
ei〈a,y〉νκt (dy) = ei〈a,κt〉−

1
2

∫ t
−∞Qr(Ur,ta)dr.

Moreover, this formula establishes a one-to-one correspondence between
K(U) and the set of all extremal elements of K1(π).

As one can see, this example is covered by our Theorem 6.20 completely.

6.6 Uniqueness of extremal points of K1(π) associ-
ated with the T -periodic two-parameter semi-
group

In this section, we will show how the explicit representation (6.18) of extremal
points obtained in Theorem 6.20 can be used to prove uniqueness of the
evolution system of measures. More precisely, in Theorem 6.22, we show that
the extremal point is unique in the T -periodic case. This can be seen as the
alternative approach for proving uniqueness, which does not require assuming
the (asymptotic) strong Feller property for the semigroup. In this sense,
Chapter 6 can serve as a counterpart to the ergodicity technique developed
in Chapter 4.

Theorem 6.22 Let in the representation of generalized two-parameter semi-
group in Proposition 6.11, (Us,t)s≤t as well as σ(r) ∈ L(H) are T -periodic
and the Lévy symbol of L has b = 0 and symmetric M . Furthermore, as-
sume that there exist ω > 0 such that U is contractive, i.e., ‖U(s, t)‖L(H) ≤
e−ω(t−s) for every s ≤ t. Then we have a unique T -periodic π-entrance law.

Proof From Theorem 6.20, we know that every extremal point (νt)t∈R
obeys the identity∫

H
ei〈a,y〉νt(dy) = ei〈a,κt〉−

∫ t
−∞ λ(σ∗(r)U∗r,ta)dr.

Moreover, due to the periodicity of U and σ we have∫
H
ei〈a,y〉νt+T (dy) = ei〈a,κt+T 〉−

∫ t+T
−∞ λ(σ∗(r)U∗r,t+T a)dr

= ei〈a,κt+T 〉−
∫ t
−∞ λ(σ∗(r+T )U∗r+T,t+T a)dr

= ei〈a,κt+T 〉−
∫ t
−∞ λ(σ∗(r)U∗r,ta)dr.
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On the other hand, if (νt)t∈R is T -periodic, then νt = νt+T for every t ∈ R.
Therefore

ν̂t = ν̂t+T =⇒ ei〈a,κt〉 = ei〈a,κt+T 〉

=⇒ κt = κt+T

=⇒ κt = Ut,t+Tκt.

Now under the contraction assumption imposed on (Us,t)s≤t, we have κt = 0
for all t ∈ R. As a result, there exists only one extremal point (νt)t∈R with
the characteristic function∫

H
ei〈a,y〉νt(dy) = e−

∫ t
−∞ λ(σ∗(r)U∗r,ta)dr. �

Now we want to justify our result by two examples in which we have T -
periodic semigroup.

1. We start from the following finite dimensional result, which is taken
from [PL07]. Let us consider the stochastic differential equation in Rn

dX(t) = [A(t)X(t) + F (t)]dt+ σ(t)dW (t)
X(r) = x,

(6.21)

whereW (t) is a standard n-dimensional Brownian motion and x ∈ Rn. Also,
we assume that A : R → L(Rn), F : R → Rn and σ : R → L(Rn) are con-
tinuous and T -periodic, for some T > 0. Problem (6.21) under the imposed
assumptions has obviously a unique mild solution X(r, t, x).

Let (pr,t)r≤t be the associated semigroup to the mild solution of equation
(6.21) given by

pr,tf(x) := E[f(X(r, t, x))] =

∫
Rn
f(x)Ng(r,t),Q(r,t)(dy), f ∈ Cb(Rn), r ≤ t,

where the Gaussian measure Ng(r,t),Q(r,t) is the law of X(r, t, x). Its mean
and covariance are defined respectively by

m(r, t) := Ur,tx+ g(r, t), Q(r, t) =

∫ t

r
Us,tσ(s)σ∗(s)U∗s,tds ∈ L(Rn),

where

g(r, t) :=

∫ t

r
Us,tF (s)ds ∈ Rn.
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Proposition 6.23 The family of Gaussian measures (=normal laws) (νt)t≥0

defined by

νt = Ng(−∞,t),Q(−∞,t) (6.22)

constitutes a T -periodic evolution system of measures associated with (pr,t)r≤t.
Conversely, if an evolution system of measures (νt)t∈R is T -periodic, then

they are the measures defined by (6.22).

Proof See Proposition 3.1 in [PL07]. �

Observe that

N̂m,Q(a) = ei〈m,a〉−
1
2
〈Qa,a〉, a ∈ Rn,

which can be rewritten in our framework (dealing with λ) as

ν̂t(a) = ei〈a,g(−∞,t)〉−
∫ t
−∞ λ

(
σ∗(s)U∗s,ta

)
ds.

If we assume that F = 0 and σ = 1, then we will get (6.18) with λ(a) =
1
2〈a,Qa〉 and κ = 0. So, this result is completely covered by our Theorem
6.20.

2. The previous example has been generalized in [Knä11] to infinite
dimensional framework with Lévy noise. Let us consider the following SDE

dX(t) = [A(t)X(t) + F (t)]dt+ σ(t)dL(t)
X(r) = x

(6.23)

on a Hilbert space H, where A(t) : D(A) ⊂ H → H are linear operators
which generate a strong evolution family U = (U(r, t))0≤r≤t≤T in H, all
coefficients are T -periodic, and L is an H-valued Lévy process. Furthermore,
σ : R → L(H) is strongly continuous and bounded in operator norm and
F : R→ H is uniformly Hölder continuous.

Let pr,tf(x) := E[f(X(r, t, x))] for r ≤ t, where X(r, t, x) is the unique
mild solution of (6.23) and f ∈ Bb(H). Then, in Section 4 of [Knä11], it is
proved that (pr,t)r≤t is a Markovian semigroup.
Then the measures µr,t, r ≤ t, defined in Proposition 6.11 are in fact the
distribution of the stochastic convolution

∫ t
r Us,tσ(s)dL(s).

Furthermore, µr,t, r ≤ t, are also T -periodic and therefore λt introduced in
(6.9) is also T -periodic.

In [Knä11], it is considered a special case when λ is time-independent.
Theorem 4.11 states the following uniqueness result.
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Theorem 6.24 Let us assume that
∫
‖x‖>1‖x‖ν(dx) <∞ for the Lévy inten-

sity measure ν and U is a family of contraction strong evolution operators.
Then the functions

ν̂t(a) = ei〈a,
∫ t
−∞ Us,tF (s)ds〉−

∫ t
−∞ λ

(
σ∗(r)U∗s,ta

)
ds

are Fourier transforms of an T -periodic evolution system of measures asso-
ciated to (pr,t)r≤t.
Any other T -periodic evolution system of measures coincides with the above.

In particular, if we assume that F = 0 and σ = 1, then

ν̂t(a) = e
∫ t
−∞ λ

(
U∗s,ta

)
ds.

As we see, the above special case is completely covered by our general The-
orem 6.20 when κ = 0.
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Chapter 7

Applications to Stochastic
Differential Equations

This Chapter is devoted to concrete applications of our general results ob-
tained in Chapter 4. Mainly, we want to check the sufficient condition to
have the unique evolution system of measures. We will discuss the validity of
asymptotic strong Feller property for the semigroups associated with a quite
general SPDEs with additive jump noise. In Section 7.2, we first prove the
existence and uniqueness of mild solutions to a large class of SPDEs driven
by Lévy noise. This result is of an essential interest in its own and will be
used later to construct the corresponded Markovian semigroup. The main
result of this chapter is Theorem 7.18, which states the asymptotic strong
Feller property for the two-parameter semigroup associated with the SPDE
(7.12).

7.1 Non-autonomous SPDE

We are given real separable Hilbert spaces G and H. If this does not lead
to misunderstanding, we denote the norm in G resp. H just by ‖·‖. Let(
Ω,F ,P

)
be a complete probability space with a right-continuous filtration

(Ft)t≥0 on
(
Ω,F ,P

)
such that F0 contains all P-null sets.

We consider a general non-autonomous stochastic differential equation on
the time interval t ∈ [r, T ], −∞ < T ≤ ∞,

dX(t) = [A(t)X(t) + F (t,X(t))]dt+ σ(t,X(t))dL(t)
X(r) = x

(7.1)

where L is a G-valued Lévy process with characteristics (b,Q, ν).
Without lose of generality, one can concentrate on the case r = 0 as the

107
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initial starting time. So we have for t ∈ [0, T ]

dX(t) = [A(t)X(t) + F (t,X(t))]dt+ σ(t,X(t))dL(t),
X(0) = x.

(7.2)

Let recall that ΩT := Ω × [0, T ] and RT is the σ-algebra of predictable
subsets of ΩT (cf. Definition 2.45). We impose the following conditions on
the coefficients of equation (7.2)

Hypothesis 7.1 (i) x ∈ L2(Ω,F0,P;H) is a given initial condition

(ii) (A(t))t∈[0,T ] generates a strong evolution family U = (U(s, t))0≤s≤t≤T
in H, as we have introduced in Section 6.2.

(iii) F is a measurable function from
(
ΩT ×H,RT ⊗B(H)

)
to (H,B(H)).

(iv) σ is a strongly measurable mapping from ΩT ×H to L(G,H), i.e., σ(x)
is
(
RT ⊗B(H)

)
/B(H)-measurable for each x ∈ G.

We also assume that

• there exist M > 0 and ω > 0 such that

‖U(s, t)‖L(H) ≤Me−ω(t−s), s ≤ t. (7.3)

Hence we can set

MT := sup
0≤s≤t≤T

‖U(s, t)‖L(H) <∞.

Definition 7.2 A process Y : ΩT → H is called H-predictable if it is
RT /B(H)-measurable. We define the Banach space

H 2(T,H) := {Y (t), t ∈ [0, T ] | Y is an H-predictable processs.t.

sup
t∈[0,T ]

E[‖Y (t)‖2] <∞}

which is equipped with the norm

‖Y ‖H 2 := sup
t∈[0,T ]

(E[‖Y (t)‖2])
1
2 .

Hypothesis 7.3 (i) F is Lipschitz continuous, i.e., there exists a constant
LipF > 0 such that for all t ≥ 0, ω ∈ Ω and x, y ∈ H

‖F (t, ω, x)− F (t, ω, y)‖H ≤ LipF · ‖x− y‖.

(ii) σ is Lipschitz continuous, i.e., there exists a constant Lipσ > 0 such
that all t ≥ 0, ω ∈ Ω and x, y ∈ H

‖σ(t, ω, x)− σ(t, ω, y)‖L(G,H) ≤ Lipσ · ‖x− y‖.
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(iii) There is a constant C > 0 such that

sup
(s,ω)
‖F (s, ω, 0)‖H ≤ C, sup

(s,ω)
‖σ(s, ω, 0)‖L(G,H) ≤ C.

(iv) L fulfills the following condition on its intensity measure ν∫
{‖x‖≥1}

‖x‖2ν(dx) <∞.

Remark 7.4 For the measure ν, we obtain
∫
‖x‖≤1‖x‖

2ν(dx) <∞, because∫
‖x‖≤1

‖x‖2ν(dx) = lim sup
n→∞

∫
1
n
<‖x‖≤1

‖x‖2ν(dx)

lim sup
n→∞

V ar

[ ∫
1
n
<‖x‖≤1

xN(1, dx)

]
= V ar[L1

j ] <∞

Remark 7.5 If ∫
{‖x‖≥1}

‖x‖2ν(dx) <∞,

then by Remark 7.4 we have∫
G\{0}

‖x‖2ν(dx) <∞. (7.4)

Conventionally, we will extend ν and Ñ(t, .) to (G,B(G)) by assigning Ñ(t, {0}) =
ν({0}) = 0 for all t ∈ [0, T ].
Let us set Cν :=

∫
G ‖x‖

2 ν(dx).
Actually, (7.4) is equivalent to claiming that the Lévy process L on a Hilbert
space G is square integrable.

Remark 7.6 The Lipschitz constants LipF and Lipσ can be chosen in such
a way that

‖F (s, ω, x)‖H ≤ LipF (1 + ‖x‖H)

‖σ(s, ω, x)‖L ≤ Lipσ(1 + ‖x‖H)

for all s ∈ [0, T ], ω ∈ Ω and x ∈ H. Indeed, we have

‖F (s, ω, x)‖H ≤ ‖F (s, ω, x)− F (s, ω, 0)‖H + ‖F (s, ω, 0)‖H
≤ LipF ‖x‖+ sup

(s,ω)
‖F (s, ω, 0)‖H

≤ (LipF ∨ C)(1 + ‖x‖).

The same also holds for σ.
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Remark 7.7 In Subsection 2.7.1 we defined the Hilbert space G0 := Q
1
2 (G)

for the non-negative symmetric trace class operator Q. Then we set L0
2 :=

L2(G0 = Q
1
2 (G), H)), which is the space of all Hilbert-Schmidt operator from

G0 to H. Then any operator A ∈ L(G,H) certainly belongs to L2(G0, H) and
obeys ‖A‖L02 ≤ ‖A‖L(G,H) · [tr(Q)]

1
2 . Obviously, condition (ii) in Hypothesis

7.3 implies that σ is Lipschitz continuous w.r.t. x in the space L2(G0, H),
i.e.,

‖σ(t, ω, x)− σ(t, ω, y)‖L02 ≤ Lipσ · [tr(Q)]
1
2 · ‖x− y‖. (7.5)

For convenience, set L̃ipσ := Lipσ · (tr(Q))
1
2 .

Similarly, Condition (iii) in Hypothesis 7.3, implies that

sup
(s,ω)
‖σ(s, ω, 0)‖L02 ≤ C · [tr(Q)]

1
2 . (7.6)

Respectively, we set C̃ := C · (tr(Q))
1
2 .

Then the Lipschitz continuity condition (7.5) and boundedness condition
(7.6) guarantee the solvability of SDE (7.2) w.r.t the Wiener noise BQ.
Also, the strong measurability of σ stated in Hypothesis 7.1 (iv) implies the
L2(G0, H))-measurability of σ.

Definition 7.8 An H-valued predictable process Xt, t ∈ [0, T ], is called a
mild solution of equation (7.2) if the following identity holds P-a.s.

X(t) = U(0, t)x+

∫ t

0
U(s, t)F (s,X(s))ds+

∫ t

0
U(s, t)σ(s,X(s))dL(s)

for each t ∈ [0, T ].
Here, the first integral is a Bochner-type integral which will be discussed in
Lemma 7.9 and Lemma 7.11 and second one is a stochastic convolution-type
integral which will be considered during the proof of Theorem 7.14.

Note that in the general case with the initial condition x at starting time r
we say (Xt)t∈[r,T ] is a mild solution of equation (7.1) if P-a.s.

X(t) = U(r, t)x+

∫ t

r
U(s, t)F (s,X(s))ds+

∫ t

r
U(s, t)σ(s,X(s))dL(s).

7.2 Mild solution to non-autonomous SDE with cor-
responding Lévy process

In this section we show existence of the unique mild solution to the Cauchy
problem (7.2) under appropriate conditions. The existence and uniqueness
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of Mild solution to an equation similar to (7.2) but with Brownian motion
has been obtained in [Ver10].

Before proving the main assertion, we need some preparation (similar
results were proven in the case of one-parameter semigroup in [FK01] and
[Kno03]).

Lemma 7.9 If Y : ΩT → H is RT -measurable, then the mapping

Ỹ : ΩT → H

(r, ω) → 1[0,t[(r)U(r, t)Y (r, ω)

is also RT -measurable for each fixed t ∈ [0, T ].

Proof We will do the proof in two steps.
Step 1: Let Y =

∑n
k=1 xk1Ak where n ∈ N, xk ∈ H, 1 ≤ k ≤ n and

Ak ∈ RT , 1 ≤ k ≤ n, is a disjoint covering of ΩT . Then

Ỹ : ΩT → H

(r, ω) → 1[0,t[(r)U(r, t)Y (r, ω) = 1[0,t[(r)
n∑
k=1

U(r, t)xk1Ak(r,ω).

Now for B ∈ B(H)

Ỹ −1(B) =

n⋃
k=1

(
{r ∈ [0, T ] | 1[0,t[(r)U(r, t)xk ∈ B}︸ ︷︷ ︸

∈B([0,T ])

×Ω
)

︸ ︷︷ ︸
∈RT

∩Ak

since U is strongly continuous (See Definition 6.8, part (iii)). So Ỹ is RT -
measurable.

Step 2: Let Y be an arbitrary predictable process.
From Lemma 1.1 in [PZ92], we know that there exists a sequence Yn, n ∈ N,
of simple H-valued predictable process such that Yn goes pointwisely and
monotonely to Y , i.e.,

Yn(r, ω)
n→∞−−−→ Y (r, ω), for all (r, ω) ∈ ΩT .

Furthermore, U(s, t) ∈ L(H) for all s, t ∈ [0, T ], so that

Ỹ (r, ω) := 1[0,t[(r)U(r, t)Y (r, ω) = lim
n→∞

1[0,t[(r)U(r, t)Yn(r, ω).

Hence the predictability of Ỹ follows from the predictability of Ỹn in Step1.
And the proof of lemma is complete. �
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Lemma 7.10 If Y is a predictable H-valued process and σ ∈ L0
2 = L2(G0 =

Q
1
2 (G), H) then the mapping

(r, ω) 7→ 1[0,t[(r)U(r, t)σ(r, Y (r, ω))

is RT /B(L0
2)-measurable

Proof Arguments follow directly from the previous lemma. Let h̃j :=√
λjhj , where (λj)j∈N, λj ≥ 0, are eigenvalues of Q and (hj)j∈N are eigen-

vectors of Q. Then the vectors (ek ⊗ h̃j = ek〈h̃j , ·〉G)k,j∈N constitute an or-
thonormal bases of L2(Q

1
2 (G), H), where (ek)k∈N and (h̃j)j∈N are orthonor-

mal bases in H and G0, respectively. So,

(s, ω) 7→ 〈ek ⊗ h̃j ,1[0,t[(s)U(s, t)σ(s, Y (s, ω))〉L02
= 〈ek,1[0,t[(s)U(s, t)σ(s, Y (s, ω))

√
λjhj〉H

is predictable by Lemma 7.9. Hence, we conclude that

(s, ω) 7→ 1[0,t[(s)U(s, t)σ(s, Y (s, ω))

is predictable. �

Lemma 7.11 Let Φ be a predictable H-valued process which is P-a.s. Bochner
integrable. Then the process given by∫ t

0
U(s, t)Φ(s)ds, t ∈ [0, T ],

is P-a.s. continuous in H and Ft-adapted. This especially implies that it is
predictable.

Proof From Lemma 7.9 we have that the integrand process 1[0,t[(s)U(s, t)Φ(s),
s ∈ [0, T ], is predictable and obeys in addition

‖1[0,t[(s)U(s, t)Φ(s)‖ ≤MT ‖Φ(s)‖, s ∈ [0, T ].

Hence the Bochner integrals
∫ t

0 U(s, t)Φ(s)ds, t ∈ [0, T ], are well-defined
P-a.s.

To check the continuity, let us estimate for 0 ≤ t1 ≤ t2 ≤ T∥∥ ∫ t1
0 U(s, t1)Φ(s)ds−

∫ t2
0 U(s, t2)Φ(s)ds

∥∥
≤

∫ t1
0

∥∥[U(s, t1)− U(s, t2)]Φ(s)
∥∥ds+

∫ t2
t1

∥∥U(s, t2)Φ(s)
∥∥ds (7.7)

Concerning the first integral, let us observe that |t1 − t2| → 0 implies

‖1[0,t1[(s)
[
U(s, t1)− U(s, t2)

]
Φ(s)‖ → 0, s ∈ [0, T ],
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because of the strong continuity of U . Furthermore, we have the uniform
bound

‖1[0,t1[(s)
[
U(s, t1)− U(s, t2)

]
Φ(s)‖

≤ 1[0,t1[(s)
[
‖U(s, t1)‖L(H) + ‖U(s, t2)‖L(H)

]
‖Φ(s)‖

≤ 2MT ‖Φ(s)‖.

So, one can apply Lebesgue’s dominated convergence theorem to get the
continuity of the first integral in the right-hand side of (7.7).
Concerning the second integral, we observe that similarly to the above∫ t2

t1

‖U(s, t2)Φ(s)‖ds ≤
∫ t2

t1

MT ‖Φ(s)‖ds→ 0,

as |t1 − t2| → 0, and via the same argument we get the required continuity.
Finally, note that for every fixed t ∈ [0, T ]

(s, ω) 7→ 1[0,t[(s)U(s, t)Φ(s, ω)

is B([0, T ])⊗Ft-measurable because (s, ω)→ U(s, t)Φ(s, ω) isRT -measurable
and (

[0, t[×Ω
)
∩RT ⊂ B

(
[0, T ]

)
⊗Ft.

Hence,

ω 7→
〈∫ t

0
U(s, t)Φ(s, ω)ds, x

〉
=

∫ t

0
〈U(s, t)Φ(s, ω), x〉ds

=

∫ T

0
〈1[0,t[(s)U(s, t)Φ(s, ω), x〉ds

is Ft-measurable by the real Fubini theorem and therefore the Bochner in-
tegral itself is Ft-measurable. �

The predictability follows from the following general fact.

Lemma 7.12 Let Φ be a process on (Ω,F ,P, (Ft)t∈[0,T ]) taking values in a
Banach space H. If Φ is adapted to (Ft)t∈[0,T ] and stochastically continuous
then there exists a predictable version of Φ.

Proof ( [PZ92], Proposition 3.6 (ii)) �

Lemma 7.13 Let (xn,m)m∈N, n ∈ N, be sequences of real numbers such that
for each n ∈ N there exists xn ∈ R with xn,m → xn as m goes to ∞. If there
exists a further sequence yn, n ∈ N, such that |xn,m| ≤ yn for all m ∈ N and∑

n∈N yn <∞, then

lim
m→∞

∑
n∈N

xn,m =
∑
n∈N

xn
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Proof The claim is a simple consequence of Lebesgue’s dominated conver-
gence theorem. �

Now, we prove the main result of this section. Note that in [Knä06],
the existence and uniqueness of mild solution for the autonomous version of
equation (7.2) has been discussed.

Theorem 7.14 Under Hypothesis 7.1 and 7.3 there exists a unique mild
solution X(x) of equation (7.2) with initial condition x ∈ L2(Ω,F0,P;H).

Proof Let t ∈ [0, T ] and x ∈ L2(Ω,F0,P;H) be fixed. For X ∈H 2(T,H)
we define

γ(X)(t) := U(0, t)x+

∫ t

0
U(s, t)F (s,X(s))ds+

∫ t

0
U(s, t)σ(s,X(s))dL(s)

(7.8)

We will apply the fixed point method to find the unique X such that γ(X) =
X in H 2(T,H).
Thus, we show that γ is a well-defined mapping on H 2(T,H) and it is
a strict contraction. Then by the Banach fixed-point theorem we get the
existence and uniqueness of the mild solution.

Note that we can use Lévy-Itô’s decomposition theorem (see Theorem
2.39) to rewrite Definition 7.8. Meanwhile, Remark 2.40 and part (iv) of
Hypothesis 7.3 as well as Remark 7.5, together cause that our decomposition
appear as the following identity

γ(X)(t) = U(0, t)x+ IF (t) + Iσ,m(t) + Iσ,Q(t) + Iσ,Ñ (t)

holding P-a.s. for each t ∈ [0, T ], where

IF (t) =

∫ t

0
U(s, t)F (s,X(s))ds

Iσ,m(t) =

∫ t

0
U(s, t)σ(s,X(s))mds

Iσ,Q(t) =

∫ t

0
U(s, t)σ(s,X(s))dBQ(s)

Iσ,Ñ (t) =

∫ t

0

∫
G
U(s, t)σ(s,X(s))xÑ(ds, dx)

As one see clearly, IF (t) and Iσ,m(t) are Bochner’s integrals with respect to
Lebesgue’s measure, so they can be examined by the same arguments. Fur-
thermore, Iσ,Q(t) and Iσ,Ñ (t) are stochastic convolution-type integrals resp.
Brownian motion BQ and compensated poisson measure Ñ and we will eval-
uate them during the proof of Theorem 7.14.



7.2. Mild solution to non-autonomous SDE with corresponding
Lévy process 115

Step1: The mapping γ : H 2(T,H)→H 2(T,H) is well-defined.
Let x ∈ L2(Ω,F0,P;H) and X ∈H 2(T,H).

• U(0, t)x: is predictable because, for every fixed ω, the map t 7→ U(0, t)x(ω)
is continuous and, for every fix t ∈ [0, T ], U(0, t)x is F0-measurable. So
(t, ω) 7→ U(0, t)x(ω) is predictable.
Furthermore, it has finite norm in H 2(T,H) due to the estimate

‖U(0, t)x‖H 2 = sup
t∈[0,T ]

(
E(‖U(0, t)x‖2)

) 1
2 ≤MT ‖x‖ <∞.

• IF (t) and Iσ,m(t): we can apply Lemma 7.11 to show the existence
of a predictable version. To this end, it is sufficient to check the Bochner
integrability of F . Indeed,

E[

∫ t

0
‖F (s,X(s))‖ds] ≤

∫ t

0
E
[
LipF (1 + ‖X(s)‖)ds

]
≤ T LipF (1 + ‖X‖H 2) <∞.

Similarly, one can analyse the term Iσ,m.
Next, ‖IF (t)‖H 2 can be estimated as follows:

‖IF (t)‖H 2 = sup
0≤t≤T

[
E[‖
∫ t

0
U(s, t)F (s,X(s))ds‖2]

] 1
2

≤MTT
1/2 LipF sup

t∈[0,T ]

( ∫ t

0
E(1 + ‖X(s)‖)2ds

) 1
2

≤
√

2 MT T
1/2 LipF sup

t∈[0,T ]

( ∫ t

0
(1 + E‖X(s)‖2)ds

) 1
2

≤
√

2 MT T LipF (1 + ‖X‖H 2) <∞,

where we used an elementary inequality (a+ b)2 ≤ 2(a2 + b2).
Also, ‖Iσ,m‖H 2 <∞ can be shown similarly.

• Iσ,Q(t): First we should check the well-definiteness of the integral by
applying Lemma 7.10. Since the integrand 1(0,t](s)U(s, t)σ(s,X(s)), s ∈
[0, t], is in N 2

B(T ), then

(s, ω) 7→ 1(0,t](s)U(s, t)σ(s, ω,X(s, ω))

is RT /B(L2(G0, H))-measurable.
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Moreover, by Itô’s isometry (see Proposition 2.49):

‖Iσ,Q(t)‖2N 2
B(T )

= E
[∥∥ ∫ t

0 U(s, t)σ(s,X(s))dBQ(s)
∥∥2]

= E[
∫ t

0

∥∥U(s, t)σ(s,X(s))Q
1
2

∥∥2

L2ds]

≤M2
T L̃ipσ

2
tr(Q)

∫ t
0 E(1 + ‖X(s)‖2)ds

≤M2
T T L̃ipσ

2
tr(Q) 2(1 + ‖X‖2H 2) <∞.

(7.9)

So, for each t ∈ [0, T ], the integral Iσ,Q(t) is well-defined and Ft-adapted.
Next we check whether it has the finite H 2(T,H)-norm.
Since

‖Iσ,Q(t)‖H 2 = sup
t∈[0,T ]

(
E
[∥∥ ∫ t

0
U(s, t)σ(s,X(s))dBQ(s)

∥∥2])1/2

= sup
t∈[0,T ]

(
E
∫ t

0
‖U(s, t)σ(s,X(s))Q

1
2 ‖2L2ds

)1/2

,

thus the assertion follows by estimate (7.9).

And finally, the existence of a predictable version can be obtained from
Lemma 7.12. Since the required Ft-adaptedness has been already shown, it
just remains to check the stochastic continuity property. If one can prove
that t 7→ Iσ,Q(t) ∈ H is continuous in the mean-square, then the claim is
obtained.

We follow the method used in a similar situation in [FK01]. The idea is
to show first that, for any fixed α > 1, the process

[0, T ] 3 t 7→
∫ t/α

0
U(s, t)σ(s,X(s))dBQ(s)

is mean-square continuous. Note that for t ∈ [0, T ]∫ t/α

0
U(s, t)σ(s,X(s))dBQ(s) =

∫ t/α

0
U(αs, t)U(s, αs)σ(s,X(s))dBQ(s)

=

∫ t/α

0
U(αs, t)Φα(s)dBQ(s),

where

Φα(s) := 1(0,T ](s)U(s, αs)σ(s,X(s)), s ∈ [0, T ],

belongs to N 2
B(T ). The method is based on [PZ92], Lemma 1.1.
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(a) In the first step, let Φ be a simple process of the form Φ =
∑m

i=1 ui1Ai
with ui ∈ L0

2(G,H) and Ai ∈ RT . Now, for every t ∈ [0, T ] and Φ being a
simple process, we have

E
(
‖
∫ t

0
U(s, t)Φ(s)dBQ(s)‖2

)
≤ E

(∫ t

0
‖U(s, t)Φ(s)Q

1
2 ‖2L2ds

)
≤

m∑
i=1

E
[ ∫ t

0
1Ai(s, ·)‖U(s, t)uiQ

1
2 ‖2L2

]
≤ tr(Q) ·

m∑
i=1

∫ t

0
‖U(s, t)ui‖2L02ds.

So, (
E
[
‖
∫ t/α

0
U(αs, t)Φ(s)dBQ(s)−

∫ r/α

0
U(αs, r)Φ(s)dBQ(s)‖2

]) 1
2

≤ [E‖
∫ r/α

0
(U(αs, t)− U(αs, r))Φ(s)dBQ(s)‖2]

1
2

+ [E‖
∫ t/α

r/α
U(αs, t)Φ(s)dBQ(s)‖2]

1
2

≤ tr(Q)
1
2

m∑
i=1

( ∫ r/α

0
‖[U(αs, t)− U(αs, r)]ui‖2L02ds

) 1
2

+ tr(Q)
1
2

m∑
i=1

( ∫ t/α

r/α
‖U(αs, t)ui‖2L02ds︸ ︷︷ ︸

≤ t−r
α

M2
T ‖ui‖

2
L02

|t−r|→0−−−−−→0

) 1
2 .

For the first summation, by the strong continuity of the semigroup U we
have for each n ∈ N and an orthonormal basis (ẽn)n∈N of G0,

1[0,r/α)(s)‖
(
U(αs, t)− U(αs, r)

)
uiẽn‖2

|t−r|→0−−−−−→ 0. (7.10)

Note that (7.10) is obviously bounded by 4M2
T ‖uiẽn‖2. Then we get from

Lemma 7.13 that

1[0,r/α)(s)‖
(
U(αs, t)− U(αs, r)

)
ui‖2L02

=
∑
n∈N

1[0,r/α)(s)‖
(
U(αs, t)− U(αs, r)

)
uien‖2

is pointwisely convergent to 0 as |t−r| → 0. Also it is bounded by 4M2
T ‖ui‖2L02 .

Finally Lebesgue’s dominated theorem gives us the convergence of the dis-
cussed summation to 0.
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All together, we have the mean-square continuity of the∫ t

0
U(s, t)Φ(s)dBQ(s)

when Φ is a simple process.
(b) Let Φ be an arbitrary element in N 2

B(T ). Applying [PZ92], Lemma
1.1, there exists a sequence (Φn)n∈N of simple processes such that

E
[ ∫ T

0
‖Φ(s)− Φn(s)‖2L02ds

] n→∞−−−→ 0.

Moreover,

sup
t∈[0,T ]

E
[∥∥ ∫ t/α

0
U(αs, t)(Φn(s)− Φ(s))dBQ(s)

∥∥2]
≤ M2

T tr(Q) E
[ ∫ T

0
‖(Φn(s)− Φ(s))‖2L02ds

] n→0−−−→ 0.

It means that
∫ t/α

0 U(αs, t)Φn(s)dBQ(s) converges in L2(Ω;H) to∫ t/α

0
U(αs, t)Φ(s)dBQ(s)

uniformly in t ∈ [0, T ]. So, for every process Φ ∈ N 2
B(0, T ) and particularly

for Φα, we get the mean-square continuity of∫ t/α

0
U(s, t)σ(s,X(s))dBQ(s).

Now, we are able to prove that
∫ t

0 U(s, t)σ(s,X(s))dBQ(s), t ∈ [0, T ], is
also mean-square continuous. Let (αn)n∈N be a sequence of real numbers
such that αn ↘ 1 as n→∞, then

sup
t∈[0,T ]

E
[∥∥∥∥ ∫ t/αn

0
U(s, t)σ(s,X(s))dBQ(s)−

∫ t

0
U(s, t)σ(s,X(s))dBQ(s)

∥∥∥∥2]
≤ M2

T tr(Q) L̃ipσ
2

sup
t≤T

E
[ ∫ T

0
1( t

αn
,t](s)(1 + ‖X(s)‖)2ds

]
︸ ︷︷ ︸

≤2(1+‖X‖H 2 ) supt≤T (t− t
αn

)≤2(1+‖X‖H 2 )T αn−1
αn

n→∞−−−→ 0.

This shows that ∫ t/αn

0
U(s, t)σ(s,X(s))dBQ(s)
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converges uniformly in t ∈ [0, T ] to
∫ t

0 U(s, t)σ(s,X(s))dBQ(s) as n→∞, so
that

∫ t
0 U(s, t)σ(s,X(s))dBQ(s) obeys the continuity property that we are

interested in. By Lemma 7.12, there exists a predictable version for it.

•Iσ,Ñ (t): For well-definiteness of the stochastic integral Iσ,Ñ (t) we need to
check that for each t ∈ [0, T ] the integrand process 1(0,t](s)U(s, t)σ(s,X(s)),
s ∈ [0, t], is in N 2

ν (T ). By Lemma 7.10, we know that

(s, ω)→ 1(0,t](s)U(s, t)σ(s, ω,X(s, ω))

is RT /B(L(G,H))-measurable. This means that for all g ∈ G,

(s, ω)→ 1(0,t](s)U(s, t)σ(s, ω,X(s, ω))g

is RT /B(H)-measurable. Moreover,

‖Iσ,Ñ (t)‖2N 2
ν (T )

= E
[∥∥ ∫ t

0

∫
G U(s, t)σ(s,X(s))xÑ(ds, dx)

∥∥2]
= E

[ ∫ t
0

∫
G

∥∥U(s, t)σ(s,X(s))x
∥∥2

H
ν(dx)ds

]
≤

∫ t
0 E
[
‖U(s, t)‖2L(H)‖σ(s,X(s))‖2L(G,H)

] ∫
G‖x‖

2
Gν(dx)ds

≤ M2
T T Lip2

σ 2Cν(1 + ‖X‖2H 2) <∞.

(7.11)

Furthermore, by the construction of stochastic integrals with respect to
a compensated Poisson measure Ñ (see Subsection 2.7.2), Iσ,Ñ (t) is Ft-
adapted.

Next we check, whether Iσ,Ñ (t) has the finite H 2(T,H)-norm.
We have

‖Iσ,Ñ (t)‖H 2 = sup
t∈[0,T ]

(
E
[∥∥ ∫ t

0

∫
G
U(s, t)σ(s,X(s))xÑ(ds, dx)

∥∥2])1/2

= sup
t∈[0,T ]

(
E[

∫ t

0

∫
G
‖U(s, t)σ(s,X(s))x‖2Hν(dx)ds]

)1/2

,

which is finite due to estimates (7.11).

Next, we should prove the existence of a predictable version for adapted
process Iσ,Ñ (t). But the mean-square continuity of Iσ,Ñ (t) would immedi-
ately imply the required property.
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Let α > 1 and r ≤ t, then we have by Itô’s isometry (see Proposition 2.52)(
E
[∥∥∥∥ ∫ t/α

0

∫
G
U(αs, t)Φ(s)xÑ(ds, dx)

−
∫ r/α

0

∫
G
U(αs, r)Φ(s)xÑ(ds, dx)

∥∥∥∥2]) 1
2

≤
(
E
[∥∥∥∥ ∫ r/α

0

∫
G

[U(αs, t)− U(αs, r)]Φ(s)xÑ(ds, dx)

∥∥∥∥2]) 1
2

+

(
E
[∥∥∥∥ ∫ t/α

r/α

∫
G
U(αs, t)Φ(s)xÑ(ds, dx)

∥∥∥∥2]) 1
2

≤
(
E
[ ∫ r/α

0

∫
G

∥∥∥∥[U(αs, t)− U(αs, r)]Φ(s)x

∥∥∥∥2

H

ν(dx)ds

]) 1
2

+

(
E
[ ∫ t/α

r/α

∫
G

∥∥∥∥U(αs, t)Φ(s)x

∥∥∥∥2

H

ν(dx)ds

]) 1
2

.

The first summand can be written as(
E
[ ∫ T

0

∫
G
1(0,r/α]

∥∥∥∥[U(αs, t)− U(αs, r)]Φ(s)x

∥∥∥∥2

H

ν(dx)ds

]) 1
2

.

It converges to 0 as |t− r| → 0 by Lebesgue’s dominated convergence the-
orem since the integrand converges pointwisely to 0 as |t− r| → 0 and is
bounded by 4M2

T ‖Φ(s)‖2, where

E
[ ∫ T

0

∫
G
‖Φ(s)x‖2Hν(dx)ds

]
<∞.

For the second integral, we observe that(
E
[ ∫ t/α

r/α

∫
G

∥∥∥∥U(αs, t)Φ(s)x

∥∥∥∥2

H

ν(dx)ds

]) 1
2

≤ MT

(
E
[ ∫ t/α

r/α
‖Φ‖2L(G,H)

∫
G
‖x‖2ν(dx)ds

]) 1
2

≤ M2
T Lipσ

√
2 C

1
2
ν

(∫ T

0
1(r/α,t/α](s)

(
1 + ‖X(s)‖

)2
ds

) 1
2

≤ M2
T Lipσ 2 C

1
2
ν

(
1 + ‖X‖H 2

)
T (
t− r
α

).

This part also vanishes as |t− r| → 0. And this ends the proof for Iσ,Ñ (t).
As a result, we have the mean-square continuity of Iσ,Q(t) and Iσ,Ñ (t).
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Step2: The mapping γ : H 2(T,H) → H 2(T,H) is a strict contraction
for small enough T > 0.
Let X1, X2 ∈H 2(T,H) and x ∈ L2(Ω,F0,P, H), then

‖γ(X1)− γ(X2)‖H 2

≤ sup
t∈[0,T ]

(
E[‖
∫ t

0
U(s, t)(F (s,X1(s))− F (s,X2(s)))‖2]

) 1
2

+ sup
t∈[0,T ]

(
E[‖
∫ t

0
U(s, t)(σ(s,X1(s))− σ(s,X2(s)))mds‖2]

) 1
2

+ sup
t∈[0,T ]

(
E[‖
∫ t

0
U(s, t)(σ(s,X1(s))− σ(s,X2(s)))dBQ(s)‖2]

) 1
2

+ sup
t∈[0,T ]

(
E[‖
∫ t

0

∫
G
U(s, t)(σ(s,X1(s))− σ(s,X2(s)))xÑ(dt, dx)‖2]

) 1
2

≤ MT LipF T ‖X1 −X2‖H 2 + MT Lipσ ‖m‖ T ‖X1 −X2‖H 2

+ MT L̃ipσ tr(Q)
1
2 T 1/2 ‖X1 −X2‖H 2 + MT Lipσ T

1/2 C
1
2
ν ‖X1 −X2‖H 2

Here, the last inequality follows from the same procedure which we have
done to prove the finiteness of H 2-norm for every component. For T = T1

chosen sufficiently small, the contraction of γ holds in interval [0, T1]. So
there is a unique mild solution X in [0, T1]. In order to construct a solution
for a general T once we have a solution in [0, T1], we start again with the
new initial value X(T1) in interval [T1, 2T1]. Since the constants involved
only depend on T , the method will be followed in the same way as for [0, T1].
By repeating this procedure, we can construct the solution X on the whole
interval [0, T ].

So the proof of theorem is complete. �

Remark 7.15 Actually, our method based on the approximation of convo-
lution integral

∫ t
0 U(s, t)σ(s, x)dB(s) by

∫ t/α
0 U(s, t)σ(s, x)dB(s) as α ↘ 1

allows to prove the mean-square continuity of the stochastic convolution in-
tegrals even with cylindrical Wiener noise (see [FK01] and [Knä06]).

From now on and until the end of the chapter, we assume that F , σ are
deterministic (i.e., non-random) maps and σ does not also depend on X. So,
the main object of our study will be the SDE of the following form:

dX(t) = [A(t)X(t) + F (t,X(t))]dt+ σ(t)dL(t)
X(0) = x

(7.12)

Concerning the differentiability of our mild solution from [MPR10] we
have:
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Theorem 7.16 If F is Gâteaux differentiable such that ∂F ∈ C(H ×H,H)
then the mild solution X(s, t, x) is Gâteaux differentiable with respect to the
initial condition x, P-a.s. and for any direction h ∈ H. Moreover, we have
DhX(s, t, x) = ηh(s, t, x), P − a.s., where ηh(s, t, x) is the mild solution of
the linear equation

d
dtη

h(t, x) = A(t)ηh(t, x) +DF (t,X(t, x))ηh(t, x),

ηh(s, x) = h,

that is , ηh(s, t, x) is the solution of the integral equation

ηh(s, t, x) = Us,th+

∫ t

s
Ur,tDF (r,X(r, x))ηh(r, x)dr, s ≤ t (7.13)

Proof See Theorem 2.6 in [MPR10]. �

7.3 Asymptotic strong Feller property of semigroups
associated with non-autonomous SDEs

Let (ps,t)s≤t be the Markovian semigroup corresponding to the SDE (7.12).
In this section we are going to prove the main result of this chapter claim-
ing the validity of the asymptotic strong Feller property for the semigroup
(ps,t)s≤t.
To this end, we will crucially use dissipating assumption (7.3).

First we need a technical result about approximation of Lipschitz contin-
uous functions.

Lemma 7.17 Let G : H → H, be measurable and Lipschitz continuous
with the constant LipG. Then there exists a sequence of Fk,n : H → H,
k, n ∈ N which are measurable and Lipschitz with constants LipFk,n ≤ LipG.
Moreover, x 7→ Fk,n(x) is infinitely many times continuously differentiable
and for each x

‖Fk,n(x)−G(x)‖ → 0

as n→∞ and k →∞.

Proof The proof is a standard progress. First we do projection. Let
{en}n∈N be an orthonormal basis in H. We define Pn as the projector on
the corresponding n-dimension subspace. Define Gn(x) := G(Pnx). Then
we set Gn(x) = gn

(
〈x, e1〉H , ..., 〈x, en〉

)
where gn : Rn → H. Obviously, gn,

n ∈ N satisfy the Lipschitz continuity with Lipgn = LipG, n ∈ N.
Next, we need regularizations for gn. To this end, we shall use a standard
convolution operator in Rn. Fix any function ϕ ∈ C∞0 (Rn) with ‖ϕ‖L1 = 1
and let (ϕk(x))k∈N be the corresponding Dirac sequence constructed by

ϕk(x) := kdϕ(kx), x ∈ Rn.
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Now, for any gn, n ∈ N, (gn ∗ ϕk)(x) =
∫
Rn gn(x− y)ϕk(y)dy holds

‖(gn ∗ ϕk)‖Lip ≤ ‖gn‖Lip, ‖(gn ∗ ϕk)(x)− gn(x)‖ k→∞−−−→ 0

and also Dα(gn ∗ ϕk) = gn ∗Dαϕk for any α ∈ Z+.
Therefore it is enough to define Fn,k := gn ∗ ϕk. �

The following theorem is the main result of this section.

Theorem 7.18 Assume that for equation (7.1) with its imposed hypothesis,
F also obeys Lipschitz continuity w.r.t. the second variable with the constant
LipF for some ω + M LipF < 0 where ω and M are the constants in (7.3).
Then the Markovian semigroup (ps,t)s≤t associated with equation (7.1) is
asymptotically strong Feller.

Proof We will divide the proof in two steps.
Step1: We prove the claim under the additional assumption that for each

fixed t ∈ [s, T ], H 3 x 7→ F (t, x) is smooth as the approximations construc-
tion in Lemma 7.17. Then the Markovian semigroup (ps,t)s≤t is asymptoti-
cally strong Feller.
Equation (7.13) (which describes the Gâteaux derivative ηh(s, t, x) of the
process X(s, t, x) along direction h) with the initial starting time s ∈ [0, T ]
will be in the following form

ηh(s, t, x) = Us,th+

∫ t

s
Ur,tDF (r,X(s, r, x))ηh(r, x)dr, s ≤ t.

Thus we get

‖ηh(s, t, x)‖ ≤Meω(t−s)‖h‖+ M LipF

∫ t

s
eω(t−r)‖ηh(s, r, x)‖dr, t ∈ [s, T ],

which is equivalent to

e−ω(t−s)‖ηh(s, t, x)‖ ≤M‖h‖+ M LipF

∫ t

s
e−ω(r−s)‖ηh(s, r, x)‖dr.

Hence by Gronwall’s lemma

e−ω(t−s)‖ηh(s, t, x)‖ ≤M‖h‖ · eM LipF (t−s), t ∈ [s, T ],

which implies

‖ηh(s, t, x)‖ ≤M‖h‖ · eM LipF teω(t−s) = Me(ω+M LipF )(t−s)‖h‖.

So DhX(s, t, z) = ηh(s, t, x) is bounded by a linear operator and for its norm
we have

‖DX(s, t, x)‖L(H) ≤Me(ω+M LipF )(t−s), P− a.s., (7.14)
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for all s ≤ t and all x ∈ H.
Next, we want to use Theorem 4.29 for showing the asymptotic strong Feller
property for (ps,t)s≤t. We have by the mean-value theorem and (7.14)

|ps,tf(x)− ps,tf(y)| ≤ E[‖f(X(s, t, x))− f(X(s, t, y))‖]

≤ ‖∇f‖∞ · E[‖X(s, t, x)−X(s, t, y)‖]

≤ ‖∇f‖∞ · E
[

supα∈[0,1]‖DX(s, t, y + α(x− y))‖L(H)

]
· ‖x− y‖

≤ ‖∇f‖∞ ·Me(ω+M LipF )(t−s) · ‖x− y‖
(7.15)

for all f ∈ C1
b (H), x, y ∈ H and r ≤ t. Let {tn}n∈N ⊂ [s, T ] be such

that {tn − s}n∈N is non decreasing and limn→∞(tn − s) = ∞. Define
δn := exp

{
(ω + M LipF )(tn − s)

}
for all n ∈ N. Since ω < −M LipF ≤ 0,

we conclude that δn → 0 when n→∞. So the sufficient condition in Propo-
sition 4.29 is satisfies by Cs = M. And this end the proof of Step1 .

Step2: We will drop the smoothness assumptions on F . So, let F be just
Lipschitz continuous.
We approximate F with smooth functions Fn,k as in Lemma 7.17. Then for
every fixed t ∈ [s, T ]

lim
n→∞

lim
k→∞

Fn,k(t, x) = F (t, x), x ∈ H. (7.16)

Furthermore, since the function Fn,k satisfy Lipschitz continuity with LipFn,k ≤
LipF , thus similarly to Theorem 7.14 one can show that the Cauchy problem

dXn,k(t) = [AXn,k(t) + Fn,k(t,Xn,k)]dt+ σ(t)dL(t), t ≥ s,
Xn,k(s) = x,

has a unique mild solution Xn,k(s, t, x). Moreover, we have a pointwise
convergence

lim
n→∞

lim
k→∞

Xn,k(s, t, x) = X(s, t, x) (7.17)

for all x ∈ H and s ≤ t. Let us prove it. Indeed, We have

‖Xn,k(s, t, x)−X(s, t, x)‖

≤
∫ t

s

∥∥∥∥U(r, t)

(
Fn,k(r,Xn,k(r))− F (r,X(r))

)∥∥∥∥dr
≤
∫ t

s

∥∥∥∥U(r, t)

(
Fn,k(r,Xn,k(r))− Fn,k(r,X(r))

)∥∥∥∥dr
+

∫ t

s

∥∥∥∥U(r, t)

(
Fn,k(r,X(r))− F (r,X(r)))

)∥∥∥∥dr.
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Since Fn,k is Lipschitz continuous with LipFn,k ≤ LipF and ‖Fn,k(r,X(r))−
F (r,X(r))‖ goes to zero via (7.16), we have

‖Xn,k(s, t, x)−X(s, t, x)‖ ≤MT LipF

∫ t

s
‖Xn,k(s, t, x)−X(s, t, x)‖dr +Kn,k(t),

where Kn,k(t) =
∫ t
s

∥∥U(r, t)
(
Fn,k(r,X(r))− F (r,X(r))

)∥∥dr vanishes as
n → ∞ and k → ∞ by Lebesgue’s dominated convergence. Now by Gron-
wall’s lemma, we conclude ‖Xn,k(s, t, x) − X(s, t, x)‖ → 0 pointwisely as
n→∞ and k →∞.

Let us define

pn,ks,t f(x) := E[f(Xn,k(s, t, x))], n, k ∈ N, s ≤ t, x ∈ H,

for all f ∈ Bb(H).
Clearly, from (7.17) and Lebesgue’s dominated convergence theorem, we can
check that

lim
n→∞

lim
k→∞

pn,ks,t f(x) = lim
n→∞

lim
k→∞

E[f(Xn,k(s, t, x))] = E[f(X(s, t, x))] = ps,tf(x)

(7.18)

for all f ∈ Cb(H), x ∈ H, s ≤ t.
Let us fix n, k ∈ N then according to Lemma 7.17, since Fn,k ∈ C2

b (H,H),
(pn,ks,t )s≤t is asymptotically strong Feller. whereas the Lipschitz constant Fn,k
is less or equal to Lipschitz constant F , we obtain from (7.15)

|pn,ks,t f(x)− pn,ks,t f(y)| ≤ ‖∇f‖∞ ·Me
(ω+M LipFn,k )(tn−s) · ‖x− y‖

≤ ‖∇f‖∞ ·Mδn · ‖x− y‖

for all f ∈ C1
b (H), x, y ∈ H, n ∈ N with δn = e(ω+M LipF )(tn−s).

Letting n, k → ∞ and using the convergence, we conclude that (7.18)
(ps,t)s≤t satisfies the required inequality and so is asymptomatically strong
Feller. �

Remark 7.19 In conclusion, under the imposed hypothesis 7.1 and 7.3 with
ω + M LipF < 0, we can show asymptotic strong Feller property for the
associated semigroup (ps,t)s≤t to the mild solution of SDE

dX(t) = [A(t)X(t) + F (t,X(t))]dt+ σ(t)dL(t)
X(s) = x.

If we additionally assume that there exists a common point (s0, x) ∈ R×H,
then we have the uniqueness of T -periodic evolution system of measures and
therefore ergodicity of the system.
Unfortunately, it is not clear whether one can show that there exists a point
(s0, x) such that x is in the support of µs0 for every (µs)s∈R (see [PD08] in
the case of Navier-Stokes equation).
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