Real-Time 3D Segmentation of Cluttered Scenes for Robot Grasping

Andre Uckermann, Robert Haschke and Helge Ritter

Abstract— We present a real-time algorithm that segments
unstructured and highly cluttered scenes. The algorithm ro-
bustly separates objects of unknown shape in congested scenes
of stacked and partially occluded objects. The model-free ap-
proach finds smooth surface patches, using a depth image from
a Kinect camera, which are subsequently combined to form
highly probable object hypotheses. The real-time capabilities
and the quality of the algorithm are evaluated on a benchmark
database. Advantages compared to existing approaches as well
as weaknesses are discussed. We also report on an autonomous
grasping experiment with the Shadow Robot Hand which
employs the estimated shape and pose of objects given by our
algorithm in a task in which it cleans a table.

I. INTRODUCTION

Autonomous grasping of objects from a pile of unknown
objects is still a major challenge in robotics. Although robust
grasp planning and execution approaches are available, they
typically require precise shape and pose information to
select a grasp in an offline optimization process [1], [2]. In
order to acquire the necessary shape and pose information,
traditional approaches typically employ a-priori knowledge
about object models [1], [3], [4], [5], which is used for object
recognition and the subsequent planning process. However,
this approach restricts grasping to objects whose models,
i.e. geometric shape and/or visual appearance, are known
in advance. To relax this constraint, Bohg et al. assume a
reflection symmetry of objects and appropriately augment
an object’s frontal view for grasp planning [6].

In contrast to these traditional, planning-based methods,
biologically motivated approaches exist, which can suc-
cessfully grasp objects based on coarse shape and pose
information without prior planning. While our previous work
in this direction [7] was limited to simple 2D scenes, in
this paper we propose a 3D scene segmentation approach
which separates objects and provides coarse shape and pose
information suitable for grasping. The algorithm is model
free and employs only generic smoothness constraints. The
obtained object information is too coarse to be used for
classical grasp planners, but the compliant grasping scheme
tolerates those inaccuracies.

Our algorithm combines two segmentation methods, both
operating on depth images only: the identification of object
surfaces and edges based on the detection of “surface normal
edges” and a composition of these sufaces into sensible
object hypotheses. The algorithm robustly separates objects

This work was supported by the German Collaborative Research Center
“CRC 673: Alignment in Communication” and the Center of Excellence
Cognitive Interaction Technology (CITEC), both granted by the DFG.
The authors are with the Neuroinformatics Group at Bielefeld University,
Germany. {aueckerm|rhaschke|helge} @techfak.uni-bielefeld.de

Fig. 1.
object segmentation (right).

Raw depth image (left), color image (middle) and resulting 3D

in cluttered scenes as shown in Fig. 1. The approach can
operate in real-time to facilitate interactive usage in human-
robot-cooperation tasks. The main advantage, in contrast
to existing methods, is the capability to separate unknown,
stacked, nearby, and partially occluded objects in a model-
free manner, without prior knowledge of these objects. Nat-
urally, this approach has its limitations compared to model-
based approaches, especially if very complex object shapes
are to be considered. However, it provides an initial object
hypothesis in arbitrary situations, which can be refined by
active exploration [8] and even fed as input to model-based
adaptive methods.

Many existing segmentation algorithms aim for a simul-
taneous recognition of objects and their pose. To this end,
found image features are matched to a database of known ob-
jects. Various feature extraction methods have been proposed,
including 3D-augmented SIFT features [1], [8] and features
directly obtained from range images such as a viewpoint
feature histogram [3], depth-encoded hough voting [4], point
pair features [15], and iterative clustering-estimation [16].
In [18] RGB-stereo, time-of-flight, and thermal cameras are
fused to segment kitchen objects in a table-top setup. The
addition of other sensor modalities, such as temperature,
improves the segmentation accuracy and enables the method
to segment shiny and translucent object. These approaches
robustly recognize partially occluded objects and correctly
estimate their pose from stored 3D models, but are always
restricted to the known set of objects.

Other approaches, directly operating on point clouds, bet-
ter generalize to unknown objects. In [5], [9], [17] table-top
scenarios are segmented based on an initial clustering into
horizontal support planes. Point clusters supported by these
planes, i.e. lying above the plane and within its 2D bounding
box after projection, are considered as objects. Subsequently
in [5] hybrid object models comprising primitive shape
models (planes, cylinders, spheres, cones fitted into the data
points) and surface meshes (modelling residual points) are
determined. The algorithm in [9] is tuned towards real-time
performance, achieving frame rates of 30Hz on images sized
160x120. [17] adds support for arbitrary rotational surfaces.

However, due to the projection approach to obtain object
clusters, all three methods cannot handle stacked objects.
Methods finding smoothly connected areas in point clouds
are presented in [10], [11]. Their region growing approach
closely resembles the first segmentation step of our method,
but applies more costly operations. Using parallelized oper-
ations, our method is much faster with comparable results.

Point normal estimation is a basic component of many
segmentation approaches as well as in our method. Most
methods use a form of least squares, RANSAC, or PCA to
fit a plane into a set of neighboring points [5], [10], [11]. As
most methods focus on arbitrary 3D point clouds, emphasis is
on efficient selection of those points. Exploiting the intrinsic
grid structure of range images, rough normal estimations can
be computed much faster from the crossproduct of tangential
vectors. For example, [9] proposes a method employing
integral images to yield real-time performance. In this work,
we follow a similar approach to compute normal vectors.

The remaining paper is organized as follows: The next
section introduces the segmentation algorithm in detail. In
sec. III we evaluate the robustness and quality of the ob-
tained segmentation results and present a grasping approach
drawing on these results. Finally, we give a short conclusion
and mention possible future work.

II. 3D SCENE SEGMENTATION METHOD

Before introducing the details of the process flow, we
outline the overall structure of the algorithm. It can be split
into two main parts: the determination of surface patches and
object edges, and a subsequent combination of these low-
level segments into high-level object segments. In contrast
to the commonly employed segmentation method provided
by the Point Cloud Library [12], which aims to fit specific
object models, the proposed approach is model-free and can
successfully handle unknown, stacked, and nearby objects.

The raw depth images, obtained from the Kinect camera,
provide low-noise depth information (see Fig. 1). Hence, we
decided to solely focus on depth images, ignoring color, and
thus diminishing the impeding influence of strong textures
giving rise to oversegmentation. In the future we plan to
integrate color information to disambiguate difficult scenes.
Looking more closely at the depth image, we can iden-
tify two situations, exposing object edges: (i) discontinuous
jumps of depth values, and (ii) sudden changes of the
surface normal direction, e.g. when an object is lying on
the table. Consequently, at the core of our algorithm is the
determination of those ‘“surface normal edges”, which are
used as the basis to segment the image — in a first step —
into connected surface patches and separating edges using a
region growing method.

The second part of the algorithm subsequently combines
found surface patches into meaningful object segments. To
do this, we analyze the graph structure determined by the
found surface nodes and their adjacency relation. Using
a greedy strategy, we determine a highly probable object
segmentation hypothesis. This novel approach allows us

Fig. 2. Point cloud with normal directions (XYZ mapped to RGB).

to segment highly cluttered scenes with unknown objects
without employing any model knowledge.

A. Partition into Surfaces and Edges

The objective of the first processing step is to segment
the depth image into regions of (smoothly curved) surfaces,
continuously enclosed by sharp object edges. Additionally,
we transform the raw depth image into a 3D point cloud,
which is represented w.r.t. a robot-defined coordinate frame.

a) Determination of Surface Normals: As a basis for
computing “surface normal edges”, we first determine sur-
face normals for every image point. To this end, we simply
determine the surface normals from the plane spanned by
three points in the 3 x 3 neighbourhood of the considered
central image point using the classical cross product. In our
previous work, we evaluated more accurate methods based
on principal component analysis [22]. However, they did not
provide better segmentation results and were much slower.

Note, that the determination of surface normals is directly
performed on the raw depth image, instead of the 3D point
cloud. That is, the 2D image coordinates are augmented by
the depth value to yield valid three-dimensional vectors. This
procedure yields much more distinct changes of the normal
direction at the boundary of objects, because the smoothing
effect due to 3D projection is avoided.

In order to reduce sensor noise and to obtain smooth and
stable surface normal estimations, we apply a three-stage
smoothing procedure. First a 3 X 3 median filter is applied to
the raw depth image. Secondly, we apply a smoothing over
time filter, averaging the median-filtered depth values of all
individual image pixels within the last n frames. Finally, after
calculating the normals, they are smoothed again, applying a
convolution using a 5 x 5 Gaussian kernel. Fig. 2 shows the
resulting surface normals for the image in Fig. 1, mapping
xyz normal directions to the RGB color space.

This filter chain immensely reduces sensor noise, but also
evokes motion blur due to the second filter stage. For low
dynamic scenes we have found that a value of n =6 is a
good choice to balance motion blur and the smoothing effect.
Another issue, the 2nd filter brought to our attention, was
jumping depth values at object edges. Here the depth value
fluctuates between the foreground (on the object) and the
background, because of sensor noise evaluated in Kinect’s

Fig. 3.
of Fig. 2 (left: filter result, right: binarized version). White surface patches
are properly enclosed by black, uninterrupted object edges. Restriction to
point cloud data avoids oversegmentation due to changes in texture.

Result of the edge filter applied to the image of surface normals

internal processing pipeline. Instead of averaging between
these extremal values, which would yield a poor mean
estimation, we choose the minimal or maximal depth value
(depending on which is closer to the mean) of all observed
measurements within the given time window, if these extreme
values diverge too much.

b) Detection of Surface Normal Edges: One major con-
tribution of our paper is the fast detection of surface normal
edges, which is based on the computation of the scalar
product of adjacent surface normals n1, ns. To obtain clear,
uninterrupted edges, suitable for subsequent application of
a region growing algorithm, we look for edges in all eight
directions defined by the neighboring pixels of a point, i.e.
north (N), east (E), south (S), west (W), as well as NE,
SE, SW, NW. The final result of the edge filter is obtained
from averaging the results of all eight scalar products. While
large values, close to one, correspond to flat surfaces, smaller
values indicate increasingly sharp object edges.

Finally, binarizing the obtained edge image by employing
a threshold value 6,,,,, = 0.85 (31, 8°), we can easily sepa-
rate edges from smoothly curved surfaces. Fig. 3 illustrates
the result of this processing step: Object edges are clearly
visible as bold lines, while smooth and large surfaces form
homogeneous white regions. A considerable number of false
edges are still detected due to noise. However those regions
are small and disjointed and thus can be easily filtered out
in subsequent processing steps. Note, that small or narrow
objects are often represented by edges only, while smooth
surfaces are separated by a relatively thin edge.

c) Segmentation into Surface Patches: Finally, we ap-
ply a simple region growing algorithm to the binarized edge
image in order to associate each surface point with a unique
patch ID as shown in Fig. 4.

The fast surface patch segmentation based on normal
edges already provides a detailed segmentation of the scene
into surface patches, and is then employed in the subsequent
object segmentation step, introduced next.

B. High-Level Object Segmentation

In the second processing block, we ultimately aim for
segmentation on an object level, which means that the
previously found surface patches need to be combined to
form proper object regions. In contrast to our previous work
[22], where we employed a simple heuristic method to split
point cloud clusters along cutting planes, here we propose

Fig. 4. Results of the first segmentation into surface patches and edges
(left), and after assignment of edge points to closest surfaces (right).

a much more general approach which avoids many of the
shortcomings of our previous method. In particular, we de-
termine a directed, weighted graph, modeling the topological
neighborhood structure and the probability of two adjacent
patches belonging to the same object region. Subsequently
this graph structure is analyzed to find the most probable
segmentation into object regions in a greedy manner.

d) Adjacency Matrix and Assignment of Edge Points:
The adjacency matrix representing the connectivity of surface
patches is determined as follows: For every edge point p,, we
consider all neighboring surface points p; in a radius 7 (in
image space), which have an Euclidean distance ||p, — p;||
smaller than a given threshold dy,,x. Each possible pair from
this list of obtained surface IDs is marked as adjacent.

Additionally, the edge point p, is associated to the surface
patch having the smallest Euclidean distance to p,.. By this
means, almost all edge points can be associated to their
closest surface patch (cf. Fig. 4). An exception are edge
points, which are part of very bold edges (such that no
surface points within the radius r can be found) or edge
points, whose closest matching surface point is more distant
than dy,.x. In both cases, these edge points probably belong
to a separate, but small object, and they are processed later
on. If the search radius r and the Euclidean distance ||p, —p;||
were not restricted, such small objects would be absorbed by
their supporting surface. Fig. 5 illustrates another reason for
limiting the Euclidean distance to d,,,,: surfaces 6 and 10
are neighbors in image space, but obviously not in 3D space
and therefore shouldn’t be considered adjacent.

e) Cutfree Neighbors: To further improve the adjacency
matrix, we apply a plausible heuristic check already proposed
in our previous work [22]. Two neighboring surfaces presum-
ably do not belong to a common object — and thus should be
removed from the adjacency matrix — if one surface cuts the
other, such that a considerable amount of points are lying on
both sides of the former surface. For illustration, consider
surfaces 1 and 10 in Fig. 5. While all points of surface 1
are on top of surface 10, the plane fitted into surface 1 cuts
surface 10. Hence this surface combination is disregarded.
On the other hand surfaces 1 and 2 are pairwise cut-free.

To speed up the cutting test, we approximate surfaces by
a set of 20 planes fitted using RANSAC [13]. If most of
these planes are cut-free with an adjacent surface (up to a
small tolerance to account for outliers), the corresponding
surface pair is kept for further consideration. The result of
this processing step is a non-directed graph representing the

10

Fig. 5. Tllustration of the probabilistic composition approach. A composi-
tion probability graph (right) is shown for an example scene (left).

topology of neighboring surfaces, modeled by a symmetric,
boolean adjacency matrix.

f) Probabilistic Composition: In the next processing
step, this graph is searched for strongly connected sub-
graphs, which are considered as good candidates for object
segments. To this end, we follow a greedy approach combin-
ing the most probable surface patches into an object segment.
The method starts with all (ordered) pairs of surfaces (i, j)
to which a uniform weight w;; = 1/n is assigned, where n
denotes the number of adjacent nodes of node ¢. This results
in a directed, weighted graph as illustrated in Fig. 5.

Subsequently, this list of pairwise node combinations is
extended to triples, again assigning a weight according to
the following heuristic rule: If (¢,7) and (i, k) are edges
in the graph and there also exists an edge (j,k), such
that the sub-graph (i, j, k) is complete, we assign a weight
Wik = W;; + wi. Otherwise the combination 7, j, k is
not further considered. Finally, object regions are formed
greedily, starting with surface groups of maximal weight. If
multiple combinations have the same weight, combinations
with more surfaces are preferred. This process is iterated
until all surfaces are uniquely assigned to an object region.

Spherical, cylindrical and box-like objects are correctly
handled by this approach, because they expose 1-3 faces. To
cope with more complex objects, we are working on an even
more flexible face clustering method.

8) Remaining Edge Points: In the final processing step,
all remaining edge points (left after step 1I-B.0.d) have to be
processed to obtain the final segmentation result shown in
Fig. 1. Firstly, the remaining points are segmented using a
region growing algorithm working in the image plane and
using the Euclidean distance as the criterion of uniformity.
These segments are then processed according to the follow-
ing rules:

« If a segment has no neighboring faces (caused by miss-

ing depth information), it becomes a separate object.

o If a segment has one neighboring face and comprises

very few points only, they are assigned to this neighbor.

o If a segment is completely enclosed by a single neigh-

boring face, it becomes a new object. If it is not
completely enclosed, all points are assigned to the

Fig. 6. Four complex scenes and their corresponding segmentation result.

neighboring region.

o If a segment has more than one neighbor and all
neighbors are part of a common object, it will be
assigned to this object.

o If a segment has more than one neighbor corresponding
to different objects, all points are assigned to the best
matching neighboring plane using RANSAC.

This method yields meaningful segmentations of highly
complex scenes with stacked and completely unknown ob-
jects without the use of prior knowledge, object models,
or the need to extract support planes (which might not be
possible in crowded scenes).

ITII. EVALUATION
A. Runtime Performance and Quality

In this section we evaluate the efficiency of the proposed
approach, report on the runtimes of the algorithm and show
some qualitative results. Fig. 6 shows three example scenes.
The algorithm robustly segments table top scenes as well as
other indoor environments, e.g. offices. It is applicable to
scenes of different complexity with objects of various size
and shape.

Table I shows the runtimes for these scenes. The more
complex the scene, the faster the algorithm. This assertion
seems to be counter-intuitive. However, most of the process-
ing time is taken by the calculation of cut-free surface pairs.
For a simple scene, e.g. a table with many spatially separated
objects, many small faces emerge, which have to be checked
against the large table surface. In more complex scenes of
stacked objects, we obtain several small and mid-size faces.
Hence, a possibly fewer number of pairwise tests has to be

TABLE I
RUNTIME (MS) OF ALGORITHMIC STAGES FOR SCENES SHOWN IN FIG. 6.

scene 1 scene 2 scene 3

time smoothing 1 1 1
point cloud proj. 1 1 1
edge detection 1 1 1
region growing 7 7 7
adjacency matrix 10 8 9
cut-free pairs 55 53 80
remaining points 8 4 7
visualization 11 11 11

overall time (Hz) | 94 (10.6) [86 (11.6) | 117 (8.5) |

accomplished, each with a much smaller number of points
within each surface.

The runtime is composed of the time smoothing filter, the
3D point cloud projection, edge detection (including median
filtering, normal calculation, smoothing, edge calculation and
binarization), region growing, determination of the adjacency
matrix (including assignment of edge points), the identifica-
tion of cut-free surface pairs, the assignment of the remaining
points, and the point cloud visualization.

The determination of the adjacency matrix, the assignment
of remaining edge points, and the cut-free testing vary with
the complexity of the scene, whereby the framerate is at
least 8 fps. Most parts of the algorithm are parallelized using
a nVidia GTX560 graphics card. The remaining parts are
processed on a single core of a XEON 2.53 GHz processor.
Using a faster graphics card and considering only subsets of
points for plane fitting using RANSAC in the most costly
cut-free calculations, the algorithm could be further tuned
towards the maximum frame rate of the Kinect camera (30
Hz). The algorithm always operates on QVGA resolution
(320 x 240).

B. Quantitative Results

In this section, we present quantitative segmentation re-
sults for data taken from the Object Segmentation Database
[19], which provides a huge set of table-top scenes, including
a color image, point cloud data, and a reference segmentation
for each scene. To employ the database for our algorithm
(which works on raw depth images), we back-projected
the PCL point cloud to a depth image. Using the labeled
segmentation results, we evaluate the segmentation quality
of our algorithm. To this end, we consider the set R,
comprising all points of the reference segmentation of object
i and the set .S;, comprising all points of our segmentation
result. TP, = R; N S; shall denote the overlap of both
sets, i.e. the set of correctly segmented points (true positive).
FP;, = S;\TP; and FN; = R; \ TP, shall denote the sets
of false positive and false negative points, which are only
assigned to one of the sets resp. The equations

TP, FP, 1 —
ZI|R|| N Z||si| E;

=1
calculate the average scores, where n is the number of object
segments for an individual image of the database.

IRI

120

100 —wz—ntmtwc—c—o—www—o—c‘ o XodJ had
% * FR)
* e * LY
" w, o °* . LN “0‘0
o Yo
+fp
2 60 *fp
Afn
40
20 Ay add 4
ub A N Ae o4 a4
r'y
s Lt s scantastos RN g %
0 10 20 30 40 50 60 0
Scene
Fig. 7. Evaluation results of the Object Segmentation Database [19].

TABLE 11
QUANTITATIVE SEGMENTATION RESULTS (IN %).

true positive | false positive | false negative
Test51 98.8 0.9 1.1
Test63 89.2 8.6 10.7
Mean 92.2 1.9 7.8
Std. deviation 73 33 7.3

Table II shows these scores for selected scenes (shown in
Fig. 8) as well as their mean and standard deviation obtained
by averaging over all test scenes in the database. The results
of all test scenes in the database are illustrated in Fig. 7.
The true positive score is between 74.3% and 99.7%. More
segmentation results are available at the project website [20].
The reasons for the low scores less than 90% are described
in the next section. Unfortunately, we did not find other work
employing this benchmark for comparison.

C. Strengths and Weaknesses

The presented real-time segmentation algorithm works
very well with a huge number of complex scenes. However,
there are three remaining issues which are not yet handled
by our algorithm. These problems are illustrated in Fig. 9.
Firstly, the inner and outer part of open, curved containers,
like cylinders, are decomposed into separate object regions,
because their curved surfaces do not directly neighbor with a

Fig. 8.
Segmentation Database [19].

Segmentation results for scenes 42, 51, and 63 of the Object

Fig. 9. Weak points of the algorithm: (1) open curved objects, (2) object
split by complete occlusion, (3) failing edge detection for aligned object
surfaces.

distance smaller than d,,.x. However, for many applications
it might be beneficial to identify openings in concave vessels,
e.g. in order to be able to fill in something. If desired, these
regions can easily be combined using model-rich approaches.

Secondly, surfaces which are disjointed due to occlusion
by another object, are not recombined by our model-free ap-
proach. Using RANSAC-based model fitting and integrating
texture information, both object parts can be easily combined
if needed. For our grasping application, this is not necessary,
because we can simply grasp one or the other object part.
The very low scores smaller than 80% in Fig. 7 are all caused
by an object separation through complete occlusion.

Finally, objects, whose surfaces are perfectly aligned (like
steps of a staircase), are not correctly segmented. In this case,
the first-stage segmentation combines the surface patches of
both objects into a common region, because a visible edge
doesn’t emerge.

D. Grasping Experiment

We used the segmentation approach for autonomous grasp-
ing with the 24-DOF Shadow Robot Hand employing our
biologically inspired grasping strategy [7]. To obtain a coarse
shape model of the object — which is required to select a
grasp prototype, i.e. power, precision, or pincer grasp based
on object size, and to correctly align the hand to the object
— we fit a superquadrics model [14] to the 3D points of
a selected object blob given by our segmentation algorithm.
This model determines the position and orientation as well as
the coarse size and shape of the object. With this information,
we can apply our grasping strategy. We also evaluated
PCA to determine object pose and shape. However, while
the PCA model is always shifted towards the camera, the
superquadrics model can correctly account for the invisible
backside of the object. In the cleanup experiment, shown in
the accompanying video [21], the robot selects autonomously
the object with the largest z-position, grasps it and puts it
into a bowl. This procedure is iterated until all objects are
removed. Too big and thus non-graspable objects are marked
and not further considered.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced a model-free segmentation
algorithm for cluttered scenes which is not restricted by a
given set of object models, world knowledge, or the ability
to extract supporting planes, which represents the current
state-of-the-art. A fast algorithm to determine object edges
using edge detection on surface normals was combined with
a novel graph-based method to combine surface patches to

form highly probable object hypotheses. The algorithm can
deal with stacked, nearby, and partially occluded objects,
which is achieved by finding object edges in depth images
and the novel idea to identify adjacent and cut-free surface
patches, which can be combine to form object regions.
The algorithm was evaluated w.r.t. real-time capabilities and
segmentation quality.

To allow direct interaction with users, a distinction of
objects from the human hand would be desirable. To this end,
color histograms could be used. Color and texture will also
provide valuable information in the segmentation process
to disambiguate certain situations and to recombine split
object parts. However, the current approach has the benefit of
autonomously detecting exposed object parts. The obtained
segmentation result should be considered as an initial, high-
quality hypothesis for the structure of a scene which can
be further refined by active exploration [8], or model-rich
approaches.

REFERENCES

[1] J. Kuehnle, A. Verl, Z. Xue, S. Ruehl, M. Zdllner, R. Dillmann, T.
Grundmann, R. Eidenberger, R. Zollner, 6D object localization and
obstacle detection for collision-free manipulation, Proc. ICAR, 2009

[2] Z. Xue, A. Kasper, M. Zollner, R. Dillmann, An automatic grasp
planning system for service robots, Proc. ICAR, 2009

[3] R.B. Rusu, G. Bradski, R. Thibaux, J. Hsu, Fast 3D Recognition and
Pose Using the Viewpoint Feature Histogram, Proc. IROS, 2010

[4] Sun, Xu, Bradski, Savarese, Depth-Encoded Hough Voting for Joint
Object Detection and Shape Recovery, Proc. ECCV, 2010

[5] R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz, Close-range Scene

Segmentation and Reconstruction of 3D Point Cloud Maps for Mobile

Manipulation in Domestic Environments, Proc. IROS, 2009

J. Bohg, M. Johnson-Roberson, B. Ledn, J. Felip, X. Gratal, N.

Bergstom, D. Kragic, A. Morales, Mind the Gap - Robotic Grasping

under Incomplete Observation, Proc. ICRA, 2011

F. Rothling, R. Haschke, J.J. Steil, H.J. Ritter, Platform Portable

Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and

9-DOF TUM Hand, Proc. IROS, 2007

[8] E.S. Kuzmi¢, A. Ude, Object segmentation and learning through
feature grouping and manipulation, Proc. Humanoids, 2010
[9]1 D. Holz, S. Holzer, R.B. Rusu, S. Behnke, Real-Time Plane Segmen-
tation using RGB-D Cameras, RoboCup Symposium, 2011
[10] T. Rabbani, F.A. van den Heuvel, G. Vosselman, Segmentation of Point
Clouds using Smoothness Constraint, Int. Archives of Photogrammetry
Remote Sensing and Spatial Information Sciences, vol. 36(5), 2006
[11] E. Castillo, H. Zhao, Point Cloud Segmentation via Constrained
Nonlinear Least Squares Surface Normal Estimates, Recent UCLA
Computational and Applied Mathematics Reports, 2009
[12] R.B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), IEEE
International Conference on Robotics and Automation (ICRA), 2011
[13] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography, Communications of the ACM, vol. 24, issue 6, 1981
[14] A.H. Barr, Superquadrics and Angle-Preserving Transformations,
IEEE Computer Graphics and Applications, vol. 1, issue 1, 1981
[15] E. Kim, G. Medioni, 3D Object Recognition in Range Images Using
Visibility Context, Proc. IROS, 2011
[16] A. Collet, M. Martinez, S.S. Srinivasa, The MOPED framework: Ob-
ject Recognition and Pose Estimation for Manipulation, International
Journal of Robotics Research, vol. 30, issue 10, 2011

[17] Marton, Pangercic, Blodow, Kleinehellefort, Beetz, General 3D Mod-
elling of Novel Objects from a Single View, Proc. IROS, 2010

[18] Marton, Rusu, Jain, Klang, Beetz, Probabilistic Categorization of
Kitchen Objects in Table Settings with Composite Sensor, /ROS, 2009

[19] Object Segmentation Database: http://www.acin.tuwien.ac.at/?id=289

[20] Project web site: http://ni.www.techfak.uni-bielefeld.de/node/3249

[21] Project video: http://www.youtube.com/watch?v=Z2SwggQTBC8

[22] A. Uckermann, C. Elbrechter, R. Haschke, H. Ritter, 3D Scene

Segmentation for Autonomous Robot Grasping, Proc. IROS, 2012

[6

=

[7

—

