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Chapter 1

Introduction

The �rst part of this thesis is centered around the analysis of a particular
Ornstein-Uhlenbeck stochastic partial di�erential equation.{

dXt = (A(t)Xt + f(t))dt+B(t)dLt
Xs = x

(1.1)

The most important features being, that the coe�cients are time-dependent,
that the driving noise L is Lévy and that the state space is an in�nite dimen-
sional Hilbert space H.

Stochastic di�erential equations like (1.1) arise when the evolution of some
object (Xt) is not only determined by a deterministic di�erential equation, but
also subject to random in�uences (in the form of the noise Lt) . These might
come in via noisy coe�cients of an otherwise deterministic equation, as an error
induced by a (knowingly) inadequate approximation, or as a model for a random
environment, as for the behavior of a particle under random collisions.

When Xt does not describe a �nite random vector like the position of a
single molecule or the values of a �nite number of asset prices, but a continuous
quantity like the temperature distribution in some area or a whole curve of
interest rates (modeled as vectors in an in�nite dimensional state space) then
we speak about a stochastic partial di�erential equation (SPDE). See e.g. [41]
for a recent introduction on SPDE.

Another important feature is the nature of the driving noise in terms of a
particular stochastic process Lt. The best-known case is the one of Lt being
a Brownian motion, a process with independent and time-homogeneous incre-
ments and continuous sample path. Relaxing the latter restriction to paths
which allow for jump discontinuities we open up the vast �eld of Lévy stochas-
tic processes with prominent examples such as the stable and compound Poisson
processes. A nice introduction to Lévy processes is given in the book [4].

A linear equation with additive noise like equation (1.1) is also called an
Ornstein-Uhlenbeck equation referring to the fundamental work [36] of the
physicists L. Ornstein and G. Uhlenbeck. The �rst treatment of Ornstein-
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Uhlenbeck equations with Lévy noise (but time�independent linear drift A)
in an in�nite-dimensional setting appeared in [11].

We will analyze this equation in the following way: First we will elaborate on
the notion of solution for (1.1). For each t �xed A(t) is an (unbounded) linear
operator, thus for a strong solution we would have to assure that the solution is
in the right domain of de�nition for Lebesgue almost all times. This we cannot
do, but we can prove the existence of a solution in the mild and weak sense. For
a mild solution, one needs the linear drift to generate a contraction semigroup,
in order to exploit its smoothing properties. In our non-autonomous setting we
thus have to require that the linear operators A(t) generate a two-parameter
semigroup, say U(t, s) solving the associated Cauchy problem, that is

d

dt
U(t, s) = A(t)U(t, s).

Together with some necessary smoothing properties, these conditions are wrapped
up in the de�nition of an exponentially stable evolution semigroup which we
present in Section 3.1. Thus we are able to de�ne the unique mild solution of
(1.1) as:

X(t, s, x) = U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dLr (1.2)

For an introduction to the mild approach of solving SPDE we refer to the clas-
sical reference [19] for the Gaussian case and to [40] for SPDE with Lévy noise.
The latter one also includes some motivation on the choice of discontinuous
noise.

The integral
∫ t
s
U(t, r)B(r)dLr in the mild solution is called a stochastic

convolution and its precise de�nition is given in Section 2.2 after a reminder on
integration with respect to Lévy processes. Then we prove in Section 3.2 that
formula (1.2) provides a solution in the (analytically) weak sense as well, that
is we have for s ≤ t

〈Xt, y〉 = 〈x, y〉+

∫ t

s

〈Xr, A
∗(r)y〉dr +

∫ t

s

〈f(r), y〉dr +

∫ t

s

B∗(r)ydLr (1.3)

where y is chosen arbitrarily from the common domain of the operators A(t), so
that, as in the mild case, the actual solution Xt is not required to be in any do-
main of de�nition. It is worth mentioning, that , unlike in the autonomous case,
the adjoint semigroup U∗(t, s) does not necessarily enjoy the same smoothing
properties as the original semigroup U(t, s). This makes the proof of equation
(1.3) quite technical. Moreover, only under stronger conditions (on the smooth-
ing properties of the adjoint semigroup), we can prove that a weak solution is
also a mild one, which yields uniqueness for the weak solution.

Then in Section 4 we turn our attention to the (inhomogeneous) Markov
semigroup generated by our solution. Let us denote by X(t, s, x) the (unique)
solution at time t which started at time s in x and then de�ne the two-parameter
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family of operators

P (s, t)f(x) := E[f(X(t, s, x))] (t ≥ s).

Looking at equation (1.2) one can see that P (s, t) can be written as

E[f(X(t, s, x)] =

∫
H

f

(
U(t, s)x+

∫ t

s

U(t, r)f(r)dr + y

)
µs,t(dy),

where µs,t is the distribution of the stochastic convolution
∫ t
s
U(t, r)B(r)dLr.

Semigroups of this type are known as generalized Mehler semigroups in the au-
tonomous case and their representations as generalized Mehler formulae. They
were �rst discussed in [7] and [25]. In the Gaussian case the distribution of such
a stochastic convolution is well-known, it is again Gaussian and the covariance
operator can be calculated in terms of the underlying Wiener process. Much
of the elegance of our methods relies on the fact that we have an analogous
result in the Lévy case which is proved in Lemma 4.1.1. For example, the proof
that P (s, t) ful�lls indeed the semigroup property as stated in Lemma 4.1.6 is
an easy consequence of this result. This is also the reason why we refrain from
including a non-linear drift in equation (1.1). Though questions of existence and
uniqueness can still be settled using contraction methods (provided the nonlin-
ear drift is Lipschitz), there is no chance to obtain explicit (Mehler) formulae
for the solution in the general semilinear case.

We want to establish and study a generator associated to this semigroup.
Remember, that in the autonomous case, one usually studies the generator on
an Lp space with respect to an invariant measure. If ν is an invariant measure
for a (one-parameter) semigroup (Pτ )τ≥0 it should ful�ll for bounded functions
f : ∫

H

Pτf(x)ν(dx) =

∫
H

f(x)ν(dx) (1.4)

For a two-parameter semigroup we cannot hope for (1.4) to hold with P (s, t)
in place of Pτ . In fact, the additional second (time) parameter in the semigroup
calls for an additional time parameter in the measure. Thus, what we can
establish (in Theorem 4.2.4), is a collection of measures (νt)t∈R satisfying for
t ≥ s and f as above:∫

H

P (s, t)f(x)νs(dx) =

∫
H

f(x)νt(dx) (1.5)

In a dual perspective it is best to view such an evolution system of measures
as a �ow of measures generated by the dual semigroup: νt = P ∗(s, t)νs.

Nevertheless, we want to get back to an equation like (1.4). This can be
done by taking the additional time parameter into the state space and thus
getting back a one-parameter semigroup of operators, which still holds all the
information of the two-parameter semigroup. This procedure is also known
as space�time homogenization. In detail, if f is a bounded function on the
extended state space R×H then this one-parameter semigroup Pτ acts as
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Pτf(t, x) = P (t, t+ τ)f(t+ τ, ·)(x)

just shifting the time variable forward and acting with the two-parameter
semigroup on the space variable, where the second time parameter is supplied
by the time variable. Note that if we choose f independent of t, Pτ just acts
as the two-parameter semigroup P (s, t) in which we are actually interested in.
Thus, this is how we will obtain useful information back in the end.

The technical advantage of this formulation is, that we can associate an
invariant measure ν with the semigroup Pτ . Thus we are back in the autonomous
framework and can use its well-developed theory. The measure ν (now to be
de�ned on the extended state space R×H) is found by averaging the evolution
system of measures νt over time. That is for a measure ξ on the time line R, we
form the measure νt ⊗ ξ being uniquely de�ned by:

(νt ⊗ ξ)(A× [s, t]) :=

∫
A

νr(A)ξ(dr)

for arbitrary Borel subsets A ∈ H and s ≤ t. I turns out that for ν to be a truly
invariant measure we would need the measure ξ to be invariant with respect to
translations. Alas, we simply cannot normalize Lebesgue measure on the whole
of R, to obtain an invariant probability measure. If the coe�cients of equation
(1.1) are periodic with some �nite period T > 0, then all information about the
semigroup can be captured on the state space [0, T ] × H and ξ can be taken
to be normalized Lebesgue measure on [0, T ]. This construction is explained in
Chapter 6. In the non-periodic case we can choose ξ to be Lebesgue measure
normalized with an exponential weight: ξ(dt) := e−|t|dt. For the details we
refer to De�nition 4.3.3. Then we will not obtain equation (1.4) but its weaker
analogue ∫

H

Pτf(x)ν(dx) ≤ C(τ)

∫
H

f(x)ν(dx) , f ≥ 0 (1.6)

for some function C : R → R+. A measure satisfying equation (1.6) is called
a subinvariant measure and in many important respects these measures are as
good as a fully invariant measure. In particular, the space L2(ν) is suitable for
the analysis of the generator of the semigroup Pτ as the latter one is proven to
be strongly continuous on this space. In Section 4.4 we calculate the generator
on a dense space of exponential test functions �nding the simple form

Gu(t, x) = ut(t, x) +Gtu(t, x). (1.7)

where Gt is just the generator corresponding to the equation with coe�cients
frozen at t. For an explicit form see Remark 4.4.2.

This helps us in Section 5 to characterize an important function of the gen-
erator. If G is the generator of the semigroup Pτ then its square �eld operator
Γ is de�ned as

Γ(f, g) := G(fg)− fGg − gGf
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for functions f, g ∈ D(G). An explicit formula for this expression, (which in
the autonomous case had already been obtained in [30]), then allows for vital
estimates leading to a Poincaré and a Harnack inequality for our semigroup.

Let us now elaborate on related literature, in particular on results we based
our work upon. For H = Rd and Lt a d-dimensional Brownian motion, equation
(1.1) was studied intensively in [14]. Inspired by their paper, part of our work is
a generalization of their results to the case where H is in�nite-dimensional and
Lt a Lévy process. A number of our arguments are adapted from [14], although
the Lévy setting forces us to work more heavily with Fourier transforms and
the in�nite dimensional setting requires extra care. In parallel to our work,
evolution systems of measures have been studied in a �nite dimensional Lévy
setting in [47] obtaining explicit Lebesgue-densities in the particular case of α-
stable Lévy noise. In [26] evolution systems of measures (which are in general
not unique) have been characterized in the Gaussian case.

Concerning the generalized Mehler semigroups mentioned above, these are
already well understood in the autonomous case. Invariant measures measures
are established in [11] in the Gaussian case and in [25] in the non-Gaussian
case. Generators are examined in [29] and the square �eld operator is identi�ed
in [30]. The recent paper [38] considers generalized Mehler semigroups with a
noise more general than Lévy. The authors drop the assumption of stationary
increments, introducing explicit time-dependence in the noise term itself. For
a recent treatment of general semilinear and multiplicative non-autonomous
equations with Lévy noise, see [45]. In this generality, however, nothing is
known about the existence of evolution systems of measures.

Finally, let us remark that most of our above-mentioned results have already
been published in [28].

In the second part of this thesis, contained in Chapter 7, we consider the
Fokker-Planck equation corresponding to (1.1) with f ≡ 0, B ≡ Id and Lt a
Wiener process

∂tρt = −2G∗t ρt. (1.8)

Here, G∗t is the adjoint of the generator Gt from (1.7).
Following the ideas in the seminal paper [27], our aim is to interpret (1.8) in
a variational sense. In [27] the authors discovered that to a (autonomous and
Gaussian) Fokker-Planck equation one can associate an energy functional in-
volving logarithmic entropy. The Fokker-Planck equation can then be solved by
implementing a steepest descent method with respect to this energy functional
on a space of probability measures.

In the case of an Ornstein-Uhlenbeck equation with a unique invariant mea-
sure ν this energy functional is given, for probability measures ρ, by the relative
entropy with respect to the measure ν
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Entν(ρ) :=

∫
H

log

(
dρ

dν
(x)

)
ρ(dx).

See De�nition 7.1.3 for details.
The steepest descent scheme to minimize this functional is then constructed
iteratively as follows:

For a given value ρk at time kτ , de�ne the approximation ρk+1 at time
(k + 1)τ as a minimizer of the functional

ρ 7→ 1

2τ
d2(ρ, ρk) + Entν(ρ). (1.9)

Here, the distance d is the Wasserstein distance on the space of probability
measures introduced in de�nition 7.2.1. To see that equation (1.9) is a natural
way to model gradient �ows in metric spaces let us compare it to the Euclidian
case. In order to solve, for a smooth and convex potential F : Rn → R, the
equation

d

dt
y(t) = −∇F (y(t)),

we can employ an implicit Euler scheme, setting (with tk := kτ)

1

τ
y(tk+1)− y(tk) = −∇F (y(tk+1)). (1.10)

But the solution y(tk+1) of (1.10) is nothing but a minimizer of the functional

y 7→ 1

2τ
|y − y(tk)|2 + F (y). (1.11)

Note the similarities between equations (1.9) and (1.11). In both cases the
�rst term measures the distance between old and new states � penalizing big
deviations � while the second term enforces a reduction of the respective energy.

Following the work [27], there was thus a growing interest in gradient �ow
type dynamics on the Wasserstein space, culminating in the book [3]. While gra-
dient �ows on Hilbert spaces were well-understood since the 1970s (see e.g.[8]),
the authors in [3] gave the �rst uni�ed treatment, developing rigorously the un-
derlying metric structures with a particular emphasis on the Wasserstein case.

As another vital contribution, the authors in [3] re�ned the notion of con-
vexity for functionals of probability measures, adapting the seminal de�nition of
displacement convexity from the paper [9] to the particular case of the Wasser-
stein space. In this way they were able to prove evolution variational inequalities
for the solutions of the steepest descent schemes and thus gave a rigorous mean-
ing to the notion of a gradient �ow on the Wasserstein space. We give a short
account on convexity in the Wasserstein space in Section 7.2.2.

Moreover, while the setting in [27] was �nite dimensional, the framework in
[3] was general enough to cover the case where the Wasserstein space is formed
by probability measures de�ned over an in�nite-dimensional Hilbert space.
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Building on this general theory, the paper [22] extended the variational inter-
pretation of the Fokker-Planck equation to abstract Wiener spaces and in [32]
Fokker-Planck equations associated to Ornstein-Uhlenbeck equations on Banach
spaces were treated.

Let us now come to our contribution and how it is structured. Let us �rst
stress that, while we treated general Lévy noise in the �rst part of this work,
we were not able to go beyond the Gaussian framework in the second part. We
still hope that the results can be extended also to this case, but we are sure
that this necessitates a substantial change in the ingredients of the minimizing
scheme. It raises the question: What is the role both of relative entropy and of
the 2-Wasserstein distance in this setting? The recent survey paper [1] gives a
�rst answer, suggesting that the role of the entropy can be explained by large
deviation principles. Maybe this link will present a way to cover more general
noise.

Thus, our point will be to stick to the Gaussian framework but to generalize
to a non-autonomous setting. Our use of generalized invariant measures in the
�rst part of this thesis might suggest that one could hope to �nd a solution
to the Fokker-Planck equation by considering an autonomous gradient �ow on
an extended state space. Alas, this is not the case. On the one hand, the
entropy functional generated by such an invariant measure lacks important con-
vexity properties, on the other hand the space-time structure simply does not
seem to capture the non-autonomous dynamics. Instead we will work with a
time-dependent energy functional, replacing the functional Entν by Entνt with
changing reference measures νt. Indeed, in Section 7.1 we start out by setting
up our framework and we de�ne νt to be the invariant measure of the underlying
equation with coe�cients frozen at t. As laid out in Section 7.2 the steepest
descent scheme is then de�ned analogously to the autonomous case. In this
section we also take a closer look at the Wasserstein distance employed in the
scheme. In the in�nite dimensional setting it is necessary to �t this distance to
the Gaussian driving noise. This is done as in [32]. Then we recall some of the
above mentioned theory from [3] on convexity of entropy functionals and of the
Wasserstein distance itself, in order to show that the scheme is well-de�ned. In
the autonomous case these convexity properties also imply convergence of the
approximations given by (1.9) towards a continuous �ow of probability mea-
sures. In our time-dependent case this is not straightforward. This is in part
due to the fact, that we do not possess a single energy functional anymore
which can act as a Lyapunov functional. Nevertheless, in Section 7.3 we obtain
compactness of the approximating measure �ows and in Section 7.4 we prove
convergence towards a continuous curve of measures which is then shown to
solve the Fokker-Planck equation. Our methods require in particular that the
reference measures νt are equivalent for varying t, a rather demanding assump-
tion in in�nite dimensions. Section 7.5 thus presents an example of coe�cients
which lead to such well-behaved reference measures.
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Chapter 2

Prerequisites on Lévy

Processes and on integration

with respect to Lévy

martingale measures

In this chapter we give a short reminder on stochastic integration with respect
to Lévy processes in order to prepare for the solution of our equation in the
next chapter.

In the following let H be a real separable Hilbert space with scalar product
〈·, ·〉 := 〈·, ·〉H and norm ‖ · ‖ := ‖ · ‖H . An H-valued stochastic process L
adapted to a �ltration (Ft)t≥0 is called a Lévy process if it has independent and
stationary increments, is stochastically continuous, and we have P (L0 = 0) = 1.
We say that A ∈ B(H) is bounded below if 0 /∈ Ā.
We denote by N(t, A) the (random) number of "jumps of size A" up to time t,
that is N(t, A) := card{0 < s ≤ t|∆Ls ∈ A}, where ∆Ls := Ls − limr↗s Lr.
If A is bounded below, then N(t, A) is a Poisson process, with intensity µ(A),
where µ(A) := E[N(1, A)].
N(t, A) (also denoted Nt(A)) is called the Poisson random measure associated
to L, Ñ(t, A) := N(t, A) − tµ(A) is called the compensated Poisson random
measure.

De�nition 2.0.1 A Borel σ-�nite measure µ on H \ {0} with :∫
H\{0}

min(1, ‖x‖2)µ(dx) <∞

is called a Lévy measure.
It is convenient to extend this measure to all of H by setting µ({0}) = 0.

The following theorem is an important step in understanding the general
structure of Lévy processes. It shows that every Lévy process can be split into
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a drift part, a Gaussian part and a jump part. This decomposition opens up
possibilities for stochastic integration, as the jump part can be split again: into
a process with bounded jumps which can be compensated to yield a martin-
gale and into a process with unbounded jumps which produces paths of locally
bounded variation.

Theorem 2.0.2 (Lévy-Ito Decomposition) If L is an H-valued Lévy pro-
cess, there are a drift vector b ∈ H, a Wiener process WR on H with covariance
operator R of trace class, such that WR is independent of Nt(A) for any A that
is bounded below and we have:

Lt = bt+WR(t) +

∫
‖x‖<1

xÑt(dx) +

∫
‖x‖≥1

xNt(dx)

Proof See e.g. [2] Theorem 4.1 . �

The next theorem is the counterpart of Theorem 2.0.2 in terms of Fourier
transforms. Interestingly, the whole jump structure of a Lévy process can be
captured by a single measure, which automatically ful�lls the assumptions of a
Lévy measure. It is precisely the measure giving the intensity of the Poisson
process Nt(A) counting the jumps in a Borel set A of the state space.

Theorem 2.0.3 (Lévy-Khinchine Representation) If L is an H-valued Lévy
process with Lévy-Ito decomposition as in Theorem 2.0.2, then its characteristic
function takes the form: E[ei〈Lt,u〉] = etλ(u) and

λ(u) = i〈b, u〉 − 1

2
〈u,Ru〉+

∫
H\{0}

[
ei〈u,x〉 − 1− i〈u, x〉χ{‖x‖≤1}

]
µ(dx) (2.1)

Proof See [31] Theorem 5.7.3 . �

Since a �nite Borel measure is characterized by its Fourier transform we will
say that a measure is associated to a triple [b, R, µ] if its characteristic exponent
has the form (2.1).

Remark 2.0.4 Actually the Lévy-Khinchine representation holds not only for
Lévy processes but for any in�nitely divisible random variable. (See [43] for an
account of in�nite divisibility.) Moreover, Lévy processes and in�nitely divisible
measures can be brought in a one to one correspondence. In particular the
converse of Theorem 2.0.3 is true: any function of the form

exp

{
i〈b, u〉 − 1

2
〈u,Ru〉+

∫
H\{0}

[
ei〈u,x〉 − 1− i〈u, x〉χ{‖x‖≤1}

]
µ(dx)

}

is the characteristic function of a probability measure.
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2.1 Stochastic Integration with respect to Lévy

martingale measures

In this subsection we follow [5], where the proofs of all results can be found.

De�nition 2.1.1 Let (Ω,F , (Ft)t≥0, P ) be a �ltered probability space. Let H be
a Hilbert space and let R1 := {A ∈ B(U) | 0 /∈ Ā}, where U := {x ∈ H | ‖x‖ ≤
1}. Finally, for n ∈ N, let Sn := {x ∈ H | 1

n ≤ ‖x‖ ≤ 1}.
A Lévy martingale measure on H is a set function M : R+ ×R1 × Ω → H

satisfying:

• M(0, A) = 0 almost surely for all A ∈ R1

• M(t, ∅) = 0 almost surely

• almost surely we have: M(t, A ∪B) = M(t, A) +M(t, B) for all t and all
disjoint A, B ∈ R1

• M(t, A){t≥0} is a square-integrable martingale for each A ∈ R1

• if A ∩ B = ∅ M(t, A){t≥0} and M(t, B){t≥0} are orthogonal, that is:
〈M(t, A),M(t, B)〉 is a real-valued martingale for such A,B ∈ R1

• sup{E[‖M(t, A)‖2] |A ∈ B(Sn)} <∞ for every n ∈ N

• for every sequence Aj decreasing to the empty set such that Aj ⊂ B(Sn)
for all j we have: limj→∞ E[‖M(t, Aj)‖2] = 0

• for every s < t and every A ∈ R1 we have that M(t, A) − M(s,A) is
independent of Fs

Proposition 2.1.2 If Ñ is the compensated Poisson random measure of an
H-valued Lévy process, then M(t, A) =

∫
A
xÑt(dx), A ∈ R1 de�nes a Lévy

martingale measure on H.

Similarly as a Wiener process is characterized by its covariance operator, we
can describe the covariance structure of a Lévy martingale measure by a family
of operators parametrized by our ring R1.

Proposition 2.1.3

E[|〈M(t, A), v〉|2] = t〈v, TAv〉

for all t ≥ 0, v ∈ H A ∈ R1, where the operators TA are given by
TAv :=

∫
A
Txvµ(dx) and Txv := 〈x, v〉x.

We will establish a limited theory of integration only, as for our purposes it will
be su�cient to integrate deterministic operator valued functions. We do not
even need them to depend on the jump size. We follow the general approach,
so let us introduce the space of our integrands, the approximating simple func-
tions, and state how the integral is de�ned for them. For convenience, we set
M([s, t], A) := M(t, A)−M(s,A).
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De�nition 2.1.4 Let H ′ be another real separable Hilbert space, 0 ≤ T− < T+.
Let H2 be the space of all R : [T−, T+] × {x ∈ H | ‖x‖ ≤ 1} → L(H,H ′) such
that R is strongly measurable and we have:

‖R‖H2 :=

(∫ T+

T−

∫
‖x‖≤1

Tr(R(t, x)TxR
∗(t, x))µ(dx)dt

) 1
2

<∞

Let S be the space of all functions R ∈ H2 such that

R =

n∑
i=0

n∑
j=0

Rij χ(ti,ti+1]χAj

where T− = t0 < t1 < ... < tn+1 = T+ for some n ∈ N, where the Aj ∈ R1 are
pair wisely disjoint and where each Rij ∈ L(H,H ′).

For each R ∈ S de�ne the stochastic integral as follows:

I(R) :=

n∑
i=0

n∑
j=0

RijM([ti, ti+1], Aj)

Remark 2.1.5 We can also write ‖ · ‖H2 as:

‖R‖H2 =
(∫ T+

T−

∫
‖x‖≤1

‖R(t, x)x‖2µ(dx)dt
) 1

2

Proposition 2.1.6 The space H2 with inner product

〈R,U〉 :=

∫ T+

T−

∫
‖x‖≤1

Tr(R(t, x)TxU
∗(t, x))µ(dx)dt R,U ∈ H2

is a Hilbert space.

Proposition 2.1.7 The space S is dense in H2.

Proposition 2.1.8 We have for any R ∈ S : E[I(R)] = 0 and

E[‖I(R)‖2] =

∫ T+

T−

∫
‖x‖≤1

Tr(R(t, x)TxR
∗(t, x))µ(dx)dt = ‖R‖2H2

So, I : S → L2(Ω,F , P ;H) is an isometry.

So we can isometrically extend the operator I from S to its closure H2.

Remark 2.1.9 This approach to stochastic integration with respect to a Lévy
process is closely related to the one developed in [40]. In particular the relevant
isometry is the same in our case. While the approach used here allows for
integrands depending on the jump size, the theory in [40] is more general in
other aspects.
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2.2 Stochastic Convolution

We want to give meaning to the integral

XU,B :=

∫ t

s

U(t, r)B(r)dL(r)

which we will call a stochastic convolution. Here L is an H-valued Lévy process
and we have U(t, r) ∈ L(H), B(r) ∈ L(H) ∀ s ≤ r ≤ t. In anticipation of the
assumptions in Section 4 we will pose the following conditions:

• supr∈R ‖B(r)‖L(H) <∞

• there are M > 0, ω > 0 such that : ‖U(t, r)‖L(H) ≤Me−ω(t−r) ∀ t ≥ r

• r 7→ B(r) is measurable and r 7→ U(t, r) is measurable for any �xed t

Proposition 2.2.1 If U and B are as above, the stochastic convolution exists
in the following sense:∫ t

s

U(t, r)B(r)dL(r)

=

∫ t

s

U(t, r)B(r)b dr +

∫ t

s

∫
‖x‖≥1

U(t, r)B(r)x Nr(dx)dr

+

∫ t

s

U(t, r)B(r)dWR(r) +

∫ t

s

∫
‖x‖<1

U(t, r)B(r)x Ñr(dx)dr

(2.2)

Proof The proof is analogous to the one of Theorem 6 in [5] where U(t, s) =
S(t − s) for a strongly continuous semigroup S: the �rst term in (2.2) is well
de�ned as a simple Bochner integral, and the second one as a �nite random
sum. The de�nition of the third one is well-known, and for the last one it is
straightforward to check that for every t ≥ s r 7→ U(t, r)B(r) is in the space
H2, since U and B are bounded in operator norm. �
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Chapter 3

Solving the generalized

Ornstein-Uhlenbeck Equation

In this chapter we solve our generalized Ornstein-Uhlenbeck equation in the
mild and the (analytically) weak sense. For the mild approach we need our time-
dependent linear operators to generate a two-parameter semigroup with good
smoothing properties. Therefore we will have to deal with a non-autonomous
(deterministic) abstract Cauchy problem. Unlike in the autonomous case there
is no easy characterization of well-posedness in the sense of the Hille-Yosida
theorem available. There are di�erent, yet technical, approaches (see [34] and
the references therein for a recent overview), but since this subject is not in the
primary interest of our work, we assume that the problem is well posed. This
is closely related to the notion of evolution semigroups. Our de�nition is taken
from [10].
We will, however, give the example of a time-dependent di�erential operator
generating a two-parameter semigroup which satis�es all our abstract assump-
tions.

3.1 Existence of the Mild Solution

Let us lay out the framework we will be working in. We consider the following
non-autonomous generalisation of the Langevin equation on a Hilbert space H:{

dXt = (A(t)Xt + f(t))dt+B(t)dLt
Xs = x

(3.1)

where B : R → L(H) is strongly continuous and bounded in operator norm,
f : R → H is uniformly Hölder continuous and bounded, L is an H-valued
Lévy-process and where the A(t) are linear operators on H with common and
dense domain D(A) ⊂ H and A : R×D(A)→ H is such that we can solve the
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associated non-autonomous abstract Cauchy problem{
dXt = (A(t)Xt + f(t))dt
Xs = x

(3.2)

according to the following de�nition:

De�nition 3.1.1 An exponentially bounded evolution family on H is a two
parameter family {U(t, s)}t≥s of bounded linear operators on H such that we
have:

(i) U(s, s) = Id and U(t, s)U(s, r) = U(t, r) whenever r ≤ s ≤ t

(ii) for each x ∈ H, (t, s) 7→ U(t, s)x is continuous on s ≤ t

(iii) there areM > 0 and ω > 0 such that : ‖U(t, s)‖L(H) ≤Me−ω(t−s) , s ≤ t

Assumption 3.1.2 There is a unique solution to (3.2) given by an exponen-
tially bounded evolution family U(t, s) so that the solution takes the form:

Xt = U(t, s)x+

∫ t

s

U(t, r)f(r)dr

Moreover, we assume that :

d

dt
U(t, s)x = A(t)U(t, s)x whenever t > s or x ∈ D(A)

Concerning the adjoint operators, we require that A∗(t) also have a common
domain independent of t and dense in H, which we will denote by D(A∗).
Furthermore, we have strong continuity of t 7→ A(t) as well as of t 7→ A∗(t).
These assumptions will be in force throughout the whole paper.

Remark 3.1.3 Note that in the �nite dimensional case, where each A(t) is
automatically bounded, we get the existence of an evolution family that solves
(3.2) under the reasonable assumption that t 7→ A(t) is continuous and bounded
in the operator norm, by solving the following matrix-valued ODE:{

∂
∂tU(t, s) = A(t)U(t, s)
U(s, s) = Id

Existence and uniqueness are assured since (t,M) 7→ A(t)M is globally Lipschitz
in M . This result even holds in in�nite dimensions, see [13].

Example 3.1.4 As a nontrivial example of a two parameter semigroup ful�ll-
ing Assumption 3.1.2 we consider the solution of a parabolic PDE with time-
dependent coe�cients.
Let O be a bounded domain in Rn, such that ∂O is of class C2. Let H :=
L2(O, dx). Let H2 := H2,2 and H1

0 := H1,2
0 be the Sobolev spaces of order 2 and
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of order 1 with Dirichlet boundary conditions, respectively. For g ∈ H2 ∩H1
0 let

A(t) be given by second order di�erential operators in divergence form:

A(t)g(x) :=

n∑
i,j=1

∂

∂xi

(
aij(t, x)

∂

∂xj
g

)
(x)

We impose the following conditions on the coe�cients:

• (t, x) 7→ aij(t, x) is de�ned on R× Ō and is continuous ∀i, j.

• (t, x) 7→ ∂
∂xi

aij(t, x) is de�ned on R× Ō and is continuous ∀i, j.

• t 7→ aij(t, x) and t 7→ ∂
∂xi

aij(t, x) are Hölder continuous ∀i, j uniformly in
x.

• there is c > 0 s.t.
∑n
i,j=1 yiaij(t, x)yj ≥ c ‖y‖22 ∀y ∈ Rn, t ∈ R, x ∈ Ō

By Theorem 9.1 in part 2 of [24] we obtain existence and uniqueness of
a solution to the Cauchy problem (3.2). Moreover, the solution is given by a
strongly continuous evolution family, say U . Strong continuity of t 7→ A(t)
is clear by continuity of the coe�cients. As the adjoints are explicitly given
through integration by parts, the assumption on the A∗(t) is also clearly ful�lled.
It remains to show, that this family is also exponentially bounded. Hence we
compute, for a �xed f ∈ H with g := U(t, s)f

d

dt
‖U(t, s)f‖2H = 2〈A(t)g, g〉H = −2

∫
O

 n∑
i,j=1

aij(t, x)
∂

∂xi
g(x)

∂

∂xj
g(x)

 dx

≤ −2c

∫
O

〈∇g(x),∇g(x)〉Rndx ≤ −2c

∫
O

|g(x)|2dx = −2c‖U(t, s)f‖2H

where we employed the Poincaré inequality and absorbed its constant into c.
Thus, the result follows by a Gronwall type argument.

De�nition 3.1.5 Given Assumption 3.1.2 we call the process:

X(t, s, x) = U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dLr

a mild solution to equation (3.1).

3.2 Existence of the Weak Solution

We have called the above expression a mild solution, though there is no obvious
relation to the equation yet. Now, we will show that our candidate solution
actually solves our equation in the weak sense. The following de�nition makes
this precise:
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De�nition 3.2.1 An H-valued process Xt is called a weak solution to equation
(3.1) if for every y ∈ D(A∗) and P -almost every ω ∈ Ω we have :

〈Xt, y〉 = 〈x, y〉+

∫ t

s

〈Xr, A
∗(r)y〉dr +

∫ t

s

〈f(r), y〉dr +

∫ t

s

B∗(r)ydLr , t > s

In particular P − a.s. the integrals
∫ t
s
〈Xr, A

∗(r)y〉dr must exist for every t > s.
Here (B∗(r)y)(h) := 〈B∗(r)y, h〉 so that B∗(r)y ∈ L(H,R) and the integral is
well de�ned, since
‖B∗(r)y‖2H ≤ (T+ − T−) supr ‖B(r)‖2L(H)‖y‖

2
∫
‖x‖<1

‖x‖2µ(dx) <∞.

Theorem 3.2.2 Let Assumption 3.1.2 hold. Then the mild solution Xt from
De�nition 3.1.5 is also a weak solution for (3.1).

Proof By calculating:

∫ t

s

〈U(r, s)x,A∗(r)y〉dr =

∫ t

s

d

dr
〈U(r, s)x, y〉dr = 〈U(t, s)x− x, y〉

∫ t

s

〈∫ r

s

U(r, u)f(u)du,A∗(r)y

〉
dr =

∫ t

s

∫ r

s

d

dr
〈U(r, u)f(u), y〉 dudr

=

∫ t

s

〈f(u), [U∗(t, u)− Id]y〉 du =

∫ t

s

〈U(t, u)f(u), y〉 du−
∫ t

s

〈f(u), y〉 du

the problem is reduced to proving, for all y ∈ D(A∗), the following equality:

〈∫ t

s

U(t, r)B(r)dLr, y

〉
=

∫ t

s

〈∫ r

s

U(r, u)B(u)dLu, A
∗(r)y

〉
dr+

∫ t

s

B∗(u)ydLu

(3.3)

To this end, let us �rst assume the case of a Lévy process where the second
term in (2.2) is 0, so that the jumps are bounded in modulus by 1. We need to
approximate U and B by functions which are simple in u.
Note that, thanks to continuity of U and B, we can choose our partition inde-
pendent of r. Hence, for n ∈ N and 0 ≤ k < 2n let uk := s+ (t− s)k2−n.
De�ne U (n)(r, u) := U(r, uk) if uk ≤ u < uk+1 and respectively:
B(n)(u) := B(uk) if uk ≤ u < uk+1. Hence:
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∫ t

s

〈∫ r

s

U (n)(r, u)B(n)(u)dLu, A
∗(r)y

〉
dr (∗)

=

∫ t

s

2n−1∑
k=0

χ{uk<r}〈U(r, uk)B(uk)(Luk+1∧r − Luk), A∗(r)y〉dr

=

2n−1∑
k=0

∫ t

s

χ{uk<r}〈U(r, uk)B(uk)(Luk+1∧r − Luk), A∗(r)y〉dr

=

2n−1∑
k=0

∫ t

uk

〈A(r)U(r, uk)B(uk)(Luk+1
− Luk), y〉dr +R(n)

=

2n−1∑
k=0

∫ t

uk

d

dr
〈U(r, uk)B(uk)(Luk+1

− Luk), y〉dr +R(n)

=

2n−1∑
k=0

〈(U(t, uk)− Id)B(uk)(Luk+1
− Luk), y〉+R(n)

=

〈∫ t

s

U (n)(t, u)B(n)(u)dLu, y

〉
−
〈∫ t

s

B(n)(u)dLu, y

〉
+R(n)

where R(n) :=
∑2n−1
k=0

∫ uk+1

uk
〈U(r, uk)B(uk)(Lr − Luk+1

), A∗(r)y〉dr.

Taking the limit n → ∞ in the equality above we will now establish (3.3).
First, de�ne V (n)(t, u) := U (n)(t, u)B(n)(u) − U(t, u)B(u) and observe that
limn→∞ ‖V (n)(t, u)x‖ = 0 for t ≥ u and x ∈ H �xed. In order to show

limn→∞
∫ t
s
V (n)(t, u)dLu = 0 in L2(Ω, P ;H) we need to prove:

• limn→∞
∫ t
s
‖V (n)(t, u)b‖du = 0

• limn→∞

(∫ t
s

∑
k ‖V (n)(t, u)(

√
R)∗ek‖2du

) 1
2

= 0

• limn→∞

(∫ t
s

∫
‖x‖≤1

‖V (n)(t, u)x‖2µ(dx)du
) 1

2

= 0

where (ek)k∈N is an ONB of H and where b, R and µ are as in (2.1). In each
case pointwise convergence of the integrand is clear and a majorizing expression
is easily found remembering that U and B are uniformly bounded in Opera-
tor norm and

√
R is Hilbert-Schmidt. The proof for limn→∞

∫ t
s
B(n)(u)dLu =∫ t

s
B(u)dLu is essentially the same.

For the expression in (∗) (understood as a Bochner integral in L2(Ω, P ;R))

we have to show: limn→∞
∫ t
s

∥∥〈∫ r
s
V (n)(t, u)dLu, A

∗(r)y
〉∥∥
L2(Ω,P ;R)

dr = 0

Pointwise convergence of the integrand in L2(Ω, P ;R) follows from the results
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above, and an integrable upper bound is given by:

√
(r − s) sup

u
‖B(u)‖L(H)

‖b‖+
√

Tr(R) +

(∫
‖x‖≤1

‖x‖2µ(dx)

) 1
2

 sup
u
‖A∗(u)y‖

Finally, we show that Rn tends to 0 in L1(Ω, P ;R):

E|Rn| ≤ E

[
2n−1∑
k=0

∫ uk+1

uk

‖U(r, uk)B(uk)(Lr − Luk+1
)‖‖A∗(r)y‖dr

]

≤M sup
t∈R
‖B(t)‖L(H) sup

t∈R
‖A(t)y‖︸ ︷︷ ︸

:=C

2n−1∑
k=0

∫ uk+1

uk

E
[
‖Lr − Luk+1

‖
]
dr

≤ C
2n−1∑
k=0

∫ uk+1

uk

(
E[‖(Luk+1−r − (uk+1 − r)E[L1]‖] + ‖E[L1]‖(uk+1 − r)

)
dr

Now we have limt→0 E[‖Lt−tE[L1]‖] = 0. Convergence in probability is clear by
de�nition of a Lévy process and uniform integrability follows by Doob's maximal
inequality, since ‖Lt− tE[L1]‖ is a right continuous positive submartingale. The
result then follows by an easy ε− δ argument.

To complete the proof consider a Lévy process such that (2.2) consist only
of the second term (pure and discrete jump case). Due to the discrete nature
of the jumps, there is no need for the above approximation procedure and one
can prove (3.3) ω by ω, repeating the steps following equation (∗). �

Remark 3.2.3 Due to the non-autonomous setting, the proof above is rather
technically involved. The di�culties stem from the fact that (t, s) 7→ U∗(t, s) is
in general only weakly continuous and weakly di�erentiable and U∗(t, s)D(A∗) ⊂
D(A∗) does not hold. For the same reason, we were unable to prove the converse
of Theorem 3.2.2. If U∗ has the same properties as U (as in Example 5.1.4 where
U = U∗), one can indeed show (following the proof in the autonomous case as
in [19] Theorem 5.4) that the weak solution to (3.1) is also a mild solution and
hence unique.

Proposition 3.2.4 Assume that s 7→ U∗(t, s)ξ ∈ C1([0, T ], D(A∗)) for any ξ ∈
D(A∗). Then the weak solution to (3.1) is unique.

Proof For simplicity, let us assume that we have a weak solution Xt to (3.1)
with X(0) = 0 and f ≡ 0.
Claim: Then for any function ζ ∈ C1([0, T ], D(A∗)) we have

〈Xt, ζ(t)〉 =

∫ t

0

〈Xr, A
∗(r)ζ(r) + ζ(r)〉dr +

∫ t

0

B∗(r)ζ(r)dLr.
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By a density argument it is su�cient to show this for functions ζ(t) := φ(t)ζ0
with φ ∈ C1([0, T ]), ζ0 ∈ D(A∗).

Let us de�ne the process

Fζ0(t) :=

∫ t

0

〈Xs, A
∗(s)ζ0〉ds+ 〈B∗(s)ζ0, Ls〉.

Since Xs is a weak solution we have Fζ0(t) = 〈ζ0, Xs〉 almost surely. Applying
the Ito formula to the process Fζ0(s)φ(s) we get

d [Fζ0(s)φ(s)] = φ(s)dFζ0(s) + φ′(s)Fζ0(s)ds.

In other terms

Fζ0(t)φ(t) =

∫ t

0

φ(s)〈Xs, A
∗(s)ζ0〉ds+

∫ t

0

φ(s)〈B∗(s)ζ0, dLs〉+
∫ t

0

φ′(s)Fζ0(s)ds.

Replacing Fζ0(t) with 〈ζ0, Xs〉 and remembering that ζ(t) := φ(t)ζ0 we end up
with

〈ζ(t), Xt〉 =

∫ t

0

〈Xs, A
∗(s)ζ(s) + ζ ′(s)〉ds+

∫ t

0

〈B∗(s)ζ(s), dLs〉

and the claim is proved.
To prove the proposition, we apply the claim with ζ(s) := U∗(t, s)ζ0. Since
d
dsU

∗(t, s)ζ0 = −A∗(s)U∗(t, s)ζ0 we obtain:

〈Xt, ζ0〉 =

∫ t

0

〈U∗(t, s)ζ0, B(s)dLs〉.

As D(A∗) is assumed to be dense and ζ0 ∈ D(A∗) is arbitrary, X must coincide
with the mild solution. �

The following is a counterexample (sketched in [10]) illustrating that � as
mentioned in the remark above � good behavior of U(t, s) is not necessarily
inherited by U∗(t, s) .

Example 3.2.5 Let H = L2(R+, dx) and for f ∈ H and t ≥ s ≥ 0 let

U(t, s)f(x) = u(t)u(s)−1f(x)

where u(t)f(x) := f(x)− 1
2f(x+ 1

t )1{t>0}.
Then t 7→ u(t) is strongly continuous since

lim
t→0

∫ ∞
0

f2

(
x+

1

t

)
dx = lim

t→0

∫ ∞
1
t

f2(x)dx = 0

by dominated convergence. Moreover, for any t ≥ 0, u(t) is invertible as a
Neumann series (since ‖ 1

2f(· + 1
t )1{t>0}‖H = 1

2‖f‖H), and the continuity of
t 7→ u−1(t)f can be seen �rst for continuous f in a similar spirit as above and
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then for general f since u−1(t) is bounded for any t ≥ 0.
Thus (t, s) 7→ U(t, s) is a strongly continuous evolution semigroup.
For the adjoints we have

u∗(t)f(x) = f(x)− 1{xt≥1}
1

2
f(x− 1

t
)

but since

lim
t→0

∫ ∞
0

f2(x− 1

t
)dx =

∫ ∞
0

f2(x)dx 6= 0

we do not have strong continuity for t 7→ u∗(t) and thus neither for

(t, s) 7→ U∗(t, s) = u∗(s)−1u∗(t)

.



Chapter 4

The Semigroup and a

generalized Invariant Measure

In this chapter we show that the solution established in the last chapter induces
a two-parameter semigroup of operators. We prove existence of an evolution
system of measures for this semigroup in Section 4.2 and with its help de�ne a
generalized invariant measure for a corresponding one-parameter semigroup on
an extended state space in Section 4.3. On the L2 space with respect to this
measure we then prove in the last section that the one-paramter semigroup is
strongly continuous.

4.1 The semigroup property

Recall that the mild solution for (3.1) takes the following form

X(t, s, x) = U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dLr.

As opposed to the Gaussian case we are no longer able to give an easy represen-
tation of the law of X(t, s, x), but we can calculate its Fourier transform. The
following lemma will be an extremely helpful tool in the calculations to come.

Lemma 4.1.1 (characteristic function)

E [exp (i 〈h,X(t, s, x)〉)] =

exp

{
i

〈
h, U(t, s)x+

∫ t

s

U(t, r)f(r)dr

〉}
exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
where λ is the Lévy symbol of L.

Proof : We proceed by using the isometries to approximate the stochastic
integral by a sum, and then using independence of increments and the Lévy-
Khinchin formula.
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First note that knowing how the Fourier transform acts on translations, it will
be enough to show that:

E
[
exp

(
i

〈
h,

∫ t

s

U(t, r)B(r)dLr

〉)]
= exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
The strong continuity of U and B allows us to approximate the Lévy stochastic
integral by a sequence of sums. More precisely, we have:∫ t

s

U(t, r)B(r)dLr = P − lim
n→∞

∑
si∈Pn

U(t, si)B(si)(Lsi − Ls(i−1)∨0)

where the limit is taken in probability and Pn is a sequence of partitions s = s0 <
... < sN = t of [s, t] such that the mesh width tends to zero. The veri�cation is
a straightforward application of the respective isometries.

For the drift term which is a Bochner integral we have to show that:

lim
n→∞

∑
si∈Pn

∫ si

si−1

‖U(t, si)B(si)b− U(t, r)B(r)b‖ dr = 0

but since r 7→ Ut(r)B(r)b is even uniformly continuous on [s, t] we may �nd
δ > 0 such that ‖Ut(r)B(r)b − Ut(r′)B(r′)b‖ < ε

t−s whenever |r − r′| < δ, so
that if we choose n such that the mesh width of Pn is smaller than δ we have∑

si∈Pn

∫ si

si−1

‖U(t, si)B(si)b− U(t, r)B(r)b‖ dr <
∑
si∈Pn

∫ si

si−1

ε

t− s
dr < ε

For the small jumps we make use of the isometry from 2.1.8, so we have to
show that our piecewise approximation converges in the H2 norm, that is we
need:

lim
n→∞

∞∑
k=1

∫
‖x‖<1

( ∑
si∈Pn

∫ si

si−1

‖[Ut(r)B(r)− Ut(si)B(si)]T
1
2
x ek‖2dr

)
M(dx) = 0

For each k and x �xed the expression in round brackets converges to zero, for
the same reasons as used for the drift term. So we only have to show that we
may take the limit into the sum and the integral, but this follows by dominated
convergence on considering the uniform integrable bound :

‖[Ut(r)B(r)−Ut(si)B(si)]T
1
2
x ek‖2 ≤ 2 sup

s≤r≤t
‖Ut(r)‖L(H) sup

s≤r≤t
‖B(r)‖L(H)‖T

1
2
x ek‖2

Thus we have convergence in L2 of the approximating sums towards the inte-
gral.
The same argument works for the Brownian part, where there is even no depen-
dence on x.
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The big jumps, �nally are quite simple to treat. Since the expression makes
sense pointwise, we consider the approximation for ω �xed and we obtain:

lim
n→∞

∑
si∈Pn

∑
si−1≤r≤si

[Ut(si)B(si)− Ut(r)B(r)]∆Lr(ω)χ‖∆Lr(ω)‖>1 = 0

again because of strong continuity.
So in any of the four cases we have at least convergence in probability and

the claim is proved.
By convergence in distribution and independence of increments:

E
[
exp

(
i

〈
h,

∫ t

s

U(t, r)B(r)dLr

〉)]
= lim
n→∞

∏
k∈Pn

E
[
exp

(
i
〈
h, U(t, sk)B(sk)(Lsk − Lsk−1∨0)

〉)]
= exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
where we employed the Lévy-Khinchine formula and the functional equation
of the exponential. Note that the Riemannian sums converge to the integral
because of strong continuity.

�

The following lemma is a straightforward generalization of the standard
monotone class theorem.

Lemma 4.1.2 (complex monotone classes) Let H be a complex vector space
of complex-valued bounded functions, that contains the constants and is closed
under componentwise monotone convergence. LetM⊂ H be closed under mul-
tiplication and complex conjugation. Then, all bounded functions measurable
with respect to the σ-algebra generated by the functions inM belong to H.

The last and the next result in combination will be particularly useful:

Lemma 4.1.3 The functionsM := {ei〈h,x〉, h ∈ H} form a complex multiplica-
tive system that generates the Borel σ-algebra of H.

Proof It is obvious thatM is closed under multiplication and complex conju-
gation.
To show that indeed σ(M) = B(H) we make use of the following lemma: (see
[44] page 108)

Lemma 4.1.4 A countable family of real-valued functions on a Polish space X
separating the points of X already generates the Borel-sigma-algebra of X.

Our countable family will be {fn,k(x) := sin(〈 1
nek, x〉)}k,n∈N ⊂ M where {ek}

is an orthonormal basis of H.
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Since the sine function is injective in a neighborhood of zero, and the functions
〈 1
nek, x〉) separate the points ofH, so do the fn,k. As real and imaginary parts of
functions inM, it is clear, that the sigma-algebra generated by them is included
in σ(M). �

Now we will show that our solution induces a two-parameter transition evo-
lution semigroup, de�ned as follows:

De�nition 4.1.5 Whenever f : H → C is measurable and bounded, de�ne :

P (s, t)f(x) := E[f(X(t, s, x))] (t ≥ s)

P (s, t) will be called the two-parameter semigroup (associated to the solution
X).

Lemma 4.1.6 For f as above, we have the following �ow property, i.e. P (s, t)
satis�es the Chapman-Kolmogorov equation:

P (r, s)P (s, t)f(x) = P (r, t)f(x) (t ≥ s ≥ r)

Moreover, P (s, t) is Feller, mapping Cb(H) into itself.

Proof We will show the equality for the functions fh(x) = ei〈h,x〉 and extend
it with the help of Lemma 4.1.2. First note, that by Lemma 4.1.1 we have

P (s, t)fh(x) = exp

{
i

〈
h, U(t, s)x+

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
so that:

P (r, s)P (s, t)fh(x) = E[P (s, t)fh(X(s, r, x))]

= E [exp {i 〈U∗(t, s)h,X(s, r, x)〉}]

× exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
but again Lemma 4.1.1 gives us the Fourier transform of X(s, r, x) this time
evaluated at U∗(t, s)h:

= exp {i 〈U∗(t, s)h, U(s, r)x〉}

× exp

{
i

〈
U∗(t, s)h,

∫ s

r

U(s, q)f(q)dq

〉}
exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉}
× exp

{∫ s

r

λ(B∗(q)U∗(s, q)U∗(t, s)h)dq

}
exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
Interchanging U(t, s) with the integral, as it is a bounded operator, making
use of the semigroup property of U and U∗ and combining the integrals yields
the result for exponential f . By monotone convergence, it is easy to see that
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the space of all bounded measurable f for which the �ow property holds is a
complex monotone vector space. Hence, the �rst assertion is proved.
For the second assertion we make use of a Mehler formula for the semigroup.

P (s, t)f(x) =E
((

f(U(t, s)x+

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dLr

))
=

∫
H

f

(
U(t, s)x+

∫ t

s

U(t, r)f(r)dr + y

)
µs,t(dy)

where
∫ t
s
U(t, r)B(r)dLr ∼ µs,t. Since U(t, s) is strongly continuous and since

f ∈ Cb(H) we have

P (s, t)f(xn)→ P (s, t)f(x) as xn → x

by dominated convergence. �

Remark 4.1.7 Note that Lemma 4.1.6 is equivalent to the Markov property
(with respect to the natural �ltration) for our solution, but in our case its direct
proof seems to be even more di�cult. The Feller property will be strengthened
in Corollary 5.2.7 as a consequence of a Harnack inquality for P (s, t).

4.2 Evolution Systems of Measures

Since our equation is non-autonomous we cannot hope for a single invariant
measure. What one can still expect in our setting is a so called evolution system
of measures, a whole family {νt}t∈R of probability measures such that for all
s < t and all bounded measurable ψ:∫

H

P (s, t)ψ(x)νs(dx) =

∫
H

ψ(x)νt(dx) (4.1)

The use of such a system goes back at least to Dynkin [20] where it appears
under the name of an entrance law. See also [17] and of course [14] which served
as a direct motivation.

We want to assure the existence of such a system, therefore we require the
following condition on the jump part of our driving Lévy process.

Assumption 4.2.1 In addition to Assumption 3.1.2 we require that for the
Lévy measure µ we have: ∫

‖x‖>1

‖x‖µ(dx) <∞

Remark 4.2.2 Note that in the autonomous case the corresponding condition∫
‖x‖>1

log(‖x‖)µ(dx) <∞ (see [11]) is considerably weaker.

The following lemma will provide a useful growth condition for the Lévy
symbol that will allow us to construct limit measures. A proof is contained in
the appendix.
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Lemma 4.2.3 Every Lévy symbol λ with a Lévy measure µ satisfying Assump-
tion 4.2.1 is Fréchet di�erentiable. In particular such a λ is locally Lipschitz
continuous.

Proof By the Lévy-Khinchine formula (2.1) we know that:

λ(u) = i〈u, b〉 − 1

2
〈u,Ru〉+

∫
H\{0}

(
ei〈u,x〉 − 1− i〈u, x〉χ{‖x‖≤1}

)
µ(dx)

Clearly, it is enough to show that the integral expression is di�erentiable. We
�rst show Gâteaux di�erentiability, hence we will need the directional derivatives
to be uniformly integrable to obtain the result via dominated convergence. We
have:

∂

∂t

(
ei〈u+tv,x〉 − 1− i〈u+ tv, x〉χ{‖x‖≤1}

)
= i〈v, x〉ei〈u+tv,x〉 − i〈v, x〉χ{‖x‖≤1}

To see the uniform integrability in t (for, say, t ∈ [0, 1]) we split the integral in
two parts:∫
‖x‖≤1

sup
t∈[0,1]

∣∣∣i〈v, x〉ei〈u+tv,x〉 − i〈v, x〉χ{‖x‖≤1}

∣∣∣µ(dx)

=

∫
‖x‖≤1

∣∣∣∣∣i〈v, x〉
∞∑
k=0

(i〈u, x〉)k

k!
− i〈v, x〉

∣∣∣∣∣µ(dx)

≤
∫
‖x‖≤1

(
‖v‖ ‖x‖

∞∑
k=1

|(i〈u, x〉)|k

k!

)
M(dx)

≤
∫
‖x‖≤1

(
‖v‖ ‖x‖

∞∑
k=1

‖u‖k‖x‖k

k!

)
M(dx)

≤
∫
‖x‖≤1

sup
t∈[0,1]

(
‖v‖ ‖x‖2‖u+ tv‖

∞∑
k=1

‖u+ tv‖k−1‖x‖k−1

k!

)
µ(dx)

≤ sup
‖x‖≤1

sup
t∈[0,1]

exp{‖u+ tv‖‖x‖} ‖u+ tv‖ ‖v‖
∫
‖x‖≤1

‖x‖2µ(dx) = C(u, v) <∞

since µ is a Lévy measure. Here C(u, v) is a constant depending only on the
�xed u and v. On the other hand, we have:∫
‖x‖>1

∣∣∣i〈v, x〉ei〈u+tv,x〉 − i〈v, x〉χ{‖x‖≤1}

∣∣∣µ(dx) ≤ ‖v‖
∫
‖x‖>1

‖x‖µ(dx) <∞

�

by assumption.
Moreover, from the above, it is easy to see that the Gâteaux derivative is linear
and bounded and depends continuously on u with respect to the operator norm.
Thus λ is Fréchet di�erentiable and hence locally Lipschitz.
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Theorem 4.2.4 Let Assumption 4.2.1 hold. Denote by λ the Lévy symbol of
L. Then the functions

ν̂t(h) := exp

{
i

〈
h,

∫ t

−∞
U(t, r)f(r)dr

〉}
exp

{∫ t

−∞
λ{B∗(r)U∗(t, r)h}dr

}
are the Fourier transforms of an evolution system of measures.

Proof : We have to assure that the integrals above exist. Since U is stable
and f is bounded on all of R we have:∫ t

−∞
‖U(t, r)f(r)‖dr ≤

∫ t

−∞
Me−ω(t−r)‖f‖∞dr =

M

ω
‖f‖∞

As λ is Fréchet di�erentiable it has locally linear growth, so that with λ(0) =
0 we have ‖λ(u)‖ ≤ C‖u‖ on the bounded range of the argument for some C > 0.
Hence, as ‖B∗‖ is bounded, we can treat the second integral like the �rst:∫ t

−∞
‖λ{B∗(r)U∗(t, r)h}‖dr ≤ C sup

r
‖B∗(r)‖M

ω
‖h‖ <∞ (4.2)

where we have used that ‖U∗‖ = ‖U‖.
To show that these functions are indeed Fourier transforms of measures

we can make use of Lévy's continuity theorem in the �nite dimensional case.
We have just proven pointwise convergence of the Fourier transforms of P ◦
[X(t, s, x)]−1, and that the limit function is continuous in 0 follows easily by
dominated convergence. Pointwise convergence under the integral is clear by
continuity of λ,U and B and a majorizing function is found by looking at (4.2)
again.
In the in�nite dimensional case, however, we cannot apply Lévy's continuity
theorem, because we are unable to prove continuity in the Sazonov topology.
For a better readability we postpone the somewhat technical alternative to the
end of this proof, formulated as a claim.

In order to see that the respective measures constitute an evolution system
of measures we will check (4.1) for exponential functions and then extend the
result via monotone classes. So if we take k(x) = ei〈h,x〉 in (4.1) we get:∫

H

k(x)νt(dx) = ν̂t(h)

by the very de�nition of Fourier transformation.
On the other hand we have by Lemma 4.1.1:

P (s, t)k(x) = exp

{
i

〈
h, U(t, s)x+

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ{B∗(r)U∗(t, r)h}dr
}
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Using the adjoint of U and the fact that Fourier transformation is only with
respect to x we obtain by de�nition of ν̂s:∫
H

P (s, t)k(x)νs(dx)

= ν̂s(U
∗(t, s)h) exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ{B∗(r)U∗(t, r)h}dr
}

= exp

{
i

〈
U∗(t, s)h,

∫ s

−∞
U(s, r)f(r)dr

〉
+

∫ s

−∞
λ{B∗(r)U∗(s, r)U∗(t, s)h}dr

}
× exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ{B∗(r)U∗(t, r)h}dr
}

= exp

{
i

〈
h,

∫ s

−∞
U(t, s)U(s, r)f(r)dr

〉
+

∫ s

−∞
λ{B∗(r)U∗(t, r)h}dr

}
× exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ{B∗(r)U∗(t, r)h}dr
}

= exp

{
i

〈
h,

∫ t

−∞
U(t, r)f(r)dr

〉}
exp

{∫ t

−∞
λ{B∗(r)U∗(t, r)h}dr

}
but the last line equals ν̂t(h) and that is precisely what we had to show.

To prove the full assertion we have to show that (4.1) not only holds for func-
tions of the form kh(x) := ei〈h,x〉, but for any bounded measurable function.
By Lemma 4.1.3 we can apply Lemma 4.1.2, because the bounded and measur-
able functions for which (4.1) holds, form a complex monotone vector space:
for constant functions the equality is trivial and that (4.1) holds for monotone
limits is seen by applying Beppo Levi's theorem on monotone convergence twice.
Hence, the existence of an evolution system of measures is proved.

Claim: ν̂t is a characteristic function - Hilbert space case
The general idea is the following. In the Gaussian case, it is known that the
limit distributions are Gaussian again. In the same manner we take advantage
of the fact that, in the Lévy case, our limit distribution is in�nitely divisible.
We proceed here similarly as in [25] Chapter 3. First of all we show that our
distributions P ◦ X(t, s, x) are in�nitely divisible for any t > s, x. By the
Lévy-Khinchine representation it is su�cient to prove that their characteristic
functions have the form (2.1) for some triple [b, R, µ]. Therefore, we calculate:

exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
= exp

{∫ t

s

i〈b, B∗(r)U∗(t, r)h〉dr − 1

2

∫ t

s

〈B∗(r)U∗(t, r)h,RB∗(r)U∗(t, r)h〉dr

+

∫ t

s

(∫
H

(
ei〈x,B

∗(r)U∗(t,r)h〉 − 1− i〈x,B∗(r)U∗(t, r)h〉χ{‖x‖≤1}

)
µ(dx)

)
dr

}
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For the jump part we have:∫
H

(
ei〈x,B

∗(r)U∗(t,r)h〉 − 1− i〈x,B∗(r)U∗(t, r)h〉χ{‖x‖≤1}

)
µ(dx)

=

∫
H

(
ei〈U(t,r)B(r)x,h〉 − 1− i〈U(t, r)B(r)x, h〉χ{‖U(t,r)B(r)x‖≤1}

)
µ(dx)

+

∫
H

i〈U(t, r)B(r)x, h〉
(
χ{‖U(t,r)B(r)x‖≤1} − χ{‖x‖≤1}

)
µ(dx)

=

∫
H

(
ei〈x,h〉 − 1− i〈x, h〉χ{‖x‖≤1}

)
µ ◦ (U(t, r)B(r))−1(dx) (4.3)

−
∫
H

i〈U(t, r)B(r)x, h〉
(
χ{‖x‖≤1} − χ{‖U(t,r)B(r)x‖≤1}

)
µ(dx) (4.4)

Note that (4.3) is �nite because of: (setting C := ‖U(t, r)B(r)‖L(H))∫
H

(1 ∧ ‖x‖2)µ ◦ (U(t, r)B(r))−1(dx) =

∫
H

(1 ∧ ‖U(t, r)B(r)x‖2)µ(dx)

≤
∫
H

(1 ∧ C2‖x‖2)µ(dx) ≤ max(1, C2)

∫
H

(1 ∧ ‖x‖2)µ(dx) <∞

and only in that way we can argue that (4.4) must be �nite as well. Thus, we
obtain:

exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
= exp

{
i

〈∫ t

s

U(t, r)B(r)b dr, h

〉
− 1

2

〈
h,

∫ t

s

U(t, r)B(r)RB∗(r)U∗(t, r)hdr

〉
+

∫ t

s

(∫
H

(
ei〈x,h〉 − 1− i〈x, h〉χ{‖x‖≤1}

)
µ ◦ (U(t, r)B(r))−1(dx)

)
dr

− i

〈∫ t

s

∫
H

U(t, r)B(r)x
(
χ{‖x‖≤1} − χ{‖U(t,r)B(r)x‖≤1}

)
µ(dx)dr, h

〉}
so that with:

• b(t, s) :=
∫ t
s
U(t, r)B(r)bdr

−
∫ t
s

∫
H
U(t, r)B(r)x[χ{‖x‖≤1} − χ{‖U(t,r)B(r)x‖≤1}]µ(dx)dr

• Q(t, s) :=
∫ t
s
U(t, r)B(r)RB∗(r)U∗(t, r)dr

• µt,s(A) :=
∫ t
s
µ ◦ (U(t, r)B(r))−1(A)dr for 0 /∈ A

exp
{∫ t

s
λ(B∗(r)U∗(t, r)h)dr

}
is associated to the triple [b(t, s), Q(t, s), µt,s],

where Q(t, s) is still symmetric and nonnegative and we have :

TrQ(t, s) =
∑
k

〈ek, Q(t, s)ek〉 =
∑
k

∫ t

s

‖
√
RB∗(r)U∗(t, r)ek‖2dr

=

∫ t

s

‖
√
RB∗(r)U∗(t, r)‖22dr ≤

∫ t

s

‖
√
R‖22‖B∗(r)U∗(t, r)‖2dr <∞
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and µt,s is a Lévy measure, as we have [since (1 ∧ ‖x‖2) ≤ (‖x‖ ∧ ‖x‖2)]:∫ t

s

∫
H

(1 ∧ ‖x‖2)µ ◦ (U(t, r)B(r))−1(dx)dr

≤
∫ t

s

∫
H

(‖x‖ ∧ ‖x‖2)µ ◦ (U(t, r)B(r))−1(dx)dr

=

∫ t

s

∫
H

(‖U(t, r)B(r)x‖ ∧ ‖U(t, r)B(r)x‖2)µ(dx)dr

≤
∫ t

s

‖U(t, r)B(r)‖L(H)

∫
H

(‖x‖ ∧ ‖U(t, r)B(r)‖L(H) ‖x‖2)µ(dx)dr

≤ sup
r∈R
‖B(r)‖L(H)

M

ω
(1− e−ω(t−s))

∫
H

(‖x‖ ∧ sup
r∈R
‖B(r)‖L(H) ‖x‖2)µ(dx)︸ ︷︷ ︸

<∞ by Assumption 4.2.1

<∞

Moreover, we see that we can let s→ −∞ and Q(t,−∞) will still be trace class
as well as µt,−∞ will still be a Lévy measure, because of the exponential stability
of U . Since we already know that the Fourier transform as a whole converges,
convergence of the �rst part of b(t,−∞) (which is obvious) implies convergence
of the second part. Hence the limit function is associated to a Lévy triple and
thus the characteristic function of an in�nitely divisible measure. �

Remark 4.2.5 The condition that the Lévy symbol is of linear growth is ac-
tually stronger than necessary. To assure the existence of the integral in (4.2)
it would be even su�cient to have a very weak estimate of the form |λ(u)| =
O(
√
‖u‖). But we were unable to �nd any other easy to check conditions to

control the growth of a Lévy symbol around the origin. Moreover, to prove that
νt is a charateristic function in the in�nite-dimensional case, we really have to
use Assumption 4.2.1 not just its implication Lemma 4.2.3.

4.3 The Subinvariant Measure ν and the Space

L2(ν)

De�nition 4.3.1 Let (Pτ )τ≥0 be a semigroup of operators on a Hilbert space
X. A measure ν on X is said to be subinvariant for (Pτ )τ≥0 if we have∫

X

Pτf(x)ν(dx) ≤ C(τ)

∫
X

f(x)ν(dx)

for all bounded, measurable and nonnegative functions f on X, for all τ ≥ 0
and a (locally �nite) real-valued function C(τ).

To be able to use the powerful theory of one-parameter semigroups, we have
to reduce our equation to the autonomous case.

Reduction of non-autonomous problems is a well-known method in the theory
of ordinary di�erential equations (see e.g. [13]). We recall that the basic idea is
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to enlarge the state space, thus allowing to keep track of the elapsed time. The
reduced problem then looks:{

dXt = {A(y(t))X(t) + f(y(t))}dt+B(y(t))dLt X(0) = x

dy(t) = dt y(0) = s

For measurable and bounded functions u : R × H → R the one-parameter
semigroup is then de�ned as follows:

Pτu(t, x) := P (t, t+ τ)u(t+ τ, ·)(x)

meaning that we apply the two-parameter semigroup to u as a function of x
only. That the family {Pτ}τ≥0 is indeed a semigroup, follows, of course, from
the semigroup property of {P (s, t)}s≤t and is a simple calculation:

(Pσ(Pτu))(t, x) = P (t, t+ σ)P (t+ σ, t+ σ + τ)u(t+ σ + τ, ·)(x)

= P (t, t+ σ + τ)u(t+ σ + τ, ·)(x) = Pτ+σu(t, x)

Starting from our evolution system of measures, we will establish a subin-
variant measure for the one-parameter semigroup. On the respective L2-space
the semigroup will then be bounded. To obtain our subinvariant measure we
need the following lemma:

Lemma 4.3.2 The function F : (t, A) 7→ νt(A) t ∈ R, A ∈ B(H) is a
transition kernel, that is t 7→ νt(A) is measurable for any �xed Borel set A and
for any �xed t, νt is a probability measure.

Proof By a monotone class argument. LetM := {exp(i〈h, ·〉)}h∈H and H :=
{f : H → C | t 7→

∫
H
f(x)νt(dx) is measurable }. Then H is a complex

monotone vector space andM is a complex multiplicative system that generates
B(H). M⊂ H is seen by checking that lims→t ν̂s = ν̂t pointwisely. �

Now, we introduce the space on which the semigroup will be strongly contin-
uous and the subspace that will be the core for the generator of our semigroup.

De�nition 4.3.3 As F is a transition kernel we can form
ν(dt, dx) := 1

2νt(dx)e−|t|dt, a measure on R×H, de�ned by

ν([s, t]×A) :=
1

2

∫ t

s

νt(A)e−|t|dt

for s < t ∈ R and A ∈ B(H).

L2(ν) :={f : R×H → R measurable |
∫
R×H

|f(t, x)|2ν(dt, dx) <∞}

M := spanC{f : R×H → C | f = Φ(t)ei〈U(t+σ,t)x,h〉, where

Φ ∈ C1(R,R) and bounded, h ∈ D(A∗), σ ≥ 0}

K := {<(f) | f ∈M}

That is, K comprises the real parts of the functions inM.
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Lemma 4.3.4 K is dense in L2(ν).

Proof We will show density of M in L2(ν;C). This implies density of the
respective real vector spaces. We will use complex monotone classes again. The
subsystem M0 := {Φk ⊗ exph}{k∈N0,h∈D(A∗)}, where Φk(t) := exp(−k|t|) and
exph(x) := exp(i〈x, h〉) is closed under multiplication and conjugation. Consider
H := M̄0 as a subspace of L2(ν;C) where we allow complex-valued integrable
functions. By monotone convergence, applied separately to real and imaginary
parts, H is seen to be a complex monotone vector space. Thus, H contains
all σ(M0)-measurable functions. If we can show that σ(M0) = B(H × R) we
will have all step functions in H, hence density will be obvious. Note that we
want to show that functions of the form Φk⊗exph generate a product σ-algebra
B(R)⊗ B(H).

Knowing that the Φk generate B([0, T ]) and that the exph generate B(H)
(which follows again from Lemma 4.1.4), it is clear that σ({Φ0⊗exph}h∈D(A∗)) =
(R× C)C∈B(H) and σ({Φk ⊗ exp0}k∈Z) = (A×H)A∈B(R) and the result is obvi-
ous. �

Remark 4.3.5 Note that σ = 0 would be su�cient to prove density of K, but
we will need σ > 0 later on to show that K is Pτ -invariant.

Proposition 4.3.6 The measure ν is a subinvariant measure for the semigroup
Pτ .

Proof Let u be a bounded, measurable and nonnegative function on R×H.∫
R×H

Pτu(t, x)ν(dt, dx) =
1

2

∫
R

∫
H

(P (t, t+ τ)ut+τ )(x)νt(dx)e−|t|dt

=
1

2

∫
R

∫
H

u(t+ τ, x)νt+τ (dx)e−|t|dt =
1

2

∫
R

∫
H

u(t, x)νt(dx)e−|t−τ |dt

≤ eτ

2

∫
R

∫
H

u(t, x)νt(dx)e−|t|dt = eτ
∫
R×H

u(t, x)ν(dt, dx)

where we used that e−|t−τ | ≤ eτe−|t| for any τ > 0. �

Proposition 4.3.7 The semigroup Pτ is bounded on L2(ν) with ‖Pτ‖L2(ν) ≤
e
τ
2 . Moreover, it is strongly continuous.

Proof For the �rst assertion we have to show for a bounded and measurable
function u: ‖Pτu‖2L2 ≤ eτ‖u‖2L2 .
Using the Jensen inequality for the expectation and afterwards the subinvariance
property for u2:

‖Pτu‖2L2(ν) =

∫
[0,T ]×H

E[u(t+ τ,X(t+ τ, t, x))]2ν(dt, dx)

≤
∫

[0,T ]×H
E[u2(t+ τ,X(t+ τ, t, x))]ν(dt, dx) =

∫
[0,T ]×H

(Pτu
2)(t, x)ν(dt, dx)
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≤ eτ
∫

[0,T ]×H
u2(t, x)ν(dt, dx) = eτ‖u‖2L2(ν)

Hence, Pτ is continuous on a dense subset of L2(ν). Thus, we can extend it to
all of L2(ν). Clearly, the subinvariance property also extends to any u ∈ L2(ν).

The following proof of the strong continuity relies on an analysis of Propo-
sition 4.3 from [33], which is not quite general enough for our needs.

First of all we need to show that Pτg → g as τ → 0 for any g ∈ K.
For u(t, x) = Φ(t)ei〈U(t+σ,t)x,h〉 we have by Lemma 4.1.1:

(Pτu)(t, x) = exp

{∫ t+τ

t

λ(B∗(r)U∗(t+ τ + σ, r)h)dr

}
× Φ(t+ τ) exp

{
i

〈
h, U(t+ τ + σ, t)x+

∫ t+τ

t

U(t+ τ + σ, r)f(r)dr

〉}
(4.5)

Taking τ → 0 we obtain the result, since all the integrals vanish and by strong
continuity of U . Note that, by linearity, this extends to general u ∈ K.

For general functions f in L2(ν) we �rst prove Pτf → f in measure us-
ing an approximating function g from K, the Chebychev inequality and the
subinvariance property:

ν({|Pτf − f | > ε})

≤ ν({|Pτ (f − g)| > ε

3
}) + ν({|Pτg − g| >

ε

3
}) + ν({|f − g| > ε

3
})

≤ 9

ε2

∫
(Pτ (f − g))2dν}+ ν({|Pτg − g| >

ε

3
}) +

9

ε2

∫
(f − g)2dν}

≤ 9

ε2
(1 + eτ )

∫
(f − g)2dν}+ ν({|Pτg − g| >

ε

3
})

The �rst term goes to zero by choosing g close to f the second by letting τ → 0.
For L2-convergence we calculate for f ≥ 0 :∫

(Pτf − f)2dν =

∫
(Pτf)2dν +

∫
f2dν − 2

∫
fPτfdν

≤ 2

(
1 + eτ

2

∫
f2dν −

∫
fPτfdν

)
= 2

(
1 + eτ

2

∫
f2dν −

∫
f(Pτf − f)+dν −

∫
f(Pτf ∧ f)dν

)
≤ 2

(
1 + eτ

2

∫
f2dν −

∫
f(Pτf ∧ f)dν

)
which turns to zero by dominated convergence. �
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4.4 Generator and Domain of Uniqueness

In this section we show that the generator G of Pτ is uniquely de�ned on the
subspaceK of its domain. The precise form we give in Remark 4.4.2 can however
not be proven for all functions in K.

Lemma 4.4.1 K is a core for the in�nitesimal generator G of Pτ .

Proof Looking closely at (4.5) again, one notes that (Pτu)(t, x) is again of the
form Ψ(t)ei〈U(t+τ+σ,t)x,h〉 with Ψ as follows:

Ψ(t) := Φ(t+ τ) exp
{
i
〈
h,
∫ t+τ
t

U(t+ τ + σ, r)f(r)dr
〉}

× exp
{∫ t+τ

t
λ(B∗(r)U∗(t+ τ + σ, r)h)dr

}
Ψ is indeed C1: Several elementary calculations show that both integrands are
continuous in r and di�erentiable in t. Di�erentiation under the integral can be
justi�ed by dominated convergence. Hence, K is invariant under Pτ . Further-
more, we have again by (4.5) and some simple computations:

Gu =
d

dτ
Pτu

∣∣∣∣
τ=0

= Φ′(t) ei〈U(t+σ,t)x,h〉 + λ (B∗(t)U∗(t+ σ, t)h )u(t, x) (4.6)

+ { i〈U(t+ σ, t)x,A∗(t+ σ)h〉 + i〈U(t+ σ, t)f(t), h〉 }u(t, x)

Thus, we have K ⊂ D(G) and we can apply a well-known result (see [6] page
47) to prove the assertion.
To give an idea of the computational details omitted here, we calculate:

lim
τ→0

1

τ

∫ t+τ

t

λ(B∗(r)U∗(t+ τ + σ, r)h)dr =

lim
τ→0

1

τ

∫ t+τ

t

[λ(B∗(r)U∗(t+ τ + σ, r)h)− λ(B∗(t)U∗(t+ τ + σ, t)h)]dr

+ lim
τ→0

[λ(B∗(t)U∗(t+ τ + σ, t)h)− λ(B∗(t)U∗(t+ σ, t)h)]

+ λ(B∗(t)U∗(t+ σ, t)h) = λ(B∗(t)U∗(t+ σ, t)h)

where both di�erences tend to zero because U∗ is weakly continuous and λ is
continuous with respect to the weak topology (as a characteristic exponent with
Gaussian covariance operator of trace class).

Moreover, note that d
dt 〈U(t, s)x, h〉

∣∣
t=s

= limτ→0〈U(s+τ,s)x−x
τ , h〉 = 〈x,A∗(s)h〉

holds even if x /∈ D(A) by using the mean value theorem and strong continuity
of U and A to establish the last equality above. �

Remark 4.4.2 One would expect to have a realization of G as a pseudo-di�erential
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operator, however (with (b, R,M) as in (2.1)):

Gu(t, x) = ut(t, x) + 〈f(t),∇xu(t, x)〉+ 〈x,A∗(t)∇xu(t, x)〉

+ 〈B(t)b,∇xu(t, x)〉+
1

2
Tr{
√
R
∗
B∗(t)∇xxu(t, x)B(t)

√
R}

+

∫
H

{u(t, x+B(t)y)− u(t, x)− 〈B(t)y,∇xu(t, x)〉χ‖y‖≤1}µ(dy)

is true in all of K only under quite restrictive assumptions (e.g. U∗ should
preserve D(A∗) and we have continuity of t 7→ A∗(s1 + t)U∗(s2 + s3 + t, s3 + t)h
for any �xed h ∈ D(A∗), s1, s2, s3 ∈ R. Again, (see Remark 3.2.3) this result
also holds if (t, s) 7→ U∗(t, s) is as regular as (t, s) 7→ U(t, s)). The problem is
that otherwise ut might not exist. Note, however, that in the important case of
the square �eld operator (to be de�ned later on) no such di�culties occur, since
�rst order terms do not appear by construction.



42 CHAPTER 4. SEMIGROUP AND INVARIANT MEASURE



Chapter 5

Asymptotic Behaviour of the

Semigroup

In this chapter we calculate the precise form of the square �eld operator. Under
some strong compatibility assumptions (for which we give a valid example) on
the semigroup in connection with the noise we obtain a gradient estimate on the
square �eld operator, which leads in Section 5.2 to a Poincaré and a Harnack
inequality.

5.1 The Square Field Operator and an Estimate

In the following we will introduce the square �eld operator. Its importance
lies in the crucial role that it will play in the proof of the following functional
inequalities.

De�nition 5.1.1 Γ(u, v) := G(uv)− uGv − vGu will be called the square �eld
operator.

Lemma 5.1.2 (square �eld operator) On K we have:

Γ(u, u) =
〈√

R
∗
B∗(t)∇xu,

√
R
∗
B∗(t)∇xu

〉
+

∫
H

[u(t, x+B(t)y)− u(t, x)]
2
µ(dy)

where µ is as in (2.1).

Proof As Γ is not linear we have to establish the formula not only for functions
ui(t, x) = Φi(t)e

i〈U(t+σi,t)x,hi〉 but also for sums of such functions. Since Γ(u+
v, u+ v) = Γ(u, u) + Γ(v, v) + 2Γ(u, v) the essential part of the proof is to show
the following claim:

Γ(u1, u2) =
〈√

R
∗
B∗(t)∇xu1,

√
R
∗
B∗(t)∇xu2

〉
+

∫
H

[u1(t, x+B(t)y)− u1(t, x)] [u2(t, x+B(t)y)− u2(t, x)]µ(dy)
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Though u1u2 may not be in K, Lemma 4.1.1 again allows to derive Pτu1u2,
thus we can compute G(u1u2) explicitly as:

G(u1u2) =[Φ′1(t)Φ2(t) + Φ1(t)Φ′2(t)]ei〈x,U
∗(t+σ1,t)h1+U∗(t+σ2,t)h2〉

+ i〈x, U∗(t+ σ1, t)A
∗(t+ σ1)h1 + U∗(t+ σ2, t)A

∗(t+ σ2)h2〉u1u2

+ i〈f(t), U∗(t+ σ1, t)h1 + U∗(t+ σ2, t)h2〉u1u2

+ λ[B∗(t)U∗(t+ σ1, t)h1 + U∗(t+ σ2, t)h2 ]u1u2

As u1G(u2) and u2G(u1) are likewise multiples of ei〈x,U
∗(t+σ1,t)h1+U∗(t+σ2,t)h2〉

most terms in Γ(u1, u2) cancel out. In fact we are left with:

Γ(u1, u2) = λ[B∗(t)U∗(t+ σ1, t)h1 +B∗(t)U∗(t+ σ2, t)h2]u1u2

− λ[B∗(t)U∗(t+ σ1, t)h1 ]u1u2 − λ[B∗(t)U∗(t+ σ2, t)h2 ]u1u2

=
〈√

R
∗
B∗(t)U∗(t+ σ1, t)h1u1,

√
R
∗
B∗(t)U∗(t+ σ2, t)h2u2

〉
+

∫
H

(
u1(t, x+B(t)y)u2(t, x+B(t)y) + u1(t, x)u2(t, x)

− u1(t, x+B(t)y)u2(t, x)− u2(t, x+B(t)y)u1(t, x)

)
µ(dy)

and from this the claim easily follows. �

Assumption 5.1.3 In addition to Assumptions 3.1.2 and 4.2.1 we will need
the following conditions to hold for the rest of the paper:

(i) For every t > s : U(t, s)RH ⊂
√
RH and there is a strictly positive

function C1 ∈ C[0,∞) such that, denoting by
√
R
−1
x the solution z with

minimal norm of
√
Rz = x:

‖
√
R
−1
U(t, s)Rx‖ ≤ C1(t− s)‖

√
Rx‖ x ∈ H, t > s

(ii) There is a strictly positive function C2 ∈ C[0,∞) such that:

µ ◦ U(t, s)−1 ≤ C2(t− s)µ t > s

that is C2(t− s)µ− µ ◦ U(t, s)−1 is a positive measure.

Example 5.1.4 Assumption 5.1.3 (i) is easily seen to be ful�lled in the case
where H is �nite dimensional and R has full rank. Let us now give an in�nite-
dimensional example. Let H be a real separable Hilbert space and let (en)n∈N be
an orthonormal basis of H. For x ∈ D(A) ⊂ H, t ∈ R let

A(t)x :=
∑
n∈N

λn(t)〈x, en〉en
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where D(A) := {x ∈ H :
∑
n∈N n

4 |〈x, en〉|2 < ∞} is the common and dense
domain of the operators A(t) and each λn is a continuous, T -periodic, real-

valued function satisfying −n
2

Λ ≤ λn(t) ≤ −Λn2 for some 0 < Λ < 1. For
x ∈ H, t ≥ s ∈ R let

U(t, s)x :=
∑
n∈N

exp

(∫ t

s

λn(r)dr

)
〈x, en〉en.

Then it is easy to check that U(t, s)t≥s de�ne an exponentially bounded evolution
family as in De�nition 3.1.1, e.g. we have ‖U(t, s)x‖ ≤ exp(−Λ(t − s))‖x‖.
Moreover one can verify easily that Assumption 3.1.2 is ful�lled. For x ∈ H
let Rx :=

∑
n∈N

1
n2 〈x, en〉en. Then R is a positive, symmetric operator of trace

class and we have
√
R
−1
z =

∑
n∈N n〈z, en〉en for every z in the image of

√
R

i.e.
∑
n∈N n

2|〈z, en〉en|2 <∞. Thus, we obtain:

∥∥∥√R−1
U(t, s)Rx

∥∥∥2

=

∥∥∥∥∥∑
n∈N

n exp

(∫ t

s

λn(r)dr

)
1

n2
〈x, en〉en

∥∥∥∥∥
2

≤ exp(−2Λ(t− s))
∑
n∈N

1

n2
|〈x, en〉|2 = exp(−2Λ(t− s))

∥∥∥√Rx∥∥∥2

and Assumption 5.1.3 (i) is ful�lled with C1(t) = exp(−Λt).
Now we show, that in this setting, Assumption 5.1.3 (ii) will be ful�lled

for �nite-dimensional α-stable Lévy noise. Let HN := span(e1, ..., eN ) \ {0}.
For A ∈ B(HN ) de�ne the measure µN as µN (A) =

∫
A
‖x‖−N−αdNx, where

dNx is N-dimensional Lebesgue measure and 1 < α < 2. It is well known that
B(HN ) = B(H\{0})∩HN so we can extend the measure µN by zero to a measure
µ̃N on all of H \ {0}. It is easy to see that µN (and thus µ̃N ) is indeed a Lévy
measure that also ful�lls Assumption 4.2.1. Since for every t ≥ s U(t, s) leaves
HN invariant, it will be su�cient to check 5.1.3 (ii) on measurable subsets of
HN . First let O be an open subset in HN . Then we have by the transformation
rule:∫
U(t,s)−1(O)

‖x‖−(N+α)dNx =

∫
O

‖U(t, s)−1x‖−(N+α) exp

− t∫
s

N∑
n=1

λn(r)dr


︸ ︷︷ ︸

detU(t,s)−1
|HN

dNx

≤ exp{(t− s)[Λ−1N3 − (N + α)Λ]}
∫
O

‖x‖−(N+α)dNx

since we have ‖U(t, s)−1x‖ ≥ eΛ(t−s)‖x‖ and −λ1(r) ≤ ... ≤ −λN (r) ≤ Λ−1N2.
Moreover, as µN is �nite on compacts it is outer regular and we obtain the
inequality on all of B(HN ). Thus, Assumption 5.1.3 (ii) holds with C2(t) =
exp( t [Λ−1N3 − (N + α)Λ]).
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For a concrete realization of this abstract example let H := L2(0, π) and let
(en)n∈N be the eigenfunctions of the Dirichlet Laplacian ∆. For a T -periodic,
continuous and strictly positive function f let λn(t) := −f(t)n2. Then we have
A(t) = f(t)∆, since it can be veri�ed that D(A) = H2∩H1

0 . In turn, R is given
by (−∆)−1.

Remark 5.1.5 Note that under Assumption 5.1.3 we can only prove Proposi-
tion 5.2.4. For Corollary 6.2.3 the function C2 needs to be integrable over R+.
In our example this is only true if we restrict A(t) to be a time-dependent mul-
tiple of the identity. That is λn(t) := −f(t) with f as above results in

C2(t) = exp

(
−tα inf

s∈[0,T ]
f(s)

)
which is clearly integrable.

Lemma 5.1.6 (estimate of the square �eld operator) If B = Id, we have
for u ∈ K:

‖
√
R∇xPτu‖ ≤ C1(τ) Pτ

(
‖
√
R∇xu‖

)
(t, x) (5.1)∫

H

[Pτu(t, x+ y)− Pτu(t, x)]
2
µ(dy)

≤ C2(τ)Pτ

(∫
H

[u(·+ y)− u(·)]2µ(dy)

)
(t, x) (5.2)

So that combining the two estimates, we have:

Γ(Pτu, Pτu) ≤ max(C1, C2)(τ)PτΓ(u, u)

Proof Recall that Pτu(t, x) = E[u(t + τ,X(t + τ, t, x))]. Let z ∈ H and
u(t, x) = Φ(t)ei〈U(t+σ,t)x,h〉, then (using Lemma 4.1.1 in the �rst equality):

〈∇xPτu(t, x), Rz〉 = 〈iU∗(t+ τ + σ, t)hPτu(t, x), Rz〉

=

∫
H

〈iU∗(t+ τ + σ, t)hu(t+ τ, y), Rz〉P ◦X(t+ τ, t, x)−1(dy)

= Pτ

(
〈∇xu,

√
R
√
R
−1
U(·, · − τ)Rz〉

)
(t, x) (+)

≤ Pτ
(
‖
√
R∇xu‖ ‖

√
R
−1
U(·, · − τ)Rz‖

)
(t, x)

≤ Pτ
(
‖
√
R∇xu‖

)
(t, x) C1(τ) ‖

√
Rz‖

Now, for every pair (t, x) choosing z = ∇xPτu(t, x) we obtain:

〈∇xPτu(t, x), R∇xPτu(t, x)〉

≤
√
C1(τ) ‖

√
R∇xPτu(t, x)‖ Pτ

(
‖
√
R∇xu‖

)
(t, x)

which is equivalent to (5.1).
Note that we have used the special form of u only up to equation (+), but by
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linearity of P and ∇x it is clear that this also holds for sums. So we obtain (5.1)
on all of K.

Recall for the proof of (5.2), that we can write Pτu(t, ξ) as

Pτu(t, ξ) =
∫
H
u(t+ τ, U(t+ τ, t)ξ + η) P ◦X(t+ τ, t, 0)−1(dη).

Thus, setting P̃ := P ◦ X(t + τ, t, 0)−1 and µ̃ := µ ◦ U(t + τ, t)−1 we have for
general u ∈ K: (setting τ̃ := t+ τ for brevity)∫

H

|Pτu(t, x+ y)− Pτu(t, x)|2 µ(dy)

≤
∫
H

(∫
H

|u(τ̃ , U(τ̃ , t)(x+ y) + z)− u(τ̃ , U(τ̃ , t)x+ z)|2P̃ (dz)

)
µ(dy)

=

∫
H

(∫
H

|u(τ̃ , U(τ̃ , t)x+ y + z)− u(τ̃ , U(τ̃ , t)x+ z)|2µ̃(dy)

)
P̃ (dz)

≤C2(τ)

∫
H

(∫
H

|u(τ̃ , U(τ̃ , t)x+ y + z)− u(τ̃ , U(τ̃ , t)x+ z)|2µ(dy)

)
P̃ (dz)

=C2(τ)Pτ

(∫
H

|u(·+ y)− u(·)|2µ(dy)

)
(t, x) �

Corollary 5.1.7√
〈∇xPτu(t, x),∇xPτu(t, x)〉 ≤ ‖U(t+ τ, t)‖Pτ (‖∇xu‖) (t, x) (5.3)

Proof Reconsidering the proof above and setting R = Id yields the result. �

5.2 Functional Inequalities

Following [42], we will now prove a Poincaré and a Harnack inequality.

De�nition 5.2.1

ut :=

∫
H

u(t, x)νt(dx), u ∈ L2
∗(ν)

Lemma 5.2.2 The members of the evolution family of measures (νt)t∈R have
a uniformly bounded �rst moment: supt∈[0,T ]

{∫
H
‖x‖νt(dx)

}
<∞.

Proof Let us write [bt, Rt, µt] instead of [bt,−∞, Rt,−∞, µt,−∞] for the Lévy
triple associated to νt. By the Lévy-Ito-decomposition and Theorem 3.25 in [2]
we obtain (using also Jensen's inequality) :

∫
H

‖x‖νt(dx) ≤ ‖bt‖+ (Tr(Rt))
1
2 +

(∫
‖x‖≤1

‖x‖2µt(dx)

) 1
2

+

∫
‖x‖>1

‖x‖µt(dx)
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We have to estimate this expression uniformly in t. According to the last chain
of inequalities in the proof of Theorem 4.2.4 we get for the last two terms:

sup
t∈R

{∫
‖x‖≤1

‖x‖2µt(dx) +

∫
‖x‖>1

‖x‖µt(dx)

}
= sup

t∈R

∫
H

(‖x‖∧‖x‖2)µt(dx) <∞.

To estimate ‖bt‖ let us for simplicity assume that B = Id, hence:

‖bt‖ =

∥∥∥∥∫ t

−∞
U(t, r)bdr −

∫ t

−∞

∫
H

U(t, r)x[χ{‖x‖≤1} − χ{‖U(t,r)x‖≤1}]µ(dx)dr

∥∥∥∥
≤
∫ t

−∞
Me−ω(t−r)dr‖b‖+

∫ t

−∞
Me−ω(t−r)dr

∫
H

‖x‖χ{‖x‖≥M−1}µ(dx)

The last expression is �nite by Assumption 4.2.1 and obviously independent of
t.
Finally, as in the proof of Theorem 4.2.4 we have:

(TrRt)
1
2 ≤ sup

r
‖R(r)‖L(H)

∫ t

−∞
‖U(t, r)‖L(H)dr (TrR)

1
2

and using once more the exponential stability of U this bound is seen to be
independent of t, as well. �

Proposition 5.2.3 We have for all u ∈ K:

lim
τ→∞

(
sup
t
|Pτu(t, x)− ut+τ |

)
= 0 for every �xed x

Proof We have, since ut+τ :=
∫
H
u(t+τ, y)νt+τ (dy) =

∫
H
Pt,t+τu(t+τ, ·)(y)νt(dy)

by the property of the evolution system :

|Pτu(t, x)− ut+τ | =
∣∣∣∣∫
H

[Pt,t+τu(t+ τ, ·)(x)− Pt,t+τu(t+ τ, ·)(y)]νt(dy)

∣∣∣∣
≤ ‖∇xPt,t+τu(t+ τ, ·)‖∞

∫
H

‖x− y‖νt(dy)

≤Me−ωτ‖∇xu(t+ τ, ·)‖∞
∫
H

‖x− y‖νt(dy)
τ→∞−→ 0

since the integral is bounded by Lemma 5.2.2 and ‖∇xu(t, x)‖ is easily seen to
be bounded as well. �

Proposition 5.2.4 (Poincaré Inequality) Given Assumption 5.1.3
and B = Id, we have for C(τ) := max

(∫ τ
0
C1(s)ds,

∫ τ
0
C2(s)ds

)
:

Pτu
2 − (Pτu)2 ≤ C(τ)PτΓ(u, u) for all τ > 0, u ∈ K (5.4)
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Proof Set f(s) := Pτ−s(Psu)2. Then we have by the product rule:

d

ds
f(s) = −Pτ−sG(Psu)2 + Pτ−s2PsuGPsu

= −Pτ−s[G(Psu)2 − 2PsuGPsu] = −Pτ−sΓ(Psu, Psu)

Hence, using Lemma 5.1.2 and Lemma 5.1.6 :

− d

ds
f(s) = Pτ−sΓ(Psu, Psu)

= Pτ−s

〈√
R
∗
∇xPsu,

√
R
∗
∇xPsu

〉
+ Pτ−s

∫
H

[Psu(t, x+ y)− Psu(t, x)]
2
µ(dy)

≤ C1(s)Pτ−sPs

〈√
R
∗
∇xu,

√
R
∗
∇xu

〉
by (5.1)

+ C2(s)Pτ−sPs

∫
H

[u(t, ·+ y)− u(t, ·)]2 µ(dy) by (5.2)

Integrating with respect to s and noting that f(0) = Pτu
2 and f(τ) = (Pτu)2

we obtain:

Pτu
2 − (Pτu)2 ≤

(∫ τ

0

C1(s)ds

)
Pτ

〈√
R
∗
∇xu,

√
R
∗
∇xu

〉
+

(∫ τ

0

C2(s)ds

)
Pτ

∫
H

[u(t, ·+ y)− u(t, ·)]2 µ(dy)

and the result is proved. �

For the following Harnack inequality we need a de�nition.

De�nition 5.2.5

ρ(x, y) := inf{ ‖z‖ :
√
Rz = x− y}

with the usual convention that inf ∅ = ∞ , so ρ may take the value in�nity if
(x− y) /∈ Im

√
R.

ρ just describes the distance induced by the Cameron-Martin norm. Heuristi-
cally this means we can only compare Pτu and Pτu

2 at points x and y which
are connected via the (Gaussian) noise. In particular, if he have no Gaussian
part, the Harnack inequality gives no information.

For much more information on Harnack inequalities (including other ways of
proving them) see the thesis [37] which is entirely dedicated to this topic.

Proposition 5.2.6 (Harnack Inequality) Let C(t) := C1(t) be the strictly
positive function introduced in Assumption 5.1.3 (i). Then we have:

|Pτu(t, y)|2 ≤ Pτu2(t, x) exp

(
ρ2(x, y)∫ τ
0

1
C(s)ds

)
for all u ∈ Cb(H), x, y ∈ H

(5.5)
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Proof First, let u ∈ K be such that u is strictly positive. Since
Pτ−s(Psu)2(t, x) will then also be strictly positive we can de�ne:

Φ(s) := log[Pτ−s(Psu)2(t, xs)]

where xs is given by xs := x+
(y−x)

∫ s
0

1
C(τ−u)du∫ τ

0
1

C(u)
du

. Di�erentiating Φ we obtain:

d

ds
Φ(s) =

d
dsPτ−s(Psu)2(t, xs)

Pτ−s(Psu)2(t, xs)
. (5.6)

Using that (Psu)2 ∈ K ⊂ D(G) we have for the numerator:

d

ds
[Pτ−s(Psu)2(t, xs)] =

d

ds
[Pτ−s(Psu)2](t, xs) +

〈
∇x[Pτ−s(Psu)2](t, xs),

dxs
ds

〉
= −GPτ−s(Psu)2(t, xs) + Pτ−s[2PsuGPsu](t, xs)

+
1

C(τ − s)
∫ τ

0
1

C(u)du

〈
∇x[Pτ−s(Psu)2](t, xs), (y − x)

〉
= −Pτ−sΓ(Psu, Psu)

+
1

C(τ − s)
∫ τ

0
1

C(u)du

〈
∇x[Pτ−s(Psu)2](t, xs), (y − x)

〉
(5.7)

We will now estimate
〈
∇x[Pτ−s(Psu)2](t, xs), (y − x)

〉
:

〈
∇x[Pτ−s(Psu)2](t, xs), (y − x)

〉
= inf
{z:
√
Rz=x−y}

〈
∇x[Pτ−s(Psu)2](t, xs),

√
Rz
〉

(x− y) ∈ Im
√
R

≤
√
〈R∇x[Pτ−s(Psu)2](t, xs),∇x[Pτ−s(Psu)2](t, xs)〉ρ(x, y) Cau.-Schw.

≤ ρ(x, y)
√
C(τ − s)Pτ−s

(√
〈R∇x(Psu)2,∇x(Psu)2〉

)
(t, xs) by (5.1)

≤ 2ρ(x, y)
√
C(τ − s)Pτ−s

(
Psu

√
〈R∇x(Psu),∇x(Psu)〉

)
(t, xs) chain rule

(5.8)

Combining (5.6),(5.7) and (5.8) and using Lemma 5.1.2 we obtain:
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d

ds
Φ(s) ≤ −Pτ−sΓ(Psu, Psu)

Pτ−s(Psu)2(t, xs)

+

1
C(τ−s)

∫ τ
0

1
C(u)

du
2ρ(x, y)

√
C(τ − s)Pτ−s

(
Psu

√
〈R∇x(Psu),∇x(Psu)〉

)
(t, xs)

Pτ−s(Psu)2(t, xs)

≤ −Pτ−s (〈R∇x(Psu),∇x(Psu)〉) (t, xs)

Pτ−s(Psu)2(t, xs)

+

1√
C(τ−s)

∫ τ
0

1
C(u)

du
2ρ(x, y)Pτ−s

(
Psu

√
〈R∇x(Psu),∇x(Psu)〉

)
(t, xs)

Pτ−s(Psu)2(t, xs)

=
1

Pτ−s(Psu)2(t, xs)

× Pτ−s

(
(Psu)2

[
2H

√
〈R∇x(Psu),∇x(Psu)〉

Psu
− 〈R∇x(Psu),∇x(Psu)〉

(Psu)2

])
(t, xs)

where we have set H := ρ(x,y)√
C(τ−s)

∫ τ
0

1
C(u)

du
for brevity.

Furthermore, setting G :=

√
〈R∇x(Psu),∇x(Psu)〉

Psu
:

d

ds
Φ(s) ≤ 1

Pτ−s(Psu)2(t, xs)
Pτ−s

(
(Psu)2

[
−G2 + 2HG

])
(t, xs)

=
1

Pτ−s(Psu)2(t, xs)
Pτ−s

(
(Psu)2

[
−G2 + 2HG−H2 +H2

])
(t, xs)

≤ 1

Pτ−s(Psu)2(t, xs)
Pτ−s

(
(Psu)2

[
H2
])

(t, xs)

= H2

since H depends neither on xs nor on t. Integration over s yields:

log[(Pτu)2(t, y)]− log[(Pτu
2)(t, x)] = Φ(τ)− Φ(0)

≤
∫ τ

0

H2(s)ds =

∫ τ

0

ρ2(x, y)

C(τ − s)(
∫ τ

0
1

C(u)du)2
ds =

ρ2(x, y)∫ τ
0

1
C(u)du

Hence, applying the exponential yields: (Pτu)2(t, y) ≤ Pτu2(t, x) exp

(
ρ2(x,y)∫ τ
0

1
C(u)

du

)
and the proof is complete for positive functions. To obtain the result for general
u, note �rst, that it is su�cient to have it for |u|, since then we get:

|Pτu(t, y)|2 ≤ [Pτ |u|(t, y)]2 ≤ Pτu2(t, x) exp
[
ρ2(x, y)(

∫ τ
0

1
C(s)ds)

−1
]

Of course, we cannot take modulus without leaving K, but we may take the
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square of our functions. Thus, let u ∈ Cb(H) and ε > 0. Then f :=
√
|u| ∈

Cb(H). Now, by Lemma 5.2.8 we can approximate f pointwisely by functions
fn from K. Then f2

n + ε is strictly positive, it will approach |u| + ε and since
the approximating functions are uniformly bounded, we can take limits in (5.5)
and obtain the result via dominated convergence and then letting ε→ 0. �

The following consequence of the Harnack inequality concerning smoothing
properties of the two-parameter semigroup is the time-dependent generalization
of Proposition 4.1 from [18]. Since we do not have full Gaussian White Noise, we
can expect continuity only along the directions of the Cameron-Martin space.

Corollary 5.2.7 For any s < t the operator P (s, t) is strong Feller, in the
following sense: Let H0 :=

√
RH be the Cameron-Martin space equipped with

the norm ‖x‖H0
:= ρ(x, 0). Then, for any y in a set of full µs-measure we have

P (s, t)f ∈ Cb(y+H0) for any function f ∈ Lp(H;µt), where µt is the member of
the evolution system of measures established in Theorem 4.2.4. Here Cb(y+H0)
is meant to be the continuous (and bounded) functions with respect to the norm
‖x‖H0

.

Proof By the de�nition of an evolution system of measures, we have for
bounded and measurable functions f :∫

H

P (s, t)f(x)µs(dx) =

∫
H

f(x)µt(dx). (*)

Thus, by Jensen's inequality we obtain∫
H

|P (s, t)f(x)|pµs(dx) ≤
∫
H

P (s, t)|f |p(x)µs(dx) =

∫
H

|f |p(x)µt(dx)

and, hence, the operator P (s, t) extends to a contraction from Lp(µt) to L
p(µs).

The equality (*) thus extends to functions f from Lp(µt) as well.
Now for some function f ∈ Lp(µt) let fn be an approximation of f in Lp(µt) by
bounded and continuous functions. We have using (*):

lim
m,n→∞

∫
H

P (s, t)|fm − fn|p(x)µs(dx) = 0

In particular we have limm,n→∞ P (s, t)|fm − fn|p = 0 µs- a.e. along a subse-
quence. Hence, there is y ∈ H such that limm,n→∞ P (s, t)|fm − fn|p(y) = 0.
We will now show that the sequence P (s, t)fn is even Cauchy in some uniform
norm. By the Feller property of P (s, t) (proven in Lemma 4.1.6) , it is clear
that P (s, t)fn ∈ Cb(H). In particular, we have P (s, t)fn ∈ Cb(H0) since the
corresponding norm is stronger. Moreover, spaces of continuous functions are

complete under the uniform norm. Thus, let BN := {x ∈ H | ρ2(x,y)∫ t−s
0

1
C(r)

dr
≤ N}.

Then, by using the Harnack inequality (5.5) for the time-independent function
u(t, x) := (fn − fm)(x), we obtain

sup
x∈BN

|P (s, t)fn(x)− P (s, t)fm(x)|p ≤ sup
x∈BN

(P (s, t)|fn − fm|(x))
p

≤ P (s, t)|fn − fm|p(y)epN .
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Hence, P (s, t)f will be bounded and continuous (in the norm ‖ · ‖H0
) for every

x ∈ BN and letting N →∞ we retain continuity of f everywhere in y +H0. �

The following Lemma was needed in the proof of the harnack inequality
5.2.6.

Lemma 5.2.8 For every f ∈ Cb(H) we can �nd a sequence fn ∈ K such that:

• fn → f pointwisely

• supx∈H,t∈R,n∈N |fn(t, x)| ≤ 1 + supx∈H,t∈R |f(t, x)|

Proof Since D(A∗) is dense in H we can �nd an ONB (en)n∈N of H such that
every en is in D(A∗).

Let Pn : R×H → R× span(e1, ..., en), (t, x) 7→ (t,
∑n
i=1〈ei, x〉ei).

For technical purposes we need to consider f ◦Pn as a function on R×Rn, hence
let gn : R× Rn → R be such that f ◦ Pn(t, x) = gn(t, 〈x, e1〉, ..., 〈x, en〉).
It is clear that gn is also continuous. Hence, by the Theorem of Stone-Weierstrass,
we can approximate gn on [−n, n]× [−n, n]n uniformly by linear combinations
of functions FnΦ,α(t, x) := Φ(t) exp(iΠ

n 〈α, x〉Rn) where Φ is di�erentiable and
2n-periodic and α ∈ Zn. Let us call g̃n such an approximation of gn with

sup
t∈[−n,n],x∈[−n,n]n

|gn(t, x)− g̃n(t, x)| < 1

n
.

Let fn(t, x) := g̃n(t, 〈x, e1〉, ..., 〈x, en〉). Then we have

|f(t, x)− fn(t, x)| ≤ |f(t, x)− f ◦ Pn(t, x)|+ |f ◦ Pn(t, x)− fn(t, x)|.

For n → ∞ the �rst summand goes to 0 by continuity of f . The second sum-
mand is by de�nition equal to |gn(t, 〈x, e1〉, ..., 〈x, en〉)− g̃n(t, 〈x, e1〉, ..., 〈x, en〉)|
and if max(‖x‖H , |t|) < n this expression is smaller than 1

n . Thus pointwise
convergence is proved. Furthermore we have:

sup
n,t,x
|fn(t, x)| ≤ sup

n,t,x
|gn(t, 〈x, e1〉, ..., 〈x, en〉)|+

1

n
≤ sup

t,x
|f(t, x)|+ 1

where the �rst inequality holds by periodicity of g̃n in t and x.
Finally, it is not di�cult to see that indeed fn ∈ K, since the ei were chosen
from D(A∗).
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Chapter 6

The Case of Periodic

Coe�cients

In the case of periodic coe�cients, we can work on a di�erent state space, switch-
ing from R × H to I × H where I is a bounded intervall whose length equals
the period. This allows in the de�nition of the measure ν to drop the exponen-
tial weight function.(We will be abusing notation by denoting this generalized
invariant measure still by ν.) Translation invariance of (normalized) Lebesgue
measure then guarantees full invariance for ν. This invariance property, in turn,
will allow for stronger statements of some results obtained so far.

6.1 A Fully Invariant Measure for the Reduced

Equation

In order to obtain a fully invariant measure let us henceforth assume that we
deal with periodic coe�cents.

Assumption 6.1.1 There is T > 0 such that the coe�cients A, f and B in
equation (3.1) are T -periodic.

As a �rst consequence, we can prove that the evolution system of measures
established in Theorem 4.2.4 is periodic as well. We also get a uniqueness
property. The evolution system found is the only periodic one.

Proposition 6.1.2 Let (νt)t∈R be the evolution system of measures de�ned in
Theorem 4.2.4. Then we have νt = νt + T for any t ∈ R. Any other T -periodic
evolution system of measures coincides with the above.

Proof Recall the form of ν̂t

ν̂t(h) := exp

{
i

〈
h,

∫ t

−∞
U(t, r)f(r)dr

〉}
exp

{∫ t

−∞
λ{B∗(r)U∗(t, r)h}dr

}
.
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To establish T -periodicity, �rst note that we have
U(t, s) = U(t + T, s + T ) for any s < t, which follows easily from its de�ning
di�erential equation and the assumption that t 7→ A(t) is T -periodic. Hence,
we get∫ t+T

−∞
U(t+ T, r)f(r)dr =

∫ t

−∞
U(t+ T, r + T )f(r + T )dr =

∫ t

−∞
U(t, r)f(r)dr

and for the other integral in the de�nition of ν̂t the argument is analogous.
To prove uniqueness, let {µs} be another T -periodic family satisfying (4.1),

then we get using (4.1) with ψ(x) = ei〈h,x〉 and Lemma 4.1.1 :

µ̂s(h) = µ̂s+T (h) = µ̂s(U
∗(s+ T, s)h)

× exp

{
i

〈
h,

∫ s+T

s

U(s+ T, r)f(r)dr

〉
+

∫ s+T

s

λ{B∗(r)U∗(s+ T, r)h}dr

}

Furthermore, with the help of the following easy to check relations (recall that
U(s, r − T ) = U(s+ T, r) by periodicity):∫ s+T

s

U(s+ T, r)f(r)dr =

∫ s

−∞
U(s, r)f(r)dr − U(s+ T, s)

∫ s

−∞
U(s, r)f(r)dr

∫ s+T

s

λ{B∗(r)U∗(s+ T, r)h}dr =∫ s

−∞
λ{B∗(r)U∗(s, r)h}dr −

∫ s

−∞
λ{B∗(r)U∗(s+ T, r)h}dr

we arrive at:

µ̂s(h) =

µ̂s(U
∗(s+T, s)h) exp

{
i

〈
h,

∫ s

−∞
U(s, r)f(r)dr

〉
+

∫ s

−∞
λ{B∗(r)U∗(s, r)h}dr

}
×exp

{
i

〈
h,−U(s+ T, s)

∫ s

−∞
U(s, r)f(r)dr

〉
−
∫ s

−∞
λ{B∗(r)U∗(s+ T, r)h}dr

}
or equivalently:

µ̂s(h)

[
exp

{
i

〈
h,

∫ s

−∞
U(s, r)f(r)dr

〉}
exp

{∫ s

−∞
λ{B∗(r)U∗(s, r)h}dr

}]−1

= µ̂s(U
∗(s+ T, s)h)

[
exp

{
i

〈
U∗(s+ T, s)h,

∫ s

−∞
U(s, r)f(r)dr

〉}
(*)

× exp

{∫ s

−∞
λ{B∗(r)U∗(s, r)U∗(s+ T, s)h}dr

}]−1
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Now the right-hand side of the last equation is the same as the left-hand side,
only h is replaced by U∗(s+ T, s)h. But as h ∈ H was arbitrary, we can rerun
the argument with U∗(s+ T, s)h replacing h. Iterating this procedure n times,
we will obtain (*) with U∗(s + T, s)h replaced by [U∗(s + T, s)]nh. But, as
‖U∗(s+T, s)‖ < 1 holds by our stability assumption, all the factors on the right
hand side will tend to 1, if we take n to in�nity. Thus, µ̂s must have the desired
form. �

The uniqueness we just proved for the evolution system of measures will
extend also to the generalized invariant measure on the extended state space
which we set out to de�ne now.

De�nition 6.1.3 As in the non-periodic case, by Lemma 4.3.2 we can form
ν := 1

T dt⊗F , a measure on R×H, de�ned by ν([s, t]×A) := 1
T

∫ t
s
νr(A)dr for

s < t ∈ R and A ∈ B(H).

L2
∗(ν) :={f : R×H → R measurable | f(t+ T, x) = f(t, x) ν − a.e.∫

[0,T ]×H
|f(y)|2ν(dy) <∞}

M∗ := spanC{f : R×H → C | f = Φ(t)ei〈U(t+σ,t)x,h〉, where

Φ ∈ C1(R,R) and T-periodic, h ∈ D(A∗), σ ≥ 0}

K∗ := {<(f) | f ∈M}

That is, K∗ comprises the real parts of the functions inM.

Remark 6.1.4 It is not hard to see that L2
∗(ν) is a Hilbert space. Because

of the periodicity it is clear, that (
∫

[0,T ]×H ‖f‖
2(y)ν(dy))

1
2 is a norm(where we

introduce ν a.e.-equivalence classes as usual). Given a Cauchy-sequence fn we
consider fzn the restriction of fn to the interval Iz := [zT, (z + 1)T ], z ∈ Z. By
Riesz-Fischer we obtain a limit f0 of f0

n on [0, T ], and because of periodicity
it is clear that the other restrictions form the same Cauchy sequences, that is:
lim fzn = fz = f0 ∀z ∈ Z. Hence, the limit function is periodic, and the space is
complete.

Lemma 6.1.5 K∗ is dense in L2
∗(ν).

Proof Note that by periodicity, we can think of our functions to be de�ned on
[0, T ]×H and in the following we will do so without changing notation.
We will show density of M in L2

∗(ν;C). This implies density of the respective
real vector spaces. We will use complex monotone classes again. The sub-
system M0 := {Φk ⊗ exph}{k∈Z,h∈D(A∗)}, where Φk := exp(k · ) and exph :=
exp(i〈 · , h〉) is closed under multiplication and conjugation. Consider H := M̄0

as a subspace of L2
∗(ν;C) where we allow complex-valued integrable and periodic

functions. By monotone convergence, applied separately to real and imaginary
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parts, H is seen to be a complex monotone vector space. Thus, H contains all
σ(M0)-measurable functions. If we can show that σ(M0) = B(H × [0, T ]) we
will have all step functions in H, hence density will be obvious. Note that we
want to show that functions of the form Φk⊗exph generate a product σ-algebra
B([0, T ])⊗ B(H).

Knowing that the Φk generate B([0, T ]) and that the exph generate B(H)
(which follows again from Lemma 4.1.4), it is clear that σ({Φ0⊗exph}h∈D(A∗)) =
([0, T ]×C)C∈B(H) and σ({Φk ⊗ exp0}k∈Z) = (A×H)A∈B([0,T ]) and the result is
obvious. �

Proposition 6.1.6 Let Assumption 4.2.1 hold. Then the measure ν is the
unique invariant probability measure for the semigroup Pτ . That is we have
for every bounded measurable function u such that u(t + T, x) = u(t, x) ∀t >
0, x ∈ H:∫

[0,T ]×H
Pτu(t, x)ν(dt, dx) =

∫
[0,T ]×H

u(t, x)ν(dt, dx) ∀τ > 0

and if this holds for another probability measure µ then µ = ν. Furthermore,
the semigroup Pτ is a contraction on L2

∗(ν).

Proof Let u be measurable, bounded and T -periodic in its �rst component.
Let us write ut(x) := u(t, x), then we have (Pτu)(t, x) = (P (t, t + τ)ut+τ )(x).
Taking into account (4.1) we have:∫

[0,T ]×H
Pτu(t, x)ν(dt, dx) =

1

T

∫
[0,T ]

∫
H

(P (t, t+ τ)ut+τ )(x)νt(dx)dt

=
1

T

∫
[0,T ]

∫
H

ut+τ (x)νt+τ (dx)dt =
1

T

∫
[τ,T+τ ]

∫
H

ut(x)νt(dx)dt

=
1

T

∫
[0,T ]

∫
H

ut(x)νt(dx)dt =

∫
[0,T ]×H

u(t, x)ν(dt, dx)

because of translation invariance of dt and T -periodicity of u and νt.
For the contraction property we have to show for u as above: ‖Pτu‖L2

∗
≤

‖u‖L2
∗
,

Using the Jensen inequality for the expectation and afterwards the invariance
property for u2:

‖Pτu‖2L2
∗

=

∫
[0,T ]×H

E[u(t+ τ,X(t+ τ, t, x))]2ν(dt, dx)

≤
∫

[0,T ]×H
E[u2(t+ τ,X(t+ τ, t, x))]ν(dt, dx) =

∫
[0,T ]×H

(Pτu
2)(t, x)ν(dt, dx)

=

∫
[0,T ]×H

u2(t, x)ν(dt, dx) = ‖u‖2L2
∗
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Hence, Pτ is a contraction on a dense subset of L2
∗(ν). Thus, we can extend it

to a contraction on all of L2
∗(ν). Clearly, the invariance property also extends

to any u ∈ L2
∗(ν).

To show uniqueness, let µ be another invariant probability measure for Pτ ,
so that we have for all measurable, bounded and T -periodic functions u:∫

[0,T ]×H
Pτu(t, x)µ(dt, dx) =

∫
[0,T ]×H

u(t, x)µ(dt, dx) ∀τ > 0 (6.1)

By [21] : Corollary 10.2.8 , we can disintegrate µ as follows:∫
[0,T ]×H

u(t, x)µ(dt, dx) =

∫
[0,T ]

(∫
H

u(t, x)µt(dx)

)
µ1(dt) (6.2)

for the marginal µ1(dt) = µ ◦ Pr−1 where Pr is the Projection on the t-
component, and {µt}t∈R is a family of probability measures on H. Choosing
u(t, x) = f(t) independent of x in (6.1) we have by (6.2):∫

[0,T ]

f(t+ τ)µ1(dt) =

∫
[0,T ]

f(t)µ1(dt)

Since f is T -periodic, µ1 is translation invariant (note, that we need here a
similar monotone class argument as in Lemma 4.3.4). So µ1 must be Lebesgue
measure.

To show µt = νt, we will make use of the uniqueness proof from Theorem
4.2.4. Choosing u(t, x) = f(t)g(x) and τ = T in (6.1) yields:∫

[0,T ]

f(t)

(∫
H

P (t, t+ T )g(x)µt(dx)

)
µ1(dt) =

∫
[0,T ]

f(t)

(∫
H

g(x)µt(dx)

)
µ1(dt)

Clearly, if this holds for a �xed, bounded g and arbitrary bounded f , we must
have ∫

H

P (t, t+ T )g(x)µt(dx) =

∫
H

g(x)µt(dx) dt− a.e. (∗)

The dependence of the above null set on g can be overcome by choosing a
countable and multiplicative family of functions separating the points of H (e.g.
all functions of the form g(x) = e〈x,

∑
n rnen〉 , rn ∈ Q, (en)n∈N form an ONB of

H) and applying a monotone class argument . Now it can be checked that the
uniqueness proof of Theorem 4.2.4 still works - though (∗) is weaker than (4.1)
- and we obtain νt = µt dt− a.e. which, of course, implies ν = µ. �

6.2 Additional Results through Invariance

In the case of an invariant measure we can obtain interesting results on the
spectrum of our generator. Moreover by integrating the Poincare inequality
5.2.4 with the invariant measure we obtain its stronger form 6.2.3 as a corollary.
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Lemma 6.2.1 For all u ∈ D(G) we have∫
[0,T ]×H

Gu(t, x)ν(dt, dx) = 0 (6.3)

Proof By invariance of Pτ with respect to ν, we have for all u ∈ D(G):

0 =

∫
[0,T ]×H

1

τ
(Pτu(t, x)− u(t, x)) ν(dt, dx)

Letting τ → 0 we obtain the result, since the integrand converges to Gu in
L2
∗(ν). �

Exactly as in [14] we obtain the following result on the spectrum of G:

Corollary 6.2.2 For any z ∈ σ(G) and k ∈ Z we have z + 2 πT ki ∈ σ(G).
Moreover 0 is a simple eigenvalue of G.

Proof Analogous to [14] Corollary 5.5 .
For �xed k ∈ Z consider the operator Tku(t, x) = e2k πT itu(t, x). Since T is

unitary the spectrum of G is equal to the spectrum of T−1
k GTk = G+(2ki πT )Id.

where the equality holds, because the factors cancel out everywhere, except for
the derivative with respect to t where the product rule applies. This proves the
�rst statement.
Since every unique invariant measure is ergodic, we also have the equivalent
property (see [16]):
If u ∈ L2

∗ ful�lls Pτu = u for every τ > 0 then u is equal to a constant in L2
∗.

Now, let u ∈ L2
∗(ν) such that Gu = 0. Hence, Pτu − u =

∫ τ
0
PsGuds = 0 and

thus Pτu = u which in turn implies (by ergodicity of ν) that u is a constant
function. Finally, if G2u = 0 then Gu must be equal to a constant, but by
Lemma 6.2.1 this constant must be 0, hence KerG2 = KerG. �

Corollary 6.2.3 In the situation of Proposition 5.2.4 let C(∞) <∞. Then we
have for all u ∈ K:∫

[0,T ]×H
(u(t, x)− ut)2

ν(dt, dx) ≤ C(∞)

∫
[0,T ]×H

Γ(u, u)ν(dt, dx)

Proof Integrating (5.4) with respect to ν yields, because of invariance:∫
[0,T ]×H

(
u2 − (Pτu)2

)
ν(dt, dx) ≤ C(τ)

∫
[0,T ]×H

Γ(u, u)ν(dt, dx)

Letting τ → ∞, using Proposition 5.2.3 together with dominated convergence
and employing

∫
[0,T ]×H u

2
t+τdν =

∫
[0,T ]×H u

2
tdν we obtain:∫

[0,T ]×H

(
u2 − (ut)

2
)
ν(dt, dx) ≤ C(∞)

∫
[0,T ]×H

Γ(u, u)ν(dt, dx)
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Since ut does not depend on x, we have:∫
[0,T ]×H

(u(t, x)− ut)2
ν(dt, dx) =

∫
[0,T ]×H

(
u2(t, x)− 2u(t, x)ut + u2

t

)
ν(dt, dx)

=

∫
[0,T ]×H

(
u2(t, x) + u2

t

)
ν(dt, dx)− 2

∫
[0,T ]

ut

∫
H

u(t, x)νt(dx)︸ ︷︷ ︸
ut

dt �
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Chapter 7

The Variational

Interpretation of the

associated Fokker-Planck

Equation

In this chapter we will study Ornstein-Uhlenbeck equations in a di�erent con-
text. As a consequence of our study of the Kolmogorov equations related to
our SPDE, it is trivial to see that also the Fokker-Planck equations � the dual
equations for the distributions � can be solved. For simplicity let us go back to
the time-independent case for a moment

dXt = AXtdt+ dWt.

In this setting the evolution system of measures collapses into a unique invariant
measure, say µ and we have a one-parameter transition semigroup Pt with
generator, say L. For a given function f , Ptf then solves the Kolmogorov
equation d

dtu(t, x) = Lu(t, x), whereas for a given measure ρ, P ∗t ρ solves the

Fokker-Planck equation d
dt

∫
H
h(x)ρt(dx) =

∫
H
Lh(x)ρt(dx). Moreover, in our

setting, it is clear that we will have limt→∞ ρt = µ.
In [27], for the �rst time, insight was provided into the dynamics of attraction

towards the invariant measure µ by making a connection between the Fokker-
Planck equation and a certain variational problem.(Actually, the framework of
[27] is more general and may also apply if no invariant measure exists.) The �ow
of measures generated by the Fokker-Planck equation was seen to be directed
towards the invariant measure µ in such a way as to minimize a certain functional
generated by the measure µ. The relative entropy functional with respect to µ.
More precisely, the entropy functional generates a gradient �ow in a certain
metric space of probability measures, the Wasserstein space. The theory of
gradient �ows in general metric spaces is covered extensively in [3]. See also [12]
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for a nice introduction. Using this theory, the variational interpretation of the
Fokker-Planck equation introduced in [27] has recently been extended (in [22]
and [32]) to in�nite-dimensional situations. But one always works with a �xed
reference measure, the unique invariant measure of some underlying equation.
In our non-autonomous setting, it turns out that we must deal with a family of
reference measures. But unlike in the previous part of this work, this family is
not given by an evolution system of measures. It is obtained in the following
way: at every instance of time, we freeze the coe�cients of our equation and
use the invariant measure of this equation as a reference measure. This takes us
outside the theory of [3] where the energy functional must not depend on time.
Indeed we will not establish a real gradient �ow, we will just show the existence
of a so-called (see [3] page 279) generalized minimizing movement scheme as
used e.g. in [27]. That is, we will set up a time-dependent and time-discrete
variational approximation scheme which generates curves of measures, prove
the existence of a limit curve and show that this limit solves a Fokker-Planck
equation.

7.1 The Framework

Let us consider a Gaussian Ornstein-Uhlenbeck Equation on a separable Hilbert
space (H, 〈·, ·〉) with time-dependent coe�cients

dXt = −A(t)Xt + dWt. (7.1)

where Wt is a R-Brownian motion on H with trace class covariance operator
R and where A(t) are (possibly unbounded) linear operators, such that for
each �xed t0 ∈ R, A(t0) generates a strongly continuous contraction semigroup
of bounded operators (St0s )s≥0, such that ‖St0s ‖L(H) ≤ e−ωs for some ω > 0.
The maps t 7→ A(t) and t 7→ A∗(t) are assumed to be strongly continuous
and the domains D(A(t)) =: D(A) and D(A∗(t)) =: D(A∗) are assumed to
be independent of t. Since we are only interested in a solution of the Fokker-
Plank equation, in this chapter, we do not need that the operators A(t) generate
an exponentially bounded evolution family as in Assumption 3.1.2. However,
Assumption 7.1.4 (i) and (ii) implicitly pose some restrictions on the map t 7→
A(t).

The following de�nition introduces a family of reference measures which, as
in the �rst part, will serve as a replacement for a single invariant measure.

De�nition 7.1.1 In equation (7.1), for every �xed time t0 we consider the
corresponding autonomous equation

dXt = −A(t0)Xt + dWt.

By our assumptions on the coe�cients it admits a unique invariant measure.
We will denote it by νt0 and {νt0}t0∈R will be the collection of all these 'in-
variant measures' obtained by freezing the coe�cients. The covariance operator
of the Gaussian measure νt0 will be denoted by Rt0 . Moreover, Gt0 will be the
Generator associated to the equation with coe�cients frozen at t0.
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Remark 7.1.2 The covariance operators Rt0 have the form

Rt0 =

∫ ∞
0

(St0s )∗RSt0s ds

and they are of trace class as well. It is also well known that on suitable test
functions f we have

Gt0f(x) = 〈x,A∗(t0)∇xf(x)〉+ Tr(
√
R
∗
∇xxf(x)

√
R).

The reference measures just introduced above, will induce a family of entropy
functionals.

De�nition 7.1.3 For probability measures µ and ν on H, we will denote by
Entν(µ) the entropy of µ relative to ν, i.e.

Entν(µ) :=

∫
H

log

(
dµ

dν
(x)

)
µ(dx).

If the Radon-Nikodym derivative dµ
dν does not exist we will set the entropy to be

+∞.
We will say that µ ∈ D(Entν) if Entν(µ) <∞.

It is not di�cult to see that the we have Entν(µ) ≥ 0 for all probability
measuresν and µ.

Assumption 7.1.4 The coe�cients in (7.1) are such that

(i) there is a constant K1 > 0 such that

sup
s,t∈R

Entνs(νt) < K1.

(ii) there is a constant K2 > 0 and a bounded function f : R2 → R with
f(r, s)f(s, t) = f(r, t) , r ≤ s ≤ t such that:∣∣∣∣dνsdνt

(x)

∣∣∣∣ ≤ exp(K2|t− s|‖x‖2)f(s, t),

where dνs
dνt

(x) is the Radon-Nikodym derivative which exists since νs and
νt are equivalent by (i).

(iii) For every t ∈ R and s ≥ 0 we have:

St(s)R = RS∗t (s),

where (St(s))s≥0 is the semigroup generated by the operator A(t).

(iv) There is β > 0 such that:

〈Rtx, x〉 ≤ β〈Rx, x〉 ∀x ∈ H, t ∈ R

where Rt is the covariance operator introduced in De�nition 7.1.1.
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Remark 7.1.5 Let us elaborate on these rather technical assumptions.

(i) implies that the reference measures (νt)t∈R are all equivalent. It ensures
that the domains of the di�erent entropy functionals are very similar allowing
the construction of a non-autonomous discrete gradient �ow. It is also vital for
proving tightness of the resulting measures in Proposition 7.3.2.

In �nite dimensions (i) would be satis�ed if we required the (negative) eigen-
values of the matrices A(t) to be bounded uniformly away from 0 and −∞.

(ii) is best seen as a technical description of smoothness of the map t 7→ νt.
It is required for Lemma 7.4.1. In one dimension it would be su�cient to have
t 7→ A(t) continuously di�erentiable.

(iii) ensures that for every �xed t the respective Ornstein-Uhlenbeck semi-
group is self-adjoint. This assumption is needed to show that the gradient �ow
solves a Fokker-Planck equation.

(iv) is a compatibility condition for the noise and the reference measures in
terms of their covariance operators. It is necessary to establish convexity of
the entropy functionals (induced by the reference measures) with respect to the
distance (induced by the noise) in Theorem 7.2.11.

Assumptions (iii) and (iv) stem from the autonomous case and seem thus
unavoidable.

If (i) and (ii) are interpreted as ensuring the 'boundedness' and smoothness
of the map t 7→ νt then these seem rather natural conditions for the existence of
a continuous non-autonomous �ow.

7.2 Entropy Minimizing Movements

We want to set up a discrete scheme governed by relative Entropy and the
Wasserstein metric and show that it will converge to the solution of the Fokker-
Planck equation. In the autonomous case, it is well known that relative entropy
with respect to the invariant measure generates a gradient �ow that solves the
Fokker-Planck equation. This was proven in [22] and [32] in slightly di�erent
settings.

7.2.1 The Wasserstein Distance and Optimal Transport

The Wasserstein distance will play a prominent role in the de�nition of the dis-
crete scheme. For a nice introduction into optimal transportation and Wasser-
stein distances see the recent book [46]. It also gives a good account on convexity
and gradient �ows in Wasserstein spaces.

Let (H, ‖ · ‖H) be a Hilbert space. Let P(H) be the space of all Borel
probability measures on H. Let us equip this space with the topology of weak
convergence, where as test functions we consider all bounded functions which
are continuous with respect to the norm ‖ · ‖H . Although we will talk about
di�erent norms for the de�nition of the Wasserstein distance in an instant, we
stress that the weak topology is �xed as the one introduced above.
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The following de�nition of the Wasserstein distance on P(H) will depend
on the distance to be �xed on the underlying Hilbert space. This need not
necessarily be the original Hilbertian norm. Thus, �x a (possibly di�erent)
norm ‖ · ‖N on H.

De�nition 7.2.1 For µ, ν ∈ P(H) one can de�ne the 2-Wasserstein distance
dN (µ, ν) between µ and ν as follows:

d2
N (µ, ν) := (dN (µ, ν))2 = inf

Σ∈Γ(µ,ν)

∫
X×X

‖x− y‖2NΣ(dx, dy),

where Γ is the set of all Borel probability measures on X ×X with marginals µ
and ν.

For the notation, let us stress that we denote the dependence on the underlying
norm ‖ · ‖N by writing dN instead of just d. Besides the 2-Wasserstein distance
one can also de�ne a p-Wasserstein distance by changing the exponent of the
norm. We will always work with the 2-Wasserstein distance only, so we refrain
from including a 2 in the notation. Moreover we will often work with the squared
Wasserstein distance, so a superscript 2 will always mean a plain square as
stressed in the above de�nition.

For the intuition, very loosely speaking, in order to compute the Wasserstein
distance, one has to look for a coupling of ν and µ whose mass is concentrated
on pairs of points which are close with respect to ‖ · ‖N .

The �rst question raised by this de�nition is: Why should this expression be
�nite? Indeed in general this will not be true, but if we require both ν and µ
to have �nite second moments (with respect to ‖ · ‖N ) we get immediately for
the trivial coupling µ⊗ ν:

d2
N (µ, ν) ≤

∫
X×X

(2‖x‖2N + 2‖y‖2N )µ(dx)ν(dy) <∞

But in general the assumption of second moments is too strong and we will
continue to work on the space P(H), living with the fact that the distance dN
may take the value in�nity.

Next, one can establish that, if the in�mum is �nite, it is indeed a minimum.
Recall that every Hilbert space is in particular also a Radon space, so every single
probability measure onH is tight. Thus, since µ and ν are both tight so is Γ(µ, ν)
(it is also weakly closed) and so we have a minimizing convergent sequence
of measures. As long as the cost functional ‖ · ‖N is lower semicontinuous
with respect to the original Hilbertian norm H de�ning the weak topology, its
limit point is then indeed a minimizer. (See e.g. [32] Proposition 6.6 ) Such a
minimizer will be called an optimal plan or an optimal coupling.

Let us now specify the norm we will work with in order to �nd solutions to
the Fokker-Planck equation. As for the Harnack inequality 5.2.6, on H de�ne
the Cameron-Martin norm

‖x‖R := inf
z∈H
{‖z‖H |

√
Rz = x}
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which will be in�nite if x does not lie in the image of
√
R.

It is an easy consequence of the de�nition that the Cameron-Martin norm is
stronger than the Hilbertian norm of H with

‖ · ‖H ≤ ‖
√
R‖L(H)‖ · ‖R.

Since the compact operator
√
R is not boundedly invertible, we cannot have

the converse, that is the norm ‖ ·‖R cannot be continuous with respect to ‖ ·‖H .
Nevertheless, one can show that it is lower semicontinuous with respect to ‖·‖H ,
as proved for example in [32] Lemma 6.5. This is important since it makes sure
that optimal plans always exist as mentioned above.

The Wasserstein distance is normally de�ned with respect to a true distance.
But also in our case of a pseudo distance which can be in�nite, all nice properties
of the Wasserstein distance are conserved. In particular we have:

Proposition 7.2.2 The Wasserstein distance dR is a complete pseudo metric
on P(H), that is, we have for any µ, ν, ρ ∈ P(H):

• µ = ν ⇐⇒ dR(µ, ν) = 0,

• dR(µ, ν) ≤ dR(µ, ρ) + dR(ρ, ν),

• any Cauchy sequence with respect to dR coverges to a limit in P(H).

Proof See Proposition 6.8 in [32]. �

It will often be useful to compare Wasserstein distances induced by di�erent
norms.

Lemma 7.2.3 Given two lower semicontinuous norms ‖ · ‖A, ‖ · ‖B on H, then
‖ · ‖A ≤ C‖ · ‖B implies dA(µ, ν) ≤ C dB(µ, ν) for all µ, ν ∈ P(H) and some
C > 0.

Proof If dB(µ, ν) is in�nite there is nothing to prove, hence let Σ be an optimal
coupling of µ and ν with respect to the cost ‖ · ‖B . Then we have:

W 2
A(µ, ν) ≤

∫
H

‖x− y‖2AΣ(dx, dy)

≤ C2

∫
H

‖x− y‖2BΣ(dx, dy)

= C2 W 2
B(µ, ν) �

Bounds on the Wasserstein distance can be transferred into bounds on the
second moments.

Lemma 7.2.4 Let µ, ν ∈ P(H). If
∫
H
‖x‖2Hν(dx) <∞ and dR(µ, ν) <∞ then

we have
∫
H
‖x‖2Hµ(dx) <∞ as well.
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Proof Let Σ be an optimal coupling of µ and ν with respect to the norm ‖·‖R.
Then we have∫

H

‖x‖2Hµ(dx) =

∫
H

‖x− y + y‖2HΣ(dx, dy)

≤ 2

∫
H

‖x− y‖2HΣ(dx, dy) + 2

∫
H

‖y‖2HΣ(dx, dy)

≤ 2

∫
H

‖
√
R‖2L(H)‖x− y‖

2
RΣ(dx, dy) + 2

∫
H

‖y‖2Hν(dy) <∞ �

The following important inequality allows to bound the Wasserstein distance
by the relative entropy. As shown in [32] it follows readily from the Talagrand
inequality in Wiener spaces from [23] in connection with Assumption 7.1.4 (iv).

Lemma 7.2.5 (Talagrand Inequality) Let β be the constant from Assump-
tion 7.1.4 (iv). Then we have for any t ∈ R

d2
R(νt, µ) ≤ 2β Entνt(µ). (7.2)

7.2.2 The Discrete Scheme and Convexity in Wasserstein

Spaces

Having de�ned the Wasserstein distance, we can now describe how to obtain a
sequence of measures which we will use later on to construct a solution to the
Fokker-Planck equation. The Wasserstein distance employed in the de�nition of
the scheme will be the one induced by ‖ · ‖R. This choice is crucial to establish
tightness of the measures generated by this scheme.

We choose a starting distribution ρ0 ∈ D(Entν0) and a time step τ > 0.
For notational simplicity, and without loss of generality, let us assume that the
starting time is 0. The arbitrary yet �nite time horizon will be denoted by T .
For a given time step τ denote by Nτ the largest integer smaller than T

τ . Denote
tk := kτ , then we can de�ne the measures ρk := ρτk, k = 1, ..., Nτ recursively by
the following scheme:

ρτk+1 := J tkτ ρ
τ
k, (7.3)

where the operator J is de�ned as follows:

De�nition 7.2.6

Φt(τ, ρ;µ) :=
1

2τ
d2
R(ρ, µ) + Entνt(µ),

J tτρ = argminµ∈P(H) Φt(τ, ρ;µ),

Φτt (ρ) :=
1

2τ
d2
R(ρ, J tτρ) + Entνt(J

t
τρ)

[
= inf

µ
Φt(τ, ρ;µ)

]
.
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Φτt (ρ) is called the Moreau-Yosida approximation of the functional Entνt and
J tτ is the corresponding resolvent.

In the autonomous case, once it is known that the entropy functional with
respect to the unique invariant measure ful�lls a certain convexity condition,
general theory from [3] ensures that this scheme is well de�ned and converges
to a continuous gradient �ow with nice regularizing properties. In the time-
dependent case we are not aware of any analogous theory. But since each 'frozen'
invariant measure induces an entropy functional which enjoys the above men-
tioned convexity called convexity along generalized geodesics we can use the
autonomous theory to make sure that each minimization problem is well-posed
and in order to obtain a crucial discrete evolution variational inequality which
will help to prove convergence towards a continuous �ow.

In order to use the framework of [3], we need to check that the functionals
µ 7→ Entνt(µ) are lower semicontinuous on (P(H), dR). But Lemma 9.4.3 in [3]
states that µ 7→ Entνt(µ) is lower semi continuous in the weak topology. And
since dR induces an even �ner topology (see e.g. Theorem 6.10 in [32]) we are
done.

In order for J tτρ to be well-de�ned we have to make sure that there is always
a unique minimizer for the functional Φt(τ, ρ; ·).

As was shown in [3] (see Assumption 4.0.1 there) the right condition on Φt
is a rather intricate notion of convexity.

Proposition 7.2.7 There is λ > 0 such that, for every t, Φt(τ, ρ; ·) is (τ−1 +
λ)-convex. That is, for every choice of µ0, µ1, ν ∈ D(Entνt) there is a curve
(µνα)α∈[0,1] joining µ0 and µ1, such that for every α ∈ [0, 1]:

Φt(τ, ν, µ
nu
α ) ≤ (1− α)Φt(τ, ν, µ0) + tΦ(τ, ν, µ1)− 1 + λτ

2τ
α(1− α)d2

R(µ0, µ1)

Proof This will follow as a consequence of general theory from [3] together
with a result from [32]. �

Let us give some intuition for this notion of convexity. The nature of the
curves µα will be given in the next de�nition. Φt(τ, ν;µ) = 1

2τ d
2
R(ν, µ)+Entνt(µ)

consists of two parts. The entropy part has good convexity properties, but
the Wasserstein part is only convex for a very speci�c choice of connecting
curves. The important observation in [3] was, that one can expect convexity of
the functional µ 7→ d2

R(ν, µ) only along curves which explicitly depend on the
parameter µ.

The following de�nition (De�nition 9.2.2 in [3]) describes the form of such
curves. For probability measures ρ1, ρ2 we denote here by by Γ0(ρ1, ρ2) all
optimal couplings between ρ1 and ρ2 with respect to the cost ‖ · ‖R. Moreover,
for a function f : X → Y and a measure µ on X we denote by f]µ the image
measure µ ◦ f−1 on Y , where X and Y are measurable spaces.

De�nition 7.2.8 (Generalized Geodesics) Let µ0, µ1, ν ∈ P(H). A gener-
alized geodesic from µ0 to µ1 based in ν is a path (µt)t∈[0,1] in P(H) which can
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be represented as
µt := (π2→3

t )]Σ

for some Σ ∈ Γ(ν, µ0, µ1) satisfying also

(π1,2)]Σ ∈ Γ0(ν, µ0), (π1,3)]Σ ∈ Γ0(ν, µ1)

Here,

π1,2 : H3 → H2 (x, y, z) 7→ (x, y) π1,3 : H3 → H2 (x, y, z) 7→ (x, z)

π2→3
t : H3 → H2 (x, y, z) 7→ (1− t)y + tz

Then, d2
R(ν, ·) is convex along any such generalized geodesic based in ν as

stated in the next proposition.

Proposition 7.2.9 Let (µt)t∈[0,1] be a generalized geodesic based in ν. Then
we have:

d2
R(ν, µt) ≤ (1− t)d2

R(ν, µ0) + d2
R(ν, µ1)− t(1− t)d2

R(µ0, µ1).

Proof See Proposition 8.7 in [32]. �

Now we need the entropy part to be compatible with these curves as well,
according to the following de�nition:

De�nition 7.2.10 (Convexity along Generalized Geodesics) Let λ ∈ R.
A functional F : P(H)→ R∪{∞} is called λ-convex along generalized geodesics
if for any µ0, µ1, ν ∈ D(F ) with dR(µ0, ν) < ∞, dR(µ1, ν) < ∞, there is a
generalized geodesic from µ0 to µ1 based in ν, such that

F (µt) ≤ (1− t)F (µ0) + tF (µ1)− λ

2
t(1− t)d2

R(µ0, µ1), t ∈ [0, 1].

The corresponding result in [32] (Theorem 10.10) states:

Theorem 7.2.11 Let β be the positive constant from Assumption 7.1.4 (iv).
The relative entropy functional Entνt is (β−1)-convex along generalized geodesics
in (P(H), dR).

Together with the good behavior of ρ 7→ d2
R(ρ, ν) along generalized geodesics

based in ν, this result implies (according to Lemma 9.2.7 from [3] ) the sought
for convexity property of Proposition 7.2.7 with λ = β−1.

As a consequence, we have the following result from [3], assuring the viability
of our scheme.

Lemma 7.2.12 If ρ ∈ D(Entνt), then for every τ > 0 J tτρ is well-de�ned, i.e.
the corresponding minimization problem is uniquely solvable.

Proof See [3] Theorem 4.1.2. �
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To apply the above lemma successively, we just have to make sure that the
measures generated by the scheme are always in the right domain of de�nition.

Proposition 7.2.13 For every starting point ρ0 ∈ D(Entν0) the scheme given
in (7.3) is well-de�ned, that is, there is in every step a unique minimizer.

Proof According to the above Lemma 7.2.12 we only need to make sure that,
for every k = 1, ..., Nτ , we have

ρτk ∈ D(Entνkτ ).

We will show how ρ0 ∈ D(Entν0) will imply ρ1 ∈ D(Entντ ). For general k the
result is then clear by iteration. First of all we have ρ1 = J0

τ ρ0 ∈ D(Entν0)
since the de�ning minimization scheme enforces Entν0(ρ1) ≤ Entν0(ρ0). In
particular we have ρ1 � ν0 and thus also ρ1 � ντ since all reference measures
are equivalent by Assumption 7.1.4 (i). Thus, the Radon-Nykodim derivative
dρ1
dντ

exists and moreover we can write it as

dρ1

dντ
=
dρ1

dν0

dν0

dντ
.

Thus, we have

Entντ (ρ1)− Entν0(ρ1)︸ ︷︷ ︸
<∞

=

∫
{ dρ1dντ

>0}

log

(
dρ1

dντ
(x)

)
dρ1

dντ
(x)ντ (dx) −

∫
{ dρ1dν0

>0}

log

(
dρ1

dν0
(x)

)
dρ1

dν0
(x)ν0(dx)

=

∫
{ dρ1dν0

>0}

log

(
dν0

dντ
(x)

dρ1

dν0
(x)

(
dρ1

dν0

)−1

(x)

)
ρ1(dx)

=

∫
{ dρ1dν0

>0}

log

(
dν0

dντ
(x)

)
ρ1(dx)

≤
∫
H

K2τf(0, τ)‖x‖2Hρ1(dx)

where we used Assumption 7.1.4 for the last inequality. If we can show that∫
H
‖x‖2Hρ1(dx) < ∞ the proof is �nished. Therefore it is enough to remark

the following. By Talagrands inequality 7.2.5 we have dR(ρ0, ν0) < ∞ and ν0

has second ‖ · ‖H moment as a Gaussian measure with trace class covariance
operator. Hence Lemma 7.2.4 assures that ρ0 also has the second ‖·‖H moment.
By the minimization property we have dR(ρ0, ρ1) <∞ and another application
of Lemma 7.2.4 yields the result. �
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Another consequence of the convexity property is the following discrete vari-
ational inequality, which will be useful in the next section. See [3] Theorem
4.1.2. for the proof.

Proposition 7.2.14 (Discrete Evolution Variational Inequality) Let ρ ∈
D(Entνt) and ρτ = J tτρ. Then, for each µ ∈ D(Entνt) we have:

1

2τ
d2
R(ρτ , µ)− 1

2τ
d2
R(ρ, µ) +

1

2β
d2
R(ρτ , µ) ≤ Entνt(µ)−Entνt(ρτ )− 1

2τ
d2
R(ρτ , ρ)

(7.4)
where β is the constant from Assumption 7.1.4.

7.3 Compactness of the Discrete Trajectories

In this section we will establish the existence of some limiting curve of measures,
generated by the discrete �ows from the last section. To this end, we will �nd a
bound on the Wasserstein distance for the elements of the discrete scheme and
connect this with compactness properties of level sets of the Wassersteinian.

The following Lemma is Proposition 6.12 from [32]. It states that the Wasser-
stein distance with respect to the norm ‖ · ‖R enjoys compact level sets. This is
not so surprising, as, due to the fact that the Gaussian covariance operator R
is trace class, we have that {x | ‖x‖R ≤ C} is compact.

Lemma 7.3.1 The Wasserstein distance has compact level sets in the following
sense:

For every C > 0 and every �xed measure ν ∈ P(H) the set

KC := {ρ ∈ H | dR(ρ, ν) ≤ C}

is compact in the weak topology.

We will now obtain a bound on the Wasserstein distance with the help of the
discrete evolution variational inequality. In comparison to the autonomous case,
where the evolution is con�ned to a sublevel of the (single) entropy functional, it
is not quite so clear how the �ow could be restricted in our setting with varying
entropies. The intuition is the following: Since the reference measures are all
close to each other (formalized in Assumption 7.1.4 (i)), the attraction to one
of them will also shorten the distance to each one, provided we are far enough
away from the set of reference measures, so that we do not start 'in between'
two of them.

Proposition 7.3.2 Let ρ0 ∈ D(Entν0) with dR(ρ0, ν0) < ∞. Then there is a
constant C1 depending only on ρ0 and the time horizon T , such that we have

sup
τ>0,t≤T,k≤Nτ

dR(ρτk, νt) ≤ C1 (7.5)

for all ρτk := J0
τ · · · J

τ(k−1)
τ ρ0 appearing in the discrete scheme.
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Proof We will show that if ρτk ful�lls supt dR(ρτk, νt) ≤ C1, so does ρτk+1 ac-
cordingly. Thus, assume the contrary. Then, for some s ∈ [0, T ], we must
have

dR(ρτk+1, νs) ≥ dR((ρτk, νs),

otherwise it is clear that ρτk+1 ful�lls supt dR(ρτk+1, νt) ≤ C1. Using the discrete
evolution variational inequality (7.4) with µ = νs we obtain:

1

2τ
d2
R(ρτk+1, νs)−

1

2τ
d2
R(ρτk, νs) +

1

2β
d2
R(ρτk+1, νs)

≤ Entνkτ (νs)− Entνkτ (ρτk+1)− 1

2τ
d2
R(ρτk+1, ρk) (7.6)

and since β > 0 it follows that

Entνkτ (ρτk+1) ≤ Entνkτ (νs) ≤ K1,

where K1 is the constant from Assumption 7.1.4 which is determined by the
reference measures only. By Talagrands inequality (7.2.5) we obtain a bound

dR(ρτk+1, νkτ ) ≤
√

2β Entνkτ (ρτk+1) ≤
√

2βK1.

Let us use the triangle inequality to obtain

sup
r∈R

dR(ρτk+1, νr) ≤ dR(ρτk+1, νkτ ) + sup
r∈R

dR(νkτ , νr) ≤ 2
√

2βK1.

So, we can choose C1 := max(2
√

2β2K1, supt dR(ρ0, νt)) and the proof is �n-
ished, since supt dR(ρ0, νt) is �nite by a similar reasoning with the triangle
inequality. �

As a consequence, in connection with Lemma 7.3.1 we obtain tightness of
the measures appearing in our entropy minimizing movement.

Corollary 7.3.3 The family of measures {ρτk | τ > 0, k ≤ Nτ} is tight.

Proof According to Lemma 7.3.1 the set {ρ | dR(ρ, νt) ≤ C} is compact for
any measure νt. �

From Proposition 7.3.2 we can also deduce, that all measures produced by
the minimizing scheme have uniformly bounded second moments with respect
to the original norm ‖ · ‖H of H. This is not true for the stronger norm ‖ · ‖R
but nevertheless this estimate will be of use in the proof of the Fokker-Planck
equation.

Corollary 7.3.4 We have

sup
k,τ

∫
H

‖x‖2Hρτk(dx) <∞.
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Proof Fix some vt among the reference measures and let Σ be an optimal
coupling between ρτk and νt with respect to the norm ‖ · ‖H . Then we have

∫
H

‖x‖2Hρτk(dx) =

∫
H

‖x− y + y‖2Σ(dx, dy)

≤ 2d2
H(ρτk, νt) + 2

∫
H

‖y‖2Hνt(dy) ≤ 2‖
√
R‖2L(H)d

2
R(ρτk, νt) + 2

∫
H

‖y‖2Hνt(dy),

which is uniformly bounded by Proposition 7.3.2. Note that t is �xed and that
νt as a Gaussian measure with trace class covariance has �nite second ‖ · ‖H
moment. Moreover we could apply Lemma 7.2.3 since ‖·‖H ≤ ‖

√
R‖L(H)‖·‖R.�

7.4 Convergence to the Solution of the Fokker-

Planck Equation

In this section we will construct a continuous function t 7→ ρ(t) from our discrete
approximations and show that it solves a Fokker-Planck equation.

The �rst lemma sheds some light on the regularity of the approximating
curves ρτ in dependence on the time step τ . With its help we will be able to
prove the continuity of the limit curve in the next proposition. Moreover, it will
allow for essential estimates in the proof of the Fokker-Planck equation.

Lemma 7.4.1 For any �xed starting point ρ0 ∈ D(Entν0) and any �xed time
horizon T there is a constant C = C(ρ0, T ) > 0 such that for any τ > 0 we
have:

1

2τ

Nτ∑
k=0

d2
R(ρτk+1, ρ

τ
k) ≤ C

Proof By the minimization property of ρτk+1 = argmin 1
2τ d

2
R(ρτk, ·) + Entνkτ (·)

we can estimate the Wasserstein distance between two consecutive measures by
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the decrease in the current entropy:

1

2τ

Nτ∑
k=0

d2
R(ρτk+1, ρ

τ
k)

≤
Nτ∑
k=0

Entντk(ρτk)− Entντk(ρτk+1)

=

Nτ∑
k=0

Entν(k+1)τ
(ρτk+1)− Entντk(ρτk+1) + Entν0(ρ0)−EntνNτ (ρNτ+1)︸ ︷︷ ︸

≤0

≤
Nτ∑
k=0

∫
H

(
log

(
dρτk+1

dν(k+1)τ
(x)

)
− log

(
dρτk+1

dνkτ

)
(x)

)
ρτk+1(dx) + Entν0(ρ0)

=

Nτ∑
k=0

∫
H

log

(
dνkτ

dν(k+1)τ
(x)

)
ρτk+1(dx) + Entν0(ρ0)

≤
Nτ∑
k=0

∫
H

log
(
exp(K2|(k + 1)τ − kτ |‖x‖2)f(kτ, (k + 1)τ)

)
ρτk+1(dx) + Entν0(ρ0)

≤
Nτ∑
k=0

K2τ

∫
H

‖x‖2ρτk+1(dx) +

Nτ∑
k=0

log(f(kτ, (k + 1)τ)) + Entν0(ρ0)

≤ K2T sup
k

∫
H

‖x‖2ρτk+1(dx) + log(f(0, (Nτ+1)τ)) + Entν0(ρ0)

<∞

where we used in the fourth line that

dρτk+1

dνkτ

dνkτ
dν(k+1)τ

=
dρk+1

dν(k+1)τ
ν(k+1)τa.e.

since ρk+1 � νkτ � ν(k+1)τ . See also the proof of Proposition 7.2.13 for a more
careful justi�cation of this step. In the �fth line we used Assumption 7.1.4 (ii).
The supremum in the last expression is �nite by Corollary 7.3.4. �

Let us de�ne a piece-wisely constant curve of measures in P(H)

ρτ (t) :=

N∑
k=0

ρτk+1(dx)1[kτ,(k+1)τ)(t).

In the next proposition, we will show, that the above approximations con-
verge to a curve of measures which is continuous in the Wasserstein metric. Note
that we need to prove that the non-continuous approximations ρτ converge to
a continuous limit. The proof is based on Proposition 3.3.1 from [3].

Proposition 7.4.2 There is a sequence τn → 0 and a continuous curve t 7→
ρ(t) in (P(H), dR) such that for every t ∈ [0, T ], ρτn(t)→ ρ(t) weakly as τn → 0.
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Proof By Corollary 7.3.3 for every t ∈ [0, T ], τ > 0 we have ρτ (t) ∈ K where
K is a compact set in the weak topology. Hence for every t �xed, ρτ (t) admits
a convergent subsequence. By a diagonal argument, we can �nd a common
subsequence τn such that ρτn(t) converges for every t ∈ [0, T ] ∩ Q. Thus we
obtain a limit function ρ : [0, T ] ∩Q→ K.

In order to show that this function is continuous we need the following two
claims. The �rst estimate is a condition of equicontinuity in the limit.
claim: with the constant C from Lemma 7.4.1 for every 0 ≤ s < t ≤ T we have

lim sup
τ→0

d2
R(ρτ (s), ρτ (t)) ≤ |t− s|2C.

Let kτ and lτ be the indices such that kττ ≤ s < (kτ+1)τ and lττ ≤ t < (lτ+1)τ .
Then using the triangle inequality, the Jensen inequality and Lemma 7.4.1 we
have:

lim sup
τ→0

d2
R(ρτ (s), ρτ (t)) ≤ lim sup

τ→0

lτ−1∑
j=kτ

dR(ρτ (s), ρτ (t))

2

≤ lim sup
τ→0

(lτ − kτ )

lτ−1∑
j=kτ

d2
R(ρτ (s), ρτ (t))

≤ lim sup
τ→0

(lτ − kτ )τ2C

≤ lim sup
τ→0

(t− s+ τ)2C

= (t− s)2C

and the claim is proved.
The next claim states that the Wasserstein distance dR is lower semicontin-

uous with respect to the weak topology.
claim: If µn → µ and νn → ν weakly as n→∞, then

lim inf
n→∞

dR(µn, νn) ≥ dR(µ, ν).

Let Σn be an optimal coupling between µn and νn, that is we have

d2
R(µnνn) =

∫
H×H

‖x− y‖2RΣn(dx, dy).

Let us show that the sequence (Σn)n∈N of measures on H ×H is tight.
Since the convergent sequence µn is tight, there is K1 ⊂ H compact with
infn µn(K1) ≥ 1 − ε. Let K2 be a respective compact for the measures νn
with infn νn(K2) ≥ 1 − ε. Then we have infn Σn(K1 × K2) ≥ 1 − 2ε. Assume
there is some n ∈ N with Σn(K1 ×K2) < 1− 2ε.
Since (K1 ×K2)c ⊂ (Kc

1 ×H) ∪ (H ×Kc
2) we must have either Σn(Kc

1 ×H) =
µn(K1) > ε or Σn(H × Kc

2) = νn(K2) > ε. Both lead to a contradiction and



78 CHAPTER 7. A VARIATIONAL INTERPRETATION

hence Σn admits a weakly convergent subsequence with limit say Σ. Since we
have for any f ∈ Cb(H):∫

H

f(x)µ(dx) = lim
n→∞

∫
H

f(x)µn(dx)

= lim
n→∞

∫
H×H

f(x)Σn(dx, dy) =

∫
H×H

f(x)Σ(dx, dy),

it is clear that Σ is a coupling of µ and ν, whence the �rst inequality in the
following display:

d2
R(µ, ν) ≤

∫
H×H

‖x− y‖2RΣ(dx, dy) = sup
k

∫
H×H

(‖x− y‖2R ∧ k)Σ(dx, dy)

= sup
k

lim inf
n→∞

∫
H×H

(‖x− y‖2R ∧ k)Σn(dx, dy)

≤ lim inf
n→∞

∫
H×H

‖x− y‖2RΣn(dx, dy)

= lim inf
n→∞

d2
R(µn, νn)

and the claim is proved.
We have for s, t ∈ [0, T ] ∩Q by using the two claims:

dR(ρ(s), ρ(t)) ≤ lim inf
n→∞

dR(ρτn(s), ρτn(t)) (7.7)

≤ lim sup
n→∞

dR(ρτn(s), ρτn(t)) ≤
√

2c|t− s|.

Hence, we can extend the function ρ : [0, T ] ∩Q→ K continuously to all of
[0, T ] as follows. For any t ∈ [0, T ] \Q let tn be a sequence of rational numbers
tending to t. Then by equation (7.7) the sequence ρ(tn) is dR-Cauchy and we
de�ne ρ(t) to be its limit. (Remember that (P(H), dR) is complete according
to Proposition 7.2.2.) Moreover ρ(t) ∈ K as it is weakly closed and convergence
in Wasserstein distance induces weak convergence.

Now we have to show that ρτn(t) → ρ(t) for all t ∈ [0, T ] and the same
subsequence as chosen above. For this it su�ces to show that ρ(t) is the only
accumulation point of the subsequence ρτn(t). Thus, let µ be a cluster point of
ρτn(t) along a subsequence τnk . Then for s ∈ [0, T ] ∩Q:

d(ρ(s), µ) ≤ lim inf
k→∞

d(ρτnk (s), ρτnk (t)) ≤
√
|t− s|2C.

Letting s→ t along the rationals we obtain µ = ρ(t). �

The following Proposition is Proposition 10.16 from [32] where the autonomous
case is discussed. It is a key result in order to prove the next theorem, which is
a generalization of Theorem 10.17 from [32]. Moreover its proof contains most
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of the intuition as to why the entropy gradient �ow solves the Fokker-Planck
equation since it relates the generator of the Ornstein-Uhlenbeck equation to
the resolvent operator governing the entropy minimizing movement.

Proposition 7.4.3 Fix t > 0. Let ρ ∈ D(Entνt) and let p(dx, dy) be an optimal
coupling between ρ and Jτt ρ. Then we have for f : H → R which are linear com-
binations of real and imaginary parts of functions of the form x 7→ exp(i〈x, h)
for some h ∈ D(A∗)

1

τ

∫
H×H

〈∇Rf(y), x− y〉Rp(dx, dy) = 2

∫
H

Gtf(x)Jτt ρ(dx),

where 〈x, y〉R := 〈R− 1
2x,R−

1
2 y〉H is the pseudo scalar product induced by the

pseudo norm ‖ · ‖R. Here, R−
1
2 is the pseudo inverse of R

1
2 . Recall that Gt

is the generator corresponding to the equation dXs = A(t)Xsds + dWR(s). On
exponential test functions f it takes the form

Gtf(x) = 〈A∗(t)∇xf(x), x〉+
1

2
Tr(
√
R
∗
∇xxf(x)

√
R).

In the following proof of the fact that our minimizing movements satisfy a
Fokker-Planck equation we adopt a change of notation and write also t 7→ ρt
instead of t 7→ ρ(t). In the same way we will also write t 7→ ρτt instead of
t 7→ ρτ (t) for the discrete approximations.

Theorem 7.4.4 Let ρ0 ∈ D(Entν0) and let t 7→ ρ(t) be the entropy minimizing
movement associated to {Entνt}t≥0 with starting point ρ0, that we obtained as
a weak limit point of the approximating discrete �ows ρτ in Proposition 7.4.2.
It satis�es the Fokker-Planck equation:

∂tρt = −2G∗t ρt

in the following weak sense: for all α ∈ Cc([0, T ]) and all f : H → R which
are linear combinations of real and imaginary parts of functions of the form
x 7→ exp(i〈x, h) for some h ∈ D(A∗) we have

−
∫ T

0

α′(t)

∫
H

f(x)ρt(dx)dt =

−
∫ T

0

α(t)

∫
H

2Gtf(x)ρt(dx)dt+ α(0)

∫
H

f(x)ρ0(dx)

Proof We start out by rewriting the equation in terms of the approximating
measure �ows ρτ with additional error terms. Then we show that it converges
to the equation for the limiting measure �ow if we let τ tend to zero along a
sequence such that ρτ → ρ. Let pτk(dx, dy) be an optimal coupling between ρτk
and ρτk+1, then:
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∫ T

0

α′(t)

∫
H

f(x)ρτt (dx)dt

=

Nτ∑
k=0

[(α(k + 1)τ)− α(kτ)]

∫
H

f(x)ρτk+1(dx)

=

Nτ∑
k=0

α(kτ)

(∫
H

f(x)ρτk(dx)−
∫
R
f(x)ρτk+1(dx)

)
− α(0)

∫
H

f(x)ρ0(dx)

=

Nτ∑
k=0

α(kτ)

(∫
H

∫
H

[f(x)− f(y)]pτk(dx, dy)

)
− α(0)

∫
H

f(x)ρ0(dx)

On the other hand, for pτk as above, we have:

∫ T

0

α(t)

∫
H

2Gtf(x)ρτt (dx)dt

=

Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)

∫
H

2Gtf(x)ρτk+1(dx)dt

=

Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)

∫
H

(2Gt − 2Gkτ )f(x)ρτk+1(dx)dt

+

Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)dt

∫
H

2Gkτf(x)ρτk+1(dx)

=

Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)

∫
H

(2Gt − 2Gkτ )f(x)ρτk+1(dx)dt

+

Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)dt
1

τ

∫
H×H

〈∇Rf(y), x− y〉Rpτk(dx, dy).

where we used Proposition 7.4.3 in the last equation. Combining the last two
identities, we obtain:
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∫ T

0

α′(t)

∫
H

f(x)ρτt (dx)dt−
∫ T

0

α(t)

∫
H

2Gtf(x)ρτt (dx)dt+ α(0)

∫
H

f(x)ρ0(dx)

= −
Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)

∫
H

(2Gt − 2Gkτ )f(x)ρτk+1(dx)dt

+

Nτ∑
k=0

α(kτ)

(∫
H×H

(f(x)− f(y)− 〈∇Rf(y), x− y〉R) pτk(dx, dy)

)
(7.8)

+

Nτ∑
k=0

(
1

τ

∫ (k+1)τ

kτ

α(t)dt− α(kτ)

)∫
H×H

〈∇Rf(y), x− y〉Rpτk(dx, dy)

= I1 + I2 + I3.

We will show that all three summands go to 0 as τ → 0. For I1 remember that
we have Gtf(x) = 〈∇xf(x), A(t)x〉 + 1

2 Tr(
√
R
∗∇xxf(x)

√
R). If f(x) = ei〈x,h〉

for some h ∈ D(A∗), then t 7→ 〈A(t)x,∇f(x)〉 = 〈x,A∗(t)h〉if(x) is continuous
by strong continuity of t 7→ A∗(t). Thus:

Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)

∫
H

(2Gt − 2Gkτ )f(x)ρτk+1(dx)dt

≤ 2 sup
x∈H
|f(x)| sup

k≤Nτ
sup

t∈[kτ,(k+1)τ ]

‖(A∗(t)−A∗(kτ))h‖
Nτ∑
k=0

τ‖α‖∞
∫
H

‖x‖ρτk+1.

Now, t 7→ A∗(t)h is even uniformly continuous on [0, T ]. Moreover, the second
(and thus also the �rst) moment of the ρτk is uniformly bounded by Corollary
7.3.4 and f is bounded by de�nition of the test functions. Thus, this expression
goes to 0.

For I2 we use the Taylor formula for f to obtain:

I2 ≤ ‖α‖∞‖∇2
Rf‖∞

Nτ∑
k=0

∫
H×H

‖x− y‖2Rpτk(dx, dy)

= ‖α‖∞‖∇2
Rf‖∞

Nτ∑
k=0

d2
R(ρτk+1, ρ

τ
k) = O(τ)

by Lemma 7.4.1. Finally, since we have | 1τ
∫ (k+1)τ

kτ
α(t)dt−α(kτ)| ≤ ‖α′‖∞τ by
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the mean value theorem, we obtain

I3 ≤ τ‖α′‖∞
Nτ∑
k=0

∫
H×H

〈∇Rf(y), x− y〉Rpτk(dx, dy)

≤ τ‖α′‖∞‖∇Rf‖∞(Nτ + 1)

(
Nτ∑
k=0

∫
H×H

‖x− y‖R
1

Nτ + 1
pτk(dx, dy)

)2
1
2

≤ τ‖α′‖∞‖∇Rf‖∞(Nτ + 1)

(
Nτ∑
k=0

∫
H×H

‖x− y‖2R
1

Nτ + 1
pτk(dx, dy)

) 1
2

≤ τ‖α′‖∞‖∇Rf‖∞
√
Nτ + 1

(
Nτ∑
k=0

d2(ρk+1, ρk)

) 1
2

= O(τ)

again by Lemma 7.4.1 and since Nτ = O(τ).

Having proven that the right hand side of (7.8) goes to zero we will now
investigate the limits of the terms on the left hand side, thereby �nding the
Fokker-Planck equation. For the �rst term we easily have:

∫ T

0

α′(t)

∫
H

f(x)ρτt (dx)dt
τ→0−→

∫ T

0

α′(t)

∫
H

f(x)ρt(dx)dt

by weak convergence of ρτt → ρt for each �xed t in connection with the domi-
nated convergence theorem and the fact that α′ as well as f is bounded.

In order to make use of weak convergence for the other term, let us show
that (t, x) 7→ α(t)Gtf(x) is continuous. Clearly, it is enough to show that
(t, x) 7→ 〈∇xf(x), A(t)x〉 is continuous. For f(x) = exp(i〈x, h〉) we calculate

|if(x)〈x,A∗(t)h〉 − if(y)〈y,A∗(s)h〉|
≤ |f(x)||〈x, (A∗(t)−A∗(s))h〉|+|f(y)| |〈y−x,A∗(s)h〉|+|f(y)−f(x)| |〈x,A∗(s)h〉|.

Now, if x→ y and t→ s all three summands tend to zero by strong continuity
of t 7→ A∗(t) and continuity of x 7→ f(x).

Thus (t, x) 7→ Gtf(x) is continuous, yet it is not bounded so we have to use
a cut-o� argument to make use of weak convergence.

We have Gtf(x) = 〈∇xf(x), A(t)x〉 + 1
2 Tr(

√
R
∗∇xxf(x)

√
R). Since f is a

test function all of its derivatives are bounded, so we only have to worry about
the term of order ‖x‖. Hence, choose a continuous cut-o� function 0 ≤ χM ≤ 1
which is 1 if ‖x‖ ≤M and 0 if ‖x‖ ≥ 2M . Then
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∫ T

0

α(t)

∫
H

2〈A(t)x,∇xf(x)〉(1− χM (x))ρτ (dx, dt)

=

Nτ∑
k=0

∫ (k+1)τ

kτ

α(t)dt

∫
H

2〈x,A∗(kτ)h〉if(x)(1− χM (x))ρτk+1(dx)

≤ 2‖α‖∞τ‖f‖∞ sup
t∈[0,T ]

‖A∗(t)h‖
Nτ∑
k=0

∫
‖x‖≥M

‖x‖ρτk+1(dx)
M→∞
−→ 0 .

as we have ∫
‖x‖≥M

‖x‖ρτk(dx) ≤
∫
H

1

M
‖x‖2ρτk(dx)

M→∞
−→ 0

since the second moments of the measures ρk are uniformly bounded by Corol-
lary 7.3.4. Knowing this, we can prove (setting ∆R := 1

2 Tr(
√
R
∗∇xxf(x)

√
R)

lim
τ→0

∫
[0,T ]×H

α(t)Gtf(x)ρτt (dx)dt︸ ︷︷ ︸
Iτ

=

∫
[0,T ]×H

α(t)Gtf(x)ρt(dx)dt︸ ︷︷ ︸
I

by showing lim supτ→0 Iτ ≤ I ≤ lim infτ→0 Iτ .

lim sup
τ→0

∫
[0,T ]×H

α(t)Gtf(x)ρτt (dx)dt

= lim sup
M→∞

lim sup
τ→0

(∫
[0,T ]×H

α(t)(∆Rf(x) + 〈A(t)x,∇f(x)〉χM (x))ρτt (dx)dt

+

∫
[0,T ]×H

〈A(t)x,∇f(x)〉(1− χM (x))ρτt (dx)dt

)

≤ lim sup
M→∞

lim sup
τ→0

(∫
[0,T ]×H

α(t)(∆Rf(x) + 〈A(t)x,∇f(x)〉χM (x))ρτt (dx)dt

)

≤ lim sup
M→∞

∫
[0,T ]×H

α(t)(∆Rf(x) + 〈A(t)x,∇f(x)〉χM (x))ρt(dx)dt

≤
∫

[0,T ]×H
α(t)(∆Rf(x) + 〈A(t)x,∇f(x)〉)ρt(dx)dt

=

∫
[0,T ]×H

α(t)Gtf(x)ρt(dx)dt

Here we could apply Fatou's Lemma because we have

sup
t∈[0,T ]

∫
H

‖x‖2ρt(dx) <∞

as an easy consequence of the uniform moment bound on the approximating
measures ρk. The argument for the lim inf is analogous and thus the proof is
�nished. �
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7.5 Example

If we want to make use of our method in the in�nite-dimensional case, our
assumptions require amongst others that all reference measures are absolutely
continuous with respect to each other. This forces us to impose severe restric-
tions on the time-dependent drift part of our Ornstein-Uhlenbeck equation. The
following proposition gives a feasible choice where the drift is minus identity up
to a (time-dependent) trace class operator.

Proposition 7.5.1 In our setting let (en)n be an orthonormal basis of H di-
agonalizing the covariance matrix R of our Brownian noise. Let us denote its
Eigenvalues by rn. Let then −A(t) be diagonalizable in the same basis with
Eigenvalues λn(t) = 1 + fn(t)rn where the real-valued functions fn are smooth
and bounded away from zero and in�nity, that is we have a positive constant C
such that:

• 0 < 1
C ≤ fn(t) ≤ C <∞ for all n ∈ N, t ∈ R,

• supn,t
∣∣ d
dtfn(t)

∣∣ ≤ C.
Then Assumption 7.1.4 is ful�lled for the reference measures (νt).

Proof Let us denote by Rt the covariance operator of νt. We have Rt =∫∞
0
esA(t)ResA

∗(t)ds. Since all operators are diagonal in the same basis we
obtain the Eigenvalues rn(t) of Rt as one-dimensional integrals, in a simple
calculation:

Rten =

∫ ∞
0

esA(t)ResA
∗(t)ends = rn

∫ ∞
0

e2sλn(s)ends =
1

2

rn
1 + fn(t)rn

en.

Thus we have rn(t) = 1
2

rn
1+fn(t)rn

.

For the calculation of the Entropy, note that we have the well-known property
for product measures:

Ent⊗Nn=1µn
(⊗Nn=1νn) =

N∑
n=1

Entµn(νn).

By Lemma 7.5.3 this is still true in our in�nite-dimensional setting so that we
have:

Entνs(νt) =

∞∑
n=1

EntN (0,rn(s))(N (0, rn(t))).

So we obtain, using Lemma 7.5.2 for the calculation of the one-dimensional
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entropies:

Entνs(νt) =
1

2

∞∑
n=1

(
log

(
1 + fn(t)rn
1 + fn(s)rn

)
+

1 + fn(t)rn
1 + fn(s)rn

− 1

)

=
1

2

∞∑
n=1

(
log (1 + fn(t)rn)− log (1 + fn(s)rn) +

(fn(t)− fn(s))rn
1 + fn(s)rn

)

≤ 1

2

∞∑
n=1

(
fn(t)rn − fn(s)rn +

(fn(t)− fn(s))rn
1 + fn(s)

)
≤ C Tr(R) <∞,

where we have used boundedness and positivity of the fn and the mean value
theorem for the logarithm. Thus, Assumption 7.1.4 (i) is ful�lled.
In this setting we can also calculate the Radon-Nikodym derivatives dνt

dνs
accord-

ing to Lemma 7.5.3.
Denoting xn = 〈x, en〉, we obtain:

dνt
dνs

(x) =

∞∏
n=1

exp

(
x2
n

2rn(s)
− x2

n

2rn(t)

)√
rn(s)

rn(t)

= exp

( ∞∑
n=1

1

2
x2
n(fn(t)− fn(s))

) ∞∏
n=1

√
rn(s)

rn(t)

≤ exp(C|t− s|‖x‖2)

∞∏
n=1

√
rn(s)

rn(t)

where we used the mean value theorem and the uniform bound on the deriva-
tives of the functions fn.

Hence, Assumption 7.1.4 (ii) is ful�lled, since f(s, t) :=
∏∞
n=1

rn(s)
rn(t) is multi-

plicative as required and convergence of the in�nite product is seen easily.
Assumption 7.1.4 (iii) follows easily since the relevant operators commute and
Assumption 7.1.4 (iv) holds since we have rn(t) ≤ rn for all n ∈ N. �

Lemma 7.5.2 Let ν1 := νΣ1
and ν2 := νΣ2

be centered Gaussian measures
on Rn with covariance matrices Σ1 and Σ2 respectively. Let µ be any measure
absolutely continuous with respect to Lebesgue measure and admitting a second
moment. Then we have

(i) Entν1(ν2) =
1

2

(
log

(
det(Σ1)

det(Σ2)

)
+ Tr(Σ2Σ−1

1 )− n
)
,

(ii) Entν1(µ)− Entν2(µ) =
1

2

(
log

(
det(Σ1)

det(Σ2)

)
+

∫
〈x, (Σ−1

1 − Σ−1
2 )x〉µ(dx)

)
.

Proof We have

Entν1(ν2) = −1

2

∫
Rn

(
〈(Σ−1

2 − Σ−1
1 )x, x〉+ log

(√
det(Σ1)

det(Σ2)

))
ν2(dx).
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So we obtain for any orthonormal basis (ek) of Rn:∫
Rn
−1

2
〈(Σ−1

2 − Σ−1
1 )x, x〉ν2(dx)

= −1

2
Eν2〈(Σ−1

2 − Σ−1
1 )x, x〉

= −1

2

n∑
k=1

Eν2〈(x, (Σ−1
2 − Σ−1

1 )∗ek〉〈x, ek〉

= −1

2

n∑
k=1

〈(Σ−1
2 − Σ−1

1 )∗ek,Σ2ek〉

= −1

2

n∑
k=1

〈ek,Σ−1
1 Σ2ek〉 − 〈ek, ek〉

= −1

2
(Tr(Σ−1

1 Σ2)− n)

and (i) follows.
For (ii) we have

Entν1(µ)− Entν2(µ) =

∫
Rn

[
log

(
dµ

dν1

)
− log

(
dµ

dν2

)]
dµ =

∫
log

(
dν2

dν1

)
dµ

and the result follows along the preceding calculations. �

Lemma 7.5.3 (Radon-Nikodym derivative) For i = 1, 2, let µi = N (0,Σi)
be Gaussian measures on H with covariance operators Σi. We assume that both
Σ1 and Σ2 have the same eigenbasis (en)n∈N and we denote the eigenvectors
by σin respectively. Set µin := N (0, σin), a normal distribution on R, so that we
have formally: µi = ⊗n∈Nµin. If µ1 and µ2 are equivalent, then we can write
the Radon-Nikodym derivative as a tensor product:

dµ1

dµ2
(x) =

∏
n∈N

dµ1
n

dµ2
n

(〈x, en〉) x ∈ H

Proof Let us denote

µ0(dx) :=
∏
n∈N

dµ1
n

dµ2
n

(〈x, en〉)µ2(dx),

then we have to show that∫
H

F (x)µ1(dx) =

∫
H

F (x)µ0(dx) (7.9)

holds for any measurable and bounded function F . By a monotone class argu-
ment it is su�cient to show it for functions F of the form

F (x) = f(〈x, e1〉, ..., 〈x, eN 〉), (∗)
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where N ∈ N is arbitrary and f : RN → R is a smooth function. The sys-
tem formed by these functions is multiplicative and since its countable subset
(〈x, eN 〉)N∈N separates the points of H the system also generates σ(H).

Thus, let us take a function F as in (∗) and check (7.9):∫
H

F (x)µ1(dx) =

∫
H

f(〈x, e1〉, ..., 〈x, eN 〉)µ1(dx)

=

∫
RN

f(x) (PN] µ1) (dx)

=

∫
RN

f(x) (⊗Nn=1µ
1
n) (dx)

=

∫
RN

f(x1, ..., xN )

N∏
n=1

(
dµ1

n

dµ2
n

(xn)

)
µ2

1(dx1)...µ2
N (dxN )

=

∫
RN

f(x) (PN] µ0) (dx) =

∫
H

F (x)µ0(dx),

where PN : H → RN , x 7→ (〈x, e1〉, ..., 〈x, eN 〉). �
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