PART 1.
ON NONSTABLE K_1 OF
QUADRATIC MODULES

No shortage of explanations for life's mysteries. Explanations are
two a penny these days. The truth, however, is altogether harder to find...

Section 1. Introduction

The concepts of A-quadratic form, quadratic module, and general quadratic

group over a form ring (A, A) were introduced by A. Bak who studied their K

-theory (See [2],[5] and [10]). Although the quadratic setting is much more complic-"ed than the linear one, it is being gradually established that most results con-
cerning the K-theory of general linear groups can be carried over to the K-theory

of general quadratic groups. In the linear situation, there have been extensive

studies of normal subgroups of general linear groups and of non-stable K_1 of these

groups. Suslin showed using his localization-patching method, that the elementary

subgroup $E_n(A)$ of the general linear group $GL_n(A)$ is normal providing A is

module finite and Bak [3] used localization-completion methods to establish that

non-stable $K_{1,n}(A) := GL_n(A)/E_n(A)$ is a nilpotent by abelian group (and thus

solvable) when the Bass-Serre dimension of A is finite. In the quadratic situation,

the normality of the elementary subgroup is proved in Bak-Vavilov [4] by general-

izing methods used in [3] and again in Bak-Vavilov [5] by developing a quadratic

analog of the transvection procedure used in Stepanov-Vavilov [12]. A partial state-

ment without proof of the normality result above is found earlier in Hahn-O'Meara

[10]. In the current part we prove the quadratic analog of Bak's result, namely

that non-stable K_1 of a general quadratic group is a nilpotent by abelian group

(and thus solvable) when the Bass-Serre dimension of the ground ring is finite. The

presence of both short and long roots in the elementary quadratic subgroup makes

the proof of the quadratic analog considerably more complicated than that of the

linear result.

The rest of this part is organized as follows. In section 2 we briefly recall the

basic concepts of quadratic module and general quadratic group over form rings.

The elementary subgroup of the general quadratic group is defined. We then re-
call the sum and product of form ideals in form rings and state the first of several

conjugation results. Its proof gives an indication of the flavor of the long computa-
tions to come in section 4 and how to deal with short and long roots in elementary

quadratic groups.

Typeset by AAMS-TeX

1
In section 3 we give a self contained account of a portion of Bak’s dimension theory, which is tailored to the needs of our purpose. Dimension theory provides for any good pair \mathcal{G}, \mathcal{E} of group valued functors on a category with dimension, a normal filtration $\mathcal{G} \supseteq \mathcal{G}^0 \supseteq \mathcal{G}^1 \supseteq \cdots \supseteq \mathcal{E}$ such that $\mathcal{G}/\mathcal{G}^0$ is abelian and $\mathcal{G}^0 \supseteq \mathcal{G}^1 \supseteq \cdots$ is a descending central series with the property that $\mathcal{G}^{\dim(A)}(A) = \mathcal{E}(A)$ whenever $\dim(A)$ is finite. We then describe the category of form rings as a category with dimension whose dimension function is Bass-Serre dimension and show that the pair of functors $G_{2n}, E_{2n}, n \geq 3$ satisfies all, except possibly one of the conditions for being good. Section 4 consists of several long computations whose goal is verifying that the one missing condition above is satisfied.

We fix some notation for the rest of the paper. If a and b are elements of some group, let $a^b = aba^{-1}$ and $[a, b] = aba^{-1}b^{-1}$. It is easy to see that following commutator formulas hold.

C(1) $[a, bc] = [a, b]^c[a, c]$

C(2) $[ab, c] = a[b, c]a^{-1}[a, c]$

Let A be an associative ring with identity 1. For any $n \in \mathbb{N}$, let $GL_n(A)$ denote the general linear group over A, i.e., the group of all invertible $n \times n$ matrices and $E_n(A)$ its elementary subgroup, i.e., the subgroup of $GL_n(A)$ generated by all elementary matrices $e_{ij}(a)$.

Section 2. General Quadratic Groups
And Their Elementary Subgroups

The purpose of this section is to establish notation and recall some basic results, as well as get started developing a conjugation calculus which will be required in §4.

We begin by recalling the basic concepts of quadratic module over a form ring and of general quadratic group.

Let A be a ring with an involution denoted by $a \mapsto \overline{a}$, and let $\lambda \in \text{Center}(A)$ such that $\lambda \overline{\lambda} = 1$. Let $\Lambda_{\text{min}} = \{a - \lambda \overline{a} | a \in A\}$ and $\Lambda_{\text{max}} = \{a \in A | a = -\lambda \overline{a}\}$. Clearly Λ_{min} and Λ_{max} are additive subgroups of A such that $\Lambda_{\text{min}} \subseteq \Lambda_{\text{max}}$ and satisfy the closure property $a \Lambda_{\text{min}} \overline{\alpha} \subseteq \Lambda_{\text{min}}$ and $a \Lambda_{\text{max}} \overline{\alpha} \subseteq \Lambda_{\text{max}}$ for all elements $a \in A$. Let Λ be an additive subgroup of A such that

1. $\Lambda_{\text{min}} \subseteq \Lambda \subseteq \Lambda_{\text{max}}$
2. $a \Lambda \overline{\alpha} \subseteq \Lambda$ for all $a \in A$.

Λ is called a form parameter and the pair (A, Λ) is called a form ring.

Remark. There is a generalization of the notion of form ring in [2,§13] for which the conclusions of the current paper are valid. Checking details is straightforward and is left to the reader. The generalization replaces the notion of involution by that of λ-involution. A λ-involution consists by definition of an element $\lambda \in A$ and an anti-automorphism $a \mapsto \overline{a}$ of A such that $\lambda \overline{a} \lambda = a$ for all $a \in A$. Setting $a = 1$, we obtain that $\lambda \overline{\lambda} = 1$. One defines $\Lambda_{\text{min}} = \{a - \lambda \overline{a} | a \in A\}$ and $\Lambda_{\text{max}} = \{a \in A | a = -\lambda \overline{a}\}$. A form parameter is by definition an additive subgroup Λ of A such that $\Lambda_{\text{min}} \subseteq \Lambda \subseteq \Lambda_{\text{max}}$ and $\overline{\Lambda} \subseteq \Lambda$ for all $a \in A$. The reason that λ is appearing on the right instead of on the left is that λ is not necessarily in $\text{Center}(A)$ and we use right A-modules below in the definition of quadratic module.

Let (A, Λ) and (A', Λ') be form rings relative, respectively, to Λ and Λ'. A ring homomorphism $\mu : A \rightarrow A'$ such that for any $a \in A$, $\mu(a) = \overline{\mu(a)}$, $\mu(\Lambda) = \Lambda'$ and $\mu(\Lambda) \subseteq \Lambda'$ is called a morphism of form rings. A morphism $\mu : (A, \Lambda) \rightarrow (A', \Lambda')$ of form rings is called surjective if $\mu : A \rightarrow A'$ is a surjective ring homomorphism and $\mu(\Lambda) = \Lambda'$.

In order to construct later relative groups for the general quadratic group, we introduce now the notion of form ideal in a form ring, due to Bak. Let \mathcal{I} be an ideal of A which is invariant under the involution of A, i.e., $\overline{\mathcal{I}} = \mathcal{I}$. Let $\Gamma_{\text{max}} = \mathcal{I} \cap \Lambda$ and $\Gamma_{\text{min}} = \{x - \lambda \overline{\alpha} | x \in \mathcal{I}\} + \{x \alpha \overline{\alpha} | x \in \mathcal{I}, \alpha \in \Lambda\}$. Clearly Γ_{min} and Γ_{max} depend only on the form parameter Λ and the ideal \mathcal{I} and satisfy the closure property $a \Gamma_{\text{min}} \overline{\alpha} \subseteq \Gamma_{\text{min}}$ and $a \Gamma_{\text{max}} \overline{\alpha} \subseteq \Gamma_{\text{max}}$ for all $a \in A$. A relative form parameter of \mathcal{I} is an additive subgroup Γ of \mathcal{I} such that

1. $\Gamma_{\text{min}} \subseteq \Gamma \subseteq \Gamma_{\text{max}}$
2. $a \Gamma \overline{\alpha} \subseteq \Gamma$ for all $a \in A$.

The pair (\mathcal{I}, Γ) is called a form ideal in (A, Λ).
Let V be a right A-module and f a *sesquilinear* form on V, i.e., a biadditive map $f : V \times V \to A$ such that $f(ua, vb) = \overline{a}f(u, v)b$ for all $u, v \in V$ and $a, b \in A$. Define the maps $h : V \times V \to A$ and $q : V \to A/\Lambda$ by $h(u, v) = f(u, v) + \lambda f(v, u)$ and $q(v) = f(v, v) + \Lambda$. The function q is called a Λ-*quadratic form* on V and h its associated Λ-*Hermitian form*. The triple (V, h, q) is called a *quadratic module* over (A, Λ). It is called *nonsingular*, if V is finitely generated and projective over A and the map $V \to \text{Hom}_A(V, A), v \mapsto h(v, -)$ is bijective, i.e. the Hermitian form h is nonsingular. A morphism $(V, h, q) \to (V', h', q')$ of quadratic modules over (A, Λ) is an A-linear map $V \to V'$ which preserves the Hermitian and Λ-quadratic forms.

Define the *general quadratic group* $G(V, h, q)$ to be the group of all automorphisms of (V, h, q). Thus

$$G(V, h, q) = \{ \sigma \in GL(V) | h(\sigma u, \sigma v) = h(u, v), q(\sigma v) = q(v) \text{ for all } u, v \in V \}$$

where $GL(V)$ denotes as usual the group of all A-linear automorphisms of V. Suppose h and q are defined by the sesquilinear form f. If (\mathfrak{I}, Γ) is a form ideal in (A, Λ), define the *relative general quadratic group*

$$G(V, h, q, (\mathfrak{I}, \Gamma)) = \{ \sigma \in G(V, h, q) | \sigma \equiv 1 \mod \mathfrak{I}, f(\sigma v, \sigma v) = f(v, v) \in \Gamma \text{ for all } v \in V \}$$

Theorem 2.1 (Bak). If (V, h, q) is nonsingular then the group $G(V, h, q, (\mathfrak{I}, \Gamma))$ is well defined, i.e. does not depend on the choice of f, and is normal in $G(V, h, q)$.

The theorem is proved in Bak’s thesis (unpublished). Published proofs for the special case $G_{2n}(A, \Lambda)$ which is defined below and is all we need in the current paper, are found in section 5.2 of the book [10] of Hahn-O’Meara or in the recent paper [5] of Bak and Vavilov.

We recall now the group $G_{2n}(A, \Lambda)$. Let V denote a free right A-module with ordered basis $e_1, e_2, \ldots, e_n, e_{-n}, \ldots, e_{-1}$. If $u \in V$, let $u_1, \ldots, u_n, u_{-n}, \ldots, u_{-1} \in A$ such that $u = \sum_{i=-n}^{n} e_i u_i$. Let $f : V \times V \to A$ denote the sesquilinear map defined by

$$f(u, v) = f(\begin{pmatrix} u_1 \\ \vdots \\ u_n \\ u_{-n} \\ u_{-1} \end{pmatrix}, \begin{pmatrix} v_1 \\ \vdots \\ v_n \\ v_{-n} \\ v_{-1} \end{pmatrix}) = \overline{u}_1 v_{-1} + \cdots + \overline{u}_n v_{-n}.$$

It is easy to see that if h and q are the Hermitian and Λ-quadratic forms defined by f then

$$h(u, v) = \overline{u}_1 v_{-1} + \cdots + \overline{u}_n v_{-n} + \lambda \overline{v}_n v_n + \cdots + \lambda \overline{v}_{-1} v_{-1}.$$
and
\[
q(u) = \overline{u}_1 u_{-1} + \cdots + \overline{u}_n u_{-n}.
\]

Using the basis above, we can identify \(G(V, h, q) \) with a subgroup of the general linear group \(GL_{2n}(A) \) of rank \(2n \). This subgroup will be denoted by \(G_{2n}(A, \Lambda) \) and is called the \textit{general quadratic group over} \((A, \Lambda) \) of rank \(n \). Using the basis, we can identify the relative subgroup \(G(V, h, q, (J, \Gamma)) \subseteq G(V, h, q) \) with a subgroup denoted by \(G_{2n}(J, \Gamma) \) of \(G_{2n}(A, \Lambda) \).

In order to describe the matrices in \(G_{2n}(A, \Lambda) \), we need some notation. Let \(M_n(A) \) denote the ring of \(n \times n \) matrices over \(A \). If \(\alpha \in M_n(A) \), let \(\alpha_{ij} \) denote the \((i,j)\)th entry of \(\alpha \). For \(\alpha \in M_n(A) \) define the \textit{conjugate transpose} \(\alpha^* \in M_n(A) \) by \(\alpha_{ij}^* = \overline{\alpha}_{ji} \). Let
\[
p = \begin{pmatrix}
0 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 0
\end{pmatrix}
\]
denote the matrix in \(M_n(A) \), which has 1's along the second diagonal and zero elsewhere. If \(\alpha \in M_n(A) \), the matrix \(\rho p \rho \) amounts to rotating the matrix \(\alpha \) by 180 degrees. Let
\[
\Lambda_n = \{ \alpha \in M_n(A) | \alpha = -\lambda \alpha^* \text{ and } \alpha_{ii} \in \Lambda, \text{ for } 1 \leq i \leq n \}.
\]
If \((J, \Gamma)\) is a form ideal in \((A, \Lambda)\), let
\[
\Gamma_n = \{ \alpha \in M_n(A) | \alpha = -\lambda \alpha^*, \alpha_{ij} \in J \text{ for all } i \neq j, \alpha_{ii} \in \Gamma \text{ for } 1 \leq i \leq n \}.
\]
If \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_{2n}(A) \) then it is straightforward to check that it preserves \(h \) if and only if
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} \rho d & p \bar{\lambda} pb^*p \\ \rho pc^*p & \rho a^*p \end{pmatrix}
\]
and it preserves \(q \) if and only if \(a^* pc \) and \(b^* pd \in \Lambda_n \). Using the above, one establishes easily that
\[
(2.2) \quad G_{2n}(A, \Lambda) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_{2n}(A) \left| d^*pa + \bar{\lambda}b^*pc = p \text{ and } a^*pc, b^*pd \in \Lambda_n \right. \right\}.
\]

Similarly
\[
G_{2n}(J, \Gamma) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_{2n}(A, \Lambda) \left| g \in GL_{2n}(J) \text{ and } a^*pc, b^*pd \in \Gamma_n \right. \right\}
\]
where \(GL_{2n}(J) = \{ \sigma \in GL_{2n}(A) | \sigma_{ij} = 0 \text{ mod } J \text{ for all } i \neq j \text{ and } \sigma_{ii} = 1 \text{ mod } J \} \). Note that the description above of \(G_{2n}(J, \Gamma) \) proves that its definition does not depend on the choice of \(f \).
Let $k \leq n$. Then there is a standard embedding of $G_{2k}(A, \Lambda)$ into $G_{2n}(A, \Lambda)$ as follows. If $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is an element of $G_{2k}(A, \Lambda)$ then using (2.2), it is easy to see that the rule

\[
\begin{pmatrix} 1 \cdots k & -k \cdots -1 \\
1 & -1 \\
A & B \\
-k & -n \\
C & D \\
-k & -n \\
-1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \cdots n & -n \cdots -1 \\
1 & -1 \\
A & B \\
n & -n \\
C & D \\
k & -k \\
-1 & -1 \end{pmatrix}
\]

induces an injective homomorphism $G_{2k}(A, \Lambda) \rightarrow G_{2n}(A, \Lambda)$. We shall frequently use this standard embedding to identify $G_{2k}(A, \Lambda)$ with its image in $G_{2n}(A, \Lambda)$. Note that the above embedding depends on the choice of the basis. With the basis which is used in the book of Bak [1], the standard embedding has the form
Next we recall the definition of the elementary quadratic subgroup. For \(i \in \Delta = \{1, \cdots, n, -n, \cdots, -1\} \), let \(\varepsilon(i) \) denote the sign of \(i \), i.e., \(\varepsilon(i) = 1 \) if \(i \geq 0 \) and \(\varepsilon(i) = -1 \) if \(i < 0 \). Let \(i, j \in \Delta \) such that \(i \neq j \). The elementary transvection \(T_{ij}(a) \) is defined as follows:

\[
T_{ij}(a) = \begin{cases}
 e + ae_{ij} - \lambda^{(\varepsilon(j) - \varepsilon(i))/2}ae_{-j, -i} & \text{where } a \in A, \text{ if } i \neq -j \\
 e + ae_{i, -i} & \text{where } a \in \lambda^{-(\varepsilon(i)+1)/2}A, \text{ if } i = -j.
\end{cases}
\]

It is easy to check that \(T_{ij}(a) \in G_{2n}(A, \Lambda) \). The symbol \(T_{ij} \) where \(i \neq -j \) is called a \textit{short root} whereas \(T_{i, -i} \) is called a \textit{long root}.

The subgroup generated by all elementary transvections is called the \textit{elementary quadratic group} and is denoted by \(E_{2n}(A, \Lambda) \). This group is the quadratic version of the elementary group in the theory of general linear group. Note that elementary transvections corresponding to long roots are elementary matrices in \(E_{2n}(A) \) and elementary transvections corresponding to short roots are a product of two elementary matrices in \(E_{2n}(A) \). Let \((\mathcal{I}, \Gamma) \) be a form ideal of \((A, \Lambda) \). The subgroup which is generated by all \((\mathcal{I}, \Gamma)\)-elementary transvections is denoted by \(F_{2n}(\mathcal{I}, \Gamma) \), i.e.,

\[
F_{2n}(\mathcal{I}, \Gamma) = \langle T_{ij}(x), T_{i, -i}(y) | x \in \mathcal{I}, y \in \lambda^{-(\varepsilon(i)+1)/2} \Gamma \rangle.
\]

The normal closure \(E_{2n}(A, \Lambda) F_{2n}(\mathcal{I}, \Gamma) \) of \(F_{2n}(\mathcal{I}, \Gamma) \) in \(E_{2n}(A, \Lambda) \) is denoted by \(E_{2n}(\mathcal{I}, \Gamma) \) and is called the \textit{relative (or principal) elementary quadratic subgroup of } \(G_{2n}(A, \Lambda) \).
of level \((\mathcal{J}, \Gamma)\). In this note we sometimes do not distinguish between short and long roots and simply write \(T_{ij}(x)\), assuming that \(x \in \lambda^{-(\varepsilon(i)+1)/2}\Lambda\) whenever \(i = -j\).

There are standard relations among the elementary transvections, which are analogous to those for the elementary matrices in the general linear group. In section 4, we shall repeatedly use these relations. We list them now for future reference.

(R1) \[T_{ij}(a) = T_{-j,-i}(\lambda^{(\varepsilon(j)-\varepsilon(i))/2m}). \]
(R2) \[T_{ij}(a)T_{ij}(b) = T_{ij}(a + b). \]
(R3) \[[T_{ij}(a), T_{hk}(b)] = 1 \text{ where } h \neq j, -i \text{ and } k \neq i, -j. \]
(R4) \[[T_{ij}(a), T_{ih}(b)] = T_{ih}(ab) \text{ where } i, h \neq \pm j \text{ and } i \neq \pm h. \]
(R5) \[[T_{ij}(a), T_{-j,-i}(b)] = T_{i,-i}(ab - \lambda^{-\varepsilon(i)m}) \text{ where } i \neq \pm j. \]
(R6) \[[T_{i,-i}(a), T_{-j,-j}(b)] = T_{i,-i}(ab)T_{-j,-j}(-\lambda^{(\varepsilon(j)-\varepsilon(-i))/2m}ab) \text{ where } i \neq \pm j. \]

We need the following theorem which determines the form of the generators of \(E_{2n}(\mathcal{J}, \Gamma)\). (See [5] for the proof).

Theorem 2.2. Let \((\mathcal{J}, \Gamma)\) be a form ideal and suppose \(n \geq 3\). Then the group \(E_{2n}(\mathcal{A}, \Lambda)F_{2n}(\mathcal{J}, \Gamma)\) is generated by all elements of the form \(T_{ji}(a)T_{ij}(x)T_{ji}(-a)\), where \(a \in A\) and \(x \in I\).

Again note that we didn’t distinguish between the short and long roots. If in the above theorem \(i = -j\) then \(a\) and \(x\) are in \(\lambda^{-(\varepsilon(j)+1)/2}\Lambda\) and \(\lambda^{-\varepsilon(i)+1)/2}\Gamma\), respectively.

The above theorem is the quadratic version of an analogous result by A. Suslin and L. Vaserstein for the general linear group. Using the latter result, it is easy to show that \(E_{2n}(\mathcal{A})E_{2n}(\mathcal{J}) \subseteq E_{n}(\mathcal{J} + \mathcal{J})\), where \(\mathcal{J}\) and \(\mathcal{J}\) are two-sided ideals of \(A\). We need a quadratic version of this observation. For this purpose we recall the sum and product of form ideals in a form ring. Let \((\mathcal{J}, \Gamma)\) and \((\mathcal{J}, \Omega)\) be form ideals. We write \((\mathcal{J}, \Gamma) \subseteq (\mathcal{J}, \Omega)\) if \(\mathcal{J} \subseteq \mathcal{J}\) and \(\Gamma \subseteq \Omega\). It is clear if \((\mathcal{J}, \Gamma) \subseteq (\mathcal{J}, \Omega)\) then \(G_{2n}(\mathcal{J}, \Gamma) \subseteq G_{2n}(\mathcal{J}, \Omega)\), \(F_{2n}(\mathcal{J}, \Gamma) \subseteq F_{2n}(\mathcal{J}, \Omega)\) and \(E_{2n}(\mathcal{J}, \Gamma) \subseteq E_{2n}(\mathcal{J}, \Omega)\). The sum and product of arbitrary form ideals \((\mathcal{J}, \Gamma)\) and \((\mathcal{J}, \Omega)\) in \((\mathcal{A}, \Lambda)\) is defined by

\[
(\mathcal{J}, \Gamma) + (\mathcal{J}, \Omega) = (\mathcal{J} + \mathcal{J}, \Gamma + \Omega),
\]

\[
(\mathcal{J}, \Gamma)(\mathcal{J}, \Omega) = (\mathcal{J}\mathcal{J}, \Gamma\Omega)
\]

where \(\Gamma\Omega = \Gamma_{2n}(\mathcal{J}) + \langle y\Gamma\mathcal{J}y \in \mathcal{J}\rangle + \langle x\Gamma2\mathcal{J}x \in \mathcal{J}\rangle\). In the above definition, \(\langle y\Gamma\mathcal{J}y \in \mathcal{J}\rangle\) is the subgroup generated by all elements of the form \(y\gamma\mathcal{J}\) where \(\gamma \in \Gamma\) and \(y \in \mathcal{J}\). Now we are able to give the quadratic result.

Theorem 2.3. Let \((\mathcal{J}, \Gamma)\) and \((\mathcal{J}, \Omega)\) be form ideals of \((\mathcal{A}, \Lambda)\). Then

1. \(G_{2n}(\mathcal{A}, \Lambda)F_{2n}(\mathcal{J}, \Gamma)(\mathcal{J}, \Omega) \subseteq F_{2n}(\mathcal{J} + \mathcal{J}, \Gamma + \Omega)\), providing \(n \geq 2\).
2. \(E_{2n}(\mathcal{A}, \Lambda)F_{2n}(\mathcal{J}, \Gamma)(\mathcal{J}, \Omega) \subseteq F_{2n}(\mathcal{J} + \mathcal{J}, \Gamma + \Omega)\), providing \(n \geq 3\).
Remark. We can write the first statement of the above Theorem under a weaker condition. Namely if \((\mathcal{J}, \Gamma) \subseteq (\mathcal{J}, \Omega)\) and \(\Gamma \subseteq \langle \omega_0 x | x \in \mathcal{J} \rangle\), then a modification of the proof of (1) shows that \(G_2(A, \Lambda) F_{2n}(\mathcal{J}, \Gamma) \subseteq F_{2n}(\mathcal{J}, \Omega)\).

Proof. (1) First note that each element of \(G_2(A, \Lambda)\) in \(G_{2n}(A, \Lambda)\) has the following form:

\[
\begin{pmatrix}
1 & \cdots & n & -n & \cdots & -1 \\
1 & a & \cdots & b \\
\vdots & \ddots & & \vdots \\
n & \cdots & 1 & \vdots \\
-1 & \cdots & \cdots & \cdots & \cdots & \cdots \\
-1 & c & \cdots & d
\end{pmatrix}
\]

Let \(\sigma \in G_2(A, \Lambda)\) and \(T_{ij}(x) \in F_{2n}(\langle \mathcal{J}, \Gamma \rangle (\mathcal{J}, \Omega))\). We shall show that \(\sigma T_{ij}(x) \in F_{2n}(\mathcal{J} + \mathcal{J}, \Gamma + \Omega)\). Suppose \(i \neq -j\), i.e. \(T_{ij}\) is a short root. We shall prove a stronger statement that for any form ideal \((\mathcal{M}, \Phi)\) and element \(x \in \mathcal{M}\), \(\sigma T_{ij}(x)\) is in \(F_{2n}(\mathcal{M}, \Phi)\). This will be required in the proof of the long root case later. If \(i \neq \pm 1\) and \(j \neq \pm 1\), then clearly \(\sigma\) commutes with \(T_{ij}(x)\) and we are done. Suppose that \(j = 1\). The argument for the case \(j = -1\) is the same and will be skipped. Furthermore the relation (R1) shows that the case \(i = \pm 1\), follows from the case \(j = \pm 1\). Thus it suffices to treat just the case \(j = 1\). Since \(T_{ij}\) is a short root, \(i \neq \pm 1\). Furthermore since \(\sigma \in G_{2n}(A, \Lambda)\), it follows by (2.2) that \(\overline{d} \in \Lambda\). Direct matrix calculation shows that

\[(2.3.1) \quad \sigma T_{i1}(x) \sigma^{-1} = T_{i,-1}(\overline{x} \overline{d}) T_{i1}(x \overline{d}) T_{i,-1}(\overline{x} (\overline{d}) \overline{x}).\]
For example if \(i \geq 1 \), the calculation above takes the form

\[
\sigma T_{ii}(x)\sigma^{-1} =
\begin{pmatrix}
1 & \vdots & -b\bar{x} \\
\vdots & \ddots & \vdots \\
x\bar{d} & 1 & \bar{x}\bar{b} \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \ddots \\
1 & \vdots & -d\bar{x} \\
\end{pmatrix}
\]

The above decomposition can be better understood if we write elementary transvections \(T_{ij}(x) \) as a special case of ESD-transvections and use the calculus of the latter which is spelled out in [5,\S6] to make the computation above. The translation of elementary transvections into ESD-transvections is done in [5,6.5]. For a short root \(T_{ij} \) where \(j = 1 \) we get \(T_{ij}(x) = T_{e_i,e_{-1}}(\bar{x}e, 0) \). Using the conjugation property [5,6.2] of ESD-transvections, we have

\[
\sigma T_{ii}(x)\sigma^{-1} = \sigma T_{e_i,e_{-1}}(\bar{x}e, 0)\sigma^{-1} = T_{e_i,e_{-1}}(\bar{x}e, -\bar{b}d).
\]

But \(\sigma e_i = e_i \). Now a direct calculation shows that

\[
T_{e_i,e_{-1}}(\bar{x}e, -\bar{b}d) = T_{e_i,e_{1}b}(\bar{x}e, 0)T_{e_i,e_{-1}d}(\bar{x}e, -\bar{b}d),
\]

which leads to the above decomposition (2.3.1) thanks to [5,6.4].

Now suppose that \(i = -j \), i.e. \(T_{ij} \) is a long root. If \(i \neq \pm 1 \) then \(\sigma T_{i,-i}(x)\sigma^{-1} = T_{i,-i}(x) \). So assume that \(i = 1 \). The argument for \(i = -1 \) is the same. Let \(x = \bar{x}e \).
where $\gamma \in \Gamma \Omega$. Therefore $\gamma = \alpha + \beta + \delta$ for some $\alpha \in \Gamma \min(\mathcal{I})$, $\beta \in \{y \Gamma \mid y \in \mathcal{I}\}$ and $\delta \in \langle z \Omega \mid z \in \mathcal{I} \rangle$. We shall show that $\sigma T_{i, -i}(\lambda \alpha), \sigma T_{i, -i}(\lambda \beta)$ and $\sigma T_{i, -i}(\lambda \delta)$ are all in $F_{2n}(\mathcal{I} + \mathcal{J}, \Gamma + \Omega)$. For $T_{i, -i}(\lambda \delta)$, it is enough by R(2) to prove this when $\delta = \bar{z} \omega z$ where $z \in \mathcal{I}$ and $\omega \in \Omega$. The argument for $T_{i, -i}(\lambda \beta)$ is the same. So let $\delta = \bar{z} \omega z$. Using (R6) and the fact that $n \geq 2$, we can write

$$T_{i, -i}(\lambda \delta) = T_{i, -i}(\lambda \bar{z} \omega z) = T_{k, -i}(\omega z\{T_{k, -k}(-\omega), T_{-k, -i}(z)\}$$

where $k \neq \pm i$ and $k < 0$. Therefore

$$\sigma T_{i, -i}(\lambda \delta) = \sigma T_{k, -i}(\omega z\{\sigma T_{k, -k}(-\omega), \sigma T_{-k, -i}(z)\].$$

Since $k \neq \pm 1$, σ commutes with $T_{k, -k}(-\omega)$. On the other hand, by the proof of the short root case above, $\sigma T_{k, -i}(\omega z)$ and $\sigma T_{-k, -i}(z)$ are in $F_{2n}(\mathcal{I} + \mathcal{J}, \Gamma + \Omega)$. Therefore

$$\sigma T_{i, -i}(\lambda \delta) = \sigma T_{i, -i}(\lambda \bar{z} \omega z).$$

Now let $\alpha \in \Gamma \min(\mathcal{I} \mathcal{J})$. So $\alpha = \tau + \nu$ for some $\tau \in \{x - \lambda \alpha x \in \mathcal{I} \mathcal{J}\}$ and $\nu \in \langle x \Omega \mid x \in \mathcal{I} \mathcal{J}, \nu \in \Lambda \rangle$. Let $\tau = x_1 y_1 - \lambda \Omega x_1 \Omega y_1$ where $x_1 \in \mathcal{I}, y_1 \in \mathcal{J}$. Using R(5), we have $T_{i, -i}(\lambda \tau) = [T_{ij}(-\bar{y} T), T_{j, -i}(\bar{y} T)]$, for any $j \neq \pm i$. Therefore

$$\sigma T_{i, -i}(\lambda \tau) = \sigma T_{ij}(-\bar{y} T), \sigma T_{j, -i}(\bar{y} T)].$$

By the short root case, $\sigma T_{ij}(-\bar{y} T)$ and $\sigma T_{j, -i}(\bar{y} T)$ are in $F_{2n}(\mathcal{I} + \mathcal{J}, \Gamma + \Omega)$. This shows that $\sigma T_{i, -i}(\lambda \tau) \subseteq F_{2n}(\mathcal{I} + \mathcal{J}, \Gamma + \Omega)$. We are left with $T_{-i, i}(\lambda \nu)$. But it is easy to see that ν can be written as the sum of elements from the sets $\{x - \lambda \alpha x \in \mathcal{I} \mathcal{J}\}$, $\{y \Gamma \mid y \in \mathcal{I}\}$ and $\{x \Omega \mid x \in \mathcal{J}\}$. Therefore the argument for $T_{-i, i}(\lambda \nu)$ reduces to the cases above and the first part of the theorem is complete.

(2) By Theorem 2.2, $E_{2n}(\mathcal{A} \mathcal{L})F_{2n}(\mathcal{I} \mathcal{J}, \mathcal{I} \mathcal{J}, \Gamma + \Omega)$ is generated by elements of the form $T_{ij}(a)T_{ij}(a)T_{ij}(a)$ where $a \in A$ and $x \in \mathcal{I} \mathcal{J}$, if $i \neq \pm j$, and by elements of the form $T_{ij}(a)T_{ij}(a)T_{ij}(a)$ where $a \in \lambda^{-(i,j) + 1/2} \Lambda$ and $x \in \lambda^{-(i,j) + 1/2} \Lambda \Omega, i = -j$. Let’s deal first with the short roots. We shall show that $T_{ij}(a)T_{ij}(x)T_{ij}(a)$ where $i \neq \pm j$, $a \in A$ and $x \in \mathcal{I} \mathcal{J}$ is in $F_{2n}(\mathcal{I} \mathcal{J}, \mathcal{I} \mathcal{J}, \Gamma + \Omega)$. Since $x \in \mathcal{I} \mathcal{J}$, we can write $x = \sum_i x_i y_i$ where $x_i \in \mathcal{I}, y_i \in \mathcal{J}$. By R(2), it suffices to prove the theorem for $x = x_1 y_1$ where $x_1 \in \mathcal{I}, y_1 \in \mathcal{J}$. Since $n \geq 3$, there is an $h \neq \pm i, \pm j$. By (R4),

$$T_{ij}(a)T_{ij}(x_1 y_1) = T_{ij}(a)T_{ij}(x_1), T_{ij}(y_1) = [T_{ij}(a)T_{ij}(x_1), T_{ij}(a)T_{ij}(y_1)].$$

Applying now (R4) to the left and right hand entries of the last commutator, we obtain that this commutator equals

$$[T_{ij}(a x_1)T_{ij}(x_1), T_{ij}(y_1)T_{ij}(y_1)] \in E_{2n}(\mathcal{I} \mathcal{J}, \mathcal{I} \mathcal{J}, \Gamma + \Omega),$$
since \mathcal{I} and \mathfrak{I} are two sided ideals in A. Next we turn to the case of long roots. Suppose $i = -j$. Therefore we are dealing with elements of the form $T_{-i,-i}(\gamma)$ where $\alpha \in \lambda^{-(\varepsilon(i)+1)/2}A$ and $\gamma \in \lambda^{-(\varepsilon(i)-1)/2}2\Gamma\Omega$. Let $\gamma = \nu + \beta + \delta$ for some $\nu \in \lambda^{-(\varepsilon(i)-1)/2}2\Gamma\mathfrak{I}$, $\beta \in \lambda^{-(\varepsilon(i)-1)/2}(x\Gamma\mathfrak{I}|x \in \mathfrak{I})$ and $\delta \in \lambda^{-(\varepsilon(i)-1)/2}(x\Gamma\mathfrak{I}|x \in \mathfrak{I})$. We shall show that $T_{-i,-i}(\nu), T_{-i,-i}(\beta)$ and $T_{-i,-i}(\delta)$ are all in $F_{2\mathfrak{I}}(\mathfrak{I} + \mathfrak{I}, \Gamma + \Omega)$. Let $\mu = \lambda^{-(\varepsilon(i)+1)/2}$. For $T_{-i,i}(\delta)$, it is enough to prove it when $\delta = \mu\overline{\omega}z$ where $z \in I$ and $\omega \in \Omega$. The argument for $T_{-i,i}(\beta)$ is the same. Let $h \neq \pm i$ such that $\varepsilon(h) = -\varepsilon(i)$. Then by (R6), we have

$$\rho = T_{i,-i}(\alpha)T_{-i,i}(\mu\overline{\omega}z) = T_{i,-i}(\alpha)T_{\mu h}(\mu\overline{\omega}z)[T_{i,-i}(\alpha)T_{h,-h}(-\mu\omega), T_{i,-i}(\alpha)T_{h,i}(z)].$$

Since $h \neq \pm i$, $T_{i,-i}(\alpha)$ commutes with $T_{h,-h}(-\mu\omega)$. Therefore we obtain

$$\rho = T_{i,-i}(\alpha)T_{h,i}(\mu\overline{\omega}z)T_{i,-i}(-\alpha)[T_{h,-h}(-\mu\omega), T_{i,-i}(\alpha)T_{h,i}(z)]$$

$$= T_{h,i}(\mu\overline{\omega}z)T_{h,-h}(-\mu\omega)T_{i,-i}(\alpha)[T_{h,-h}(-\mu\omega), T_{i,-i}(\alpha)T_{h,i}(z)]$$

$$= T_{h,i}(\mu\overline{\omega}z)T_{h,-h}(-\mu\omega)T_{h,-h}(\lambda(\varepsilon(i)-\varepsilon(h))/2\omega\overline{\omega}z)[T_{h,-h}(-\mu\omega), T_{i,-i}(\alpha)T_{h,i}(z)].$$

On the other hand,

$$[T_{h,-h}(-\mu\omega), T_{i,-i}(\alpha)T_{h,i}(z)] =$$

$$= [T_{h,-h}(-\mu\omega), T_{i,-i}(\alpha)T_{h,i}(z)T_{i,-i}(-\alpha)]$$

$$= [T_{h,-h}(-\mu\omega), T_{h,i}(z)T_{h,-h}(z)T_{i,-i}(\alpha)T_{i,-i}(-\alpha)]$$

$$= [T_{h,-h}(-\mu\omega), T_{h,i}(z)T_{h,-h}(-z\alpha)T_{h,-h}(z\alpha\overline{\omega})].$$

Now a quick inspection shows that $\rho \in F_{2\mathfrak{I}}(\mathfrak{I} + \mathfrak{I}, \Gamma + \Omega)$.

Next, we consider the long root case $T_{i,-i}(\alpha)T_{j,i}(\nu)$ where $\nu \in \mu\overline{\omega}x\mathfrak{I}$, $\mu = \lambda^{-(\varepsilon(i)+1)/2}$, $\nu = \lambda^{-(\varepsilon(i)+1)/2}(x\overline{\omega}x \in \mathfrak{I})$. For $T_{j,i}(\nu)$, where $x \in I, y \in J$. Depending on sign of i, two cases may occur. Suppose first $\varepsilon(i) = 1$. Thus $\mu = 1$. Using (R6), we have $T_{j,i}(\tau) = [T_{j,i,j}(x_1), T_{j,i,j}(y_1)]$, where $j \neq \pm i$. Therefore

$$T_{i,-i}(\alpha)T_{j,i}(\tau) = T_{i,-i}(\alpha)T_{j,j}(x_1)T_{j,i}(y_1)$$

$$= [T_{i,j}(\alpha x_1)T_{j,j}(\lambda(\varepsilon(j)-\varepsilon(-1)/2\overline{\omega}x_1)T_{j,j}(x_1),$$

$$T_{j,i}(y_1)T_{j,i,j}(y_1)T_{i,-i}(\lambda(\varepsilon(i)-\varepsilon(j))/2\overline{\omega}y_1\overline{\alpha\overline{\omega}})].$$

But $T_{ij}(\alpha x_1), T_{-j,j}(-\lambda^{(\varepsilon_j)-\varepsilon(i)}/2\alpha \alpha x_1) = T_{-j,j}(-\lambda^{-(\varepsilon(-j)+1)/2}\alpha \alpha x_1), T_{-i,j}(x_1), T_{ji}(y_1), T_{j, -i}(-y_1 s)$ and $T_{j, -j}(\lambda^{(\varepsilon(i)-\varepsilon(j))/2}y_1 \alpha \alpha y_1)$ which appear in the above equation are in $F_{2n}(3 + \Omega)$. Now consider the case $\varepsilon(i) = -1$. Therefore $\mu = \lambda$. Thus $\tau = (y_1 \alpha - \lambda(x_1)(-y_1)^{-1}$. Using R(5), we have $T_{-i,i}(\tau) = \left[T_{-i,j}(-\alpha y_1), T_{j, i}(\alpha y_1)\right]$, where $j \neq \pm i$. Therefore

$$T_{i,-i}(-\alpha) T_{-i,i}(\tau) = \left[T_{i,-i}(\alpha) T_{-i,j}(-\alpha y_1), T_{i,-i}(\alpha) T_{j,i}(\alpha y_1)\right]$$

and one completes the proof as in the case $\varepsilon(i) = 1$ above.

We are left with $T_{-i,i}(v)$. But it is easy to see that elements of the form $x y \alpha$ where $y \in A$ can be written as a sum of elements from the sets $\{x - \lambda y x x \in I J\}, \{y y \beta \beta y \in \Omega\}$ and $\{x y \alpha x x \in \Omega\}$. Therefore the argument for $T_{-i,i}(v)$ reduces to the cases above and the proof is complete. □

Corollary 2.4. Let (A, Λ) be a form ring and let $s \in \text{Center}(A)$ such that $s = \overline{s}$ and $s \Lambda \subseteq \Lambda$, e.g. $s = t \overline{t}$ where $t \in \text{Center}(A)$. Then

1. $G_2(A, \Lambda) F_{2n}(s^{3k} A, s^{3k} \Lambda) \subseteq F_{2n}(s^k A, s^k \Lambda)$, providing $n \geq 2$.
2. $E_2(A, \Lambda) F_{2n}(s^{3k} A, s^{3k} \Lambda) \subseteq F_{2n}(s^k A, s^k \Lambda)$, providing $n \geq 3$.

Proof. The corollary follows from Theorem 2.3, by letting $(3, \Gamma) = (\Lambda, \Omega) = (s A, s \Lambda)$ and recognizing that $(s^{3k} A, s^{3k} \Lambda) \subseteq (s^k A, s^k \Lambda)$ and $(s^{3k} A, s^{3k} \Lambda) \subseteq (s^k A, s^k \Lambda)$. □

Corollary 2.5. If (A, Λ) is a form ring then $G_2(A, \Lambda)$ normalizes $E_2(A, \Lambda)$, providing $n \geq 2$.

Proof. Let $s = 1$ in Theorem 2.4 (1). □

The next result is due to Bak and if $\Lambda = \Lambda_{\text{max}}$, independently also to Vaserstein.

Theorem 2.6. Let (A, Λ) be a form ring such that A is semilocal. If $n > 1$ then

$$G_{2n}(A, \Lambda) = G_2(A, \Lambda) E_{2n}(A, \Lambda) = E_{2n}(A, \Lambda) G_2(A, \Lambda),$$

$E_{2n}(A, \Lambda)$ is normal in $G_{2n}(A, \Lambda)$ and the quotient $G_{2n}(A, \Lambda)/E_{2n}(A, \Lambda)$ is abelian.

Proof. If σ is a $2n \times 2n$ matrix with coefficients in A, let

$$^t(\sigma_1, \ldots, \sigma_n, \sigma_{-n}, \ldots, \sigma_{-1})$$

denote the $(n + 1)$st column of σ where $\sigma_1, \ldots, \sigma_n, \sigma_{-n}, \ldots, \sigma_{-1} \in A$ and t denoted the transpose operator taking row vectors to column vectors. Suppose $\sigma \in G_{2n}(A, \Lambda)$. By [9, §IV, (3.11)], there is an $\varepsilon \in E_{2n}(A, \Lambda)$ such that

$$^t((\varepsilon \sigma)_{-n}, \ldots, (\varepsilon \sigma)_{-1})$$
is a unimodular vector, i.e. there exist $a_{-n}, \ldots, a_{-1} \in A$ such that
\[\sum_{i=-n}^{-1} a_i (\varepsilon \sigma)_i = 1. \]

It follows from [8, §V, (3.3)(1) and (3.4)(a)] that there is a product τ of elements of the kind $T_{ij}(a)$ where $i, j \in \{-n, \ldots, -1\}$ such that $((\tau \varepsilon \sigma)_n, \ldots, (\tau \varepsilon \sigma)_{-1}) = (1, 0, \ldots, 0)$. Now it is straightforward to find an element $\rho \in E_{2n}(A, \Lambda)$ such that
\[((\rho \varepsilon \sigma)_1, \ldots, (\rho \varepsilon \sigma)_n, (\rho \varepsilon \sigma)_{-n}, \ldots, (\rho \varepsilon \sigma)_{-1}) = (0, \ldots, 0, 1, \ldots, 0). \]

This says that the matrix $\rho \varepsilon \sigma$ fixes the basis element e_{-n}. A standard argument (see the Proof of [9, §IV, (3.4)]) shows that there is an $\delta \in E_{2n}(A, \Lambda)$ such that $\delta \rho \varepsilon \sigma$ fixes not only e_{-n}, but also e_n. Thus $\delta \rho \varepsilon \sigma$ leaves invariant the hyperbolic plane H generated by e_n, e_{-n}. Since $\delta \rho \varepsilon \sigma$ preserves the Hermitian form h, it follows that it leaves the orthogonal complement of H invariant. But this is the subspace generated by $e_1, \ldots, e_{n-1}, e_{-(n-1)}, \ldots, e_{-1}$. Thus $\delta \rho \varepsilon \sigma \in G_{2(n-1)}(A, \Lambda)$. Thus $\sigma \in E_{2n}(A, \Lambda) G_{2(n-1)}(A, \Lambda)$. Repeating the argument for each m such that $2 \leq m \leq n$, we get
\[\sigma \in E_{2n}(A, \Lambda) \cong (by \ (2.5)) \ G_{2}(A, \Lambda) E_{2n}(A, \Lambda). \]

This shows that
\[G_{2n}(A, \Lambda) = G_{2}(A, \Lambda) E_{2n}(A, \Lambda) \]
and $E_{2n}(A, \Lambda)$ is normal in $G_{2n}(A, \Lambda)$. If π denotes the permutation matrix
\[
\begin{pmatrix}
0 & -1 & & \\
1 & 0 & & \\
& & 1 & \\
& & & & \vdots \\
& & & & 1 \\
& & & & \vdots \\
& & & & 0 & 1 \\
& & & & & -1 & 0
\end{pmatrix}
\]
then obviously $\pi \in G_{2n}(A, \Lambda)$ (because it satisfies the defining equations in (2.2)), π normalizes $E_{2n}(A, \Lambda)$ (because conjugation by π leaves the set of elementary transvections invariant), and
\[G_{2}(A, \Lambda) E_{2n}(A, \Lambda) = G_{2n}(A, \Lambda) = \pi G_{2n}(A, \Lambda) = \pi G_{2}(A, \Lambda) E_{2n}(A, \Lambda). \]
Since $G_2(A, \Lambda)$ and $^\ast G_2(A, \Lambda)$ commute, it follows that $G_{2n}(A, \Lambda)/E_{2n}(A, \Lambda)$ is abelian.

We close this section by recalling a lemma which will be used in Section 4.

Lemma 2.7. Let A be module finite over a Noetherian ring R. Then for any s in R, there is a nonnegative integer k such that the map $s^kA \to \langle s \rangle^{-1}A$ induced by the canonical homomorphism $A \to \langle s \rangle^{-1}A$ is injective.

The verification is easy and can be found in the proof of Lemma 4.10 in [3]. The above lemma shows that if A is a Noetherian ring, then there is an integer k, such that the relative congruence subgroup $G_{2n}(s^kA, s^k\Lambda)$ embeds in $G_{2n}(\langle s \rangle^{-1}A, \langle s \rangle^{-1}\Lambda)$. This result will be used in proving Theorem 4.6.
Section 3. On Bak’s Dimension Theory

In this section we give a self contained account of a portion of Bak’s dimension theory and show how to apply it to general quadratic groups.

Recall that a relation \leq on a set is called a quasi-ordering, if it is reflexive and transitive. If in addition, it is anti-symmetric, then it is called a partial ordering. A quasi-ordering \leq is directed, if given elements a and b, there is an element c such that $a \leq c$ and $b \leq c$. Following Bak [6], we define a category with structure as follows.

Definition 3.1. A category with structure is a category \mathcal{C} together with a class $\mathcal{S}(\mathcal{C})$ of commutative squares in \mathcal{C} called structure squares and a class of $\mathcal{I}(\mathcal{C})$ of functors from directed quasi-ordered sets to \mathcal{C} called infrastructure functors, satisfying the following conditions.

1. $\mathcal{S}(\mathcal{C})$ is closed under isomorphism of commutative squares.
2. For each object A of \mathcal{C}, the trivial square i.e.,

$$
\begin{array}{ccc}
A & \rightarrow & A \\
\downarrow & & \downarrow \\
A & \rightarrow & A
\end{array}
$$

is in $\mathcal{S}(\mathcal{C})$,
3. $\mathcal{I}(\mathcal{C})$ is closed under isomorphism of functors.
4. For each object A of \mathcal{C}, the trivial functor $F_A : \{\ast\} \rightarrow \mathcal{C}, \ast \mapsto A$, is in $\mathcal{I}(\mathcal{C})$, where $\{\ast\}$ denotes the directed quasi-ordered set with precisely one element \ast.
5. For each $F : I \rightarrow \mathcal{C}$ in $\mathcal{I}(\mathcal{C})$, the direct limit $\varinjlim F$ exists in \mathcal{C}.

Next we define a category with dimension.

Definition 3.2. Let $(\mathcal{C}, \mathcal{S}(\mathcal{C}), \mathcal{I}(\mathcal{C}))$ be a category with structure. Let $d : \text{Obj}(\mathcal{C}) \rightarrow \mathbb{Z}^{\geq 0} \cup \infty$ be a function which is constant on isomorphism classes of objects. Let $A \in \text{Obj}(\mathcal{C})$ such that $0 < d(A) < \infty$. A d-reduction of A is a set

$$
\begin{array}{ccc}
A & \rightarrow & B_i \\
\downarrow & & \downarrow \\
C_i & \rightarrow & D_i
\end{array}
$$

of structure squares where I is a directed quasi-ordered set and $B : I \rightarrow \mathcal{C}, i \mapsto B_i$, is an infrastructure functor such that the following holds.

1. If $i \leq j \in I$ then the triangle
PART 1. NONSTABLE K-THEORY

\[
\begin{array}{c}
A \\
\downarrow \\
B_i \\
\longrightarrow \\
B_j
\end{array}
\]

commutes.

(2) \(d(\varinjlim_i B) = 0\).

(3) \(d(C_i) < d(A)\) for all \(i \in I\).

A function \(d\) is called a dimension function on \((\mathcal{C}, \mathcal{S}(\mathcal{C}), \mathcal{I}(\mathcal{C}))\) if for any object \(A\) of \(\mathcal{C}\), such that \(0 < d(A) < \infty\), \(A\) has a \(d\)-reduction. In this case, the quadruple \((\mathcal{C}, \mathcal{S}(\mathcal{C}), \mathcal{I}(\mathcal{C}), d)\) is called a category with dimension.

For the rest of this section \((\mathcal{C}, \mathcal{S}(\mathcal{C}), \mathcal{I}(\mathcal{C}), d)\) will denote a category with dimension and

\[
\mathcal{G}, \mathcal{E} : \mathcal{C} \longrightarrow \text{Group}
\]

a pair of group valued functors on \(\mathcal{C}\) such that \(\mathcal{E} \subseteq \mathcal{G}\).

Definition-Lemma 3.3. Let \(n \geq 0\). Define the functor

\[
\mathcal{G}^n : \mathcal{C} \longrightarrow \text{Group},
\]

by

\[
\mathcal{G}^n(A) = \bigcap_{\substack{A \to B \in \mathcal{S} \\ d(B) \leq n}} \text{Ker}\left(\mathcal{G}(A) \longrightarrow \mathcal{G}(B)/\mathcal{E}(B)\right).
\]

In general \(\mathcal{G}^n(A)\) is not a normal subgroup of \(\mathcal{G}(A)\). Clearly \(\mathcal{E}(A) \subseteq \mathcal{G}^n(A)\) for any object \(A\) of \(\mathcal{C}\) and if \(d(A)\) is finite then \(\mathcal{G}^n(A) = \mathcal{E}(A)\) for all \(n \geq d(A)\), because the identity morphism \(A \to A\) is now one of those occurring in the definition of \(\mathcal{G}^n(A)\).

The filtration

\[
\mathcal{G}(A) \supseteq \mathcal{G}^0(A) \supseteq \mathcal{G}^1(A) \supseteq \ldots
\]

is called the dimension filtration on \(\mathcal{G}\) with respect to \(\mathcal{E}\). For a fixed object \(A\), a set \(\mathcal{S}\) of morphisms \(A \to B\) such that for any \(A \to B \in \mathcal{S}, d(B) \leq n\), and such that

\[
\mathcal{G}^n(A) = \bigcap_{A \to B \in \mathcal{S}} \text{Ker}\left(\mathcal{G}(A) \longrightarrow \mathcal{G}(B)/\mathcal{E}(B)\right),
\]

is called a defining set for \(\mathcal{G}^n(A)\). It is easy to check that defining sets exist, although they are not as a rule unique. However, for any defining set \(\mathcal{S}\), the map

\[
\mathcal{G}(A)/\mathcal{G}^n(A) \longrightarrow \prod_{A \to B \in \mathcal{S}} \mathcal{G}(B)/\mathcal{E}(B)
\]

(3.3.1)

of coset spaces is injective. Clearly if \(d(A) \leq n\) then \(\mathcal{G}^n(A) = \mathcal{E}(A)\), because one can enlarge if necessary any defining set \(\mathcal{S}\) for \(\mathcal{G}^n(A)\) to a defining set \(\mathcal{S}'\) by adding the identity morphism \(id : A \to A\).
Definition 3.4. A pair \mathcal{G}, \mathcal{E} of group valued functors on \mathcal{C} is called good if the following holds.

1. \mathcal{E} and \mathcal{G} preserve direct limits of infrastructure functors.
2. For any A of \mathcal{C}, $\mathcal{E}(A)$ is a perfect group.
3. For any zero dimensional object A, $K_1(A) := \mathcal{G}(A)/\mathcal{E}(A)$ is an abelian group.
4. For any structure square

\[
\begin{array}{c}
A \\
\downarrow \\
C \\
\downarrow \\
B \\
\downarrow \\
D
\end{array}
\]

let $H = \text{Ker}(\mathcal{G}(A) \to \mathcal{G}(B)/\mathcal{E}(B))$ and $L = \text{Ker}(\mathcal{G}(A) \to \mathcal{G}(C)/\mathcal{E}(C))$.

Then the mixed commutator $[H, L] \subseteq \mathcal{E}(A)$.

The following theorem plays a crucial role in this note and is a central result in Bak’s dimension theory.

Theorem 3.5. Let $\mathcal{C} = (\mathcal{C}, S(\mathcal{C}), I(\mathcal{C}), d)$ be a category with dimension and $(\mathcal{G}, \mathcal{E})$ be a good pair of group valued functors on \mathcal{C}. Then the dimension filtration

$\mathcal{G} \supseteq \mathcal{G}^0 \supseteq \mathcal{G}^1 \supseteq \cdots$

of \mathcal{G} with respect to \mathcal{E} is a normal filtration of \mathcal{G} such that the quotient functor $\mathcal{G}/\mathcal{G}^0$ takes its values in abelian groups and the filtration $\mathcal{G}^0 \supseteq \mathcal{G}^1 \supseteq \cdots$ is a descending central series such that if $d(A)$ is finite then $\mathcal{G}^n(A) = \mathcal{E}(A)$ whenever $n \geq d(A)$. In particular, if $d(A)$ is finite then $\mathcal{E}(A)$ is normal in $\mathcal{G}(A)$.

Proof. If A is an object of \mathcal{C}, let $S_n(A)$ denote a set of defining morphisms for $\mathcal{G}^n(A)$.

By Lemma 3.3, the map

$\mathcal{G}(A)/\mathcal{G}^0(A) \to \prod_{B \in S_n(A)} \mathcal{G}(B)/\mathcal{E}(B)$

is injective. Since each $\mathcal{G}(B)/\mathcal{E}(B)$ is abelian by (3) of Definition 3.4, it follows that $\mathcal{G}^n(A)$ is normal in $\mathcal{G}(A)$ and the quotient $\mathcal{G}(A)/\mathcal{G}^n(A)$ is abelian.

Let $n \geq 0$. We shall show that for any object A, $[\mathcal{G}^0(A), \mathcal{G}^n(A)] \subseteq \mathcal{G}^{n+1}(A)$. Since for any object B such that $d(B) \leq n + 1$, we have that $\mathcal{G}^{n+1}(B) = \mathcal{E}(B)$ and since the map

$\mathcal{G}(A)^0/\mathcal{G}^{n+1}(A) \to \prod_{B \in S_{n+1}(A)} \mathcal{G}^0(B)/\mathcal{E}(B)$
is injective, we can reduce to the case $d(A) \leq n + 1$. Suppose $d(A) \leq n + 1$. Let

$\sigma \in G^0(A)$ and $\rho \in G^n(A)$. Let

$$
A \xrightarrow{i \in I} B_i \\
C_i \xrightarrow{(i \in I)} D_i
$$

be a d-reduction of A. Since $d(\varinjlim_B B_i) = 0$ and since G and E commute with \varinjlim_B, there is an $i \in I$ such that $\sigma \in \text{Ker}(G(A) \to G(B_i) / E(B_i))$. Since $d(C_i) < n + 1$, $G^n(C_i) = E(C_i)$. Thus $\rho \in \text{Ker}(G(A) \to G(C_i) / E(C_i))$. Now by property (4) of Definition 3.4, $[\sigma, \rho] \in E(A) = G^{n+1}(A)$.

We show finally that for any n, G^n is normal in G. The proof is by induction on n. The case $n = 0$ has been done above. Suppose $n > 0$. By induction on n, we can assume for all $0 \leq m < n$ that G^m is normal in G. Since the map

$$
G(A) / G^n(A) \to \prod_{A \to B \in S_n(A)} G(B) / E(B)
$$

is injective, it suffices to show that each $E(B)$ above is normal in $G(B)$. This allows us to reduce to the case that $d(A) \leq n$ and $G^n(A) = E(A)$. We have shown already that $[G^0(A), G^{n-1}(A)] \subseteq G^n(A) = E(A)$. Since $E(A)$ is perfect by property (3) of Definition 3.4, and $E(A) \subseteq G^{n-1}(A) \subseteq G^0(A)$, it follows that $[G^0(A), G^{n-1}(A)] = G^n(A)$. But $G^0(A)$ and $G^{n-1}(A)$ are normal in $G(A)$, by the induction assumption. Thus $G^n(A)$ is normal in $G(A)$. \square

Remark. Bak has also an alternative version of the theorem above in which a good pair (G, E) is replaced by a natural transformation $S \to G$ of group valued functors such that

2. $S(A)$ is perfect for any A.
3. $G(A)/\text{image}(S(A) \to G(A))$ is abelian for any zero dimensional object A.
4. $\text{Ker}(S(A) \to G(A)) \subseteq \text{Center}(S(A))$ for any finite dimensional object A.
5. The extension $S \to G$ satisfies excision on any structure square.

The conclusion of the alternative version is the same as that above. The alternative approach is used in [11], where it is applied to general linear groups and in [7] where it is applied to met general linear groups.

There are many ways to make the category of form rings into a category with dimension such that G_n, E_n is a good pair of group valued functors. We describe next a way based on quasi-finite localization-completion squares and Bass-Serre dimension.

Let A_R denote a pair consisting of an associative ring A with identity and a commutative ring $R \subseteq \text{Center}(A)$. Thus A_R is an algebra over R. A \textit{morphism}...
$A_R \to A'_R$ of algebras is a ring homomorphism $f : A \to A'$ such that $f(R) \subseteq R'$. Next we recall the Bass-Serre dimension of A_R.

Let X be a topological space. The dimension of X is the length n of the longest chain $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n$ of nonempty closed irreducible subsets X_i of X, [8, §III]. Define $\delta(X)$ to be the smallest nonnegative integer d such that X is a finite union of irreducible Noetherian subspaces of dimension $\leq d$. If there is no such d, then by definition $\delta(X) = \infty$. Let R be a commutative ring. Let $\text{Spec}(R)$ denote the topological space consisting of the set of all prime ideals of R, under the Zariski topology and let $\text{Max}(R)$ denote the subspace consisting of all maximal ideals of R. Then the Bass-Serre dimension of R is $\delta(\text{Max}(R))$ and is denoted by $\delta(R)$. Define the Bass-Serre dimension $\delta(A_R)$ of A_R by

$$
\delta(A_R) = \begin{cases}
\delta(R) & \text{if } A \text{ is quasi finite over } R \\
\infty & \text{otherwise}.
\end{cases}
$$

Recall that an R-algebra A is called quasi finite over R if there is a direct system of finite R-subalgebras A_i of A such that $\varinjlim A_i = A$.

A form algebra over a commutative ring R is a form ring (A_R, Λ) where the involution leaves R invariant. A morphism $(A_R, \Lambda) \to (A'_R, \Lambda')$ of form algebras is a morphism of form rings which defines an algebra morphism $A_R \to A'_R$. A form algebra (A_R, Λ) is called module finite, if A is module finite over R and is called quasi-finite, if A_R is quasi-finite. If (A_R, Λ) is a form algebra, let R_0 denote the subring of R generated by all $a \in R$ such that $a \in R$. Define the Bass-Serre dimension of (A_R, Λ) by

$$
\delta(A_R, \Lambda) = \begin{cases}
\delta(R_0) & \text{if } (A_R, \Lambda) \text{ is quasi finite} \\
\infty & \text{otherwise}.
\end{cases}
$$

The next task is to put structure on the category Form algebras, which makes it a category with dimension under Bass-Serre dimension.

Let $\text{Mod}(R)$ denote the category of all modules over the commutative ring R and $\text{Noeth}(R) \subseteq \text{Mod}(R)$ the full subcategory of all Noetherian modules over R. If $s \in R$ and $M \in \text{Mod}(R)$, let $\hat{M}_s = \lim_{n \geq 0} M/Ms^n$ denote the completion of M at s. Let $\langle s \rangle^{-1} M$ denote the module of $\langle s \rangle$-fractions of M where $\langle s \rangle$ denotes the multiplicative set $\{1, s, s^2, \cdots \}$ generated by s. The square

$$
\begin{CD}
M @>>> \langle s \rangle^{-1} M \\
@VVV @VVV \\
\hat{M}_s @>>> \langle s \rangle^{-1} \hat{M}_s
\end{CD}
$$

is called the localization-completion square of M at s. Whereas the functor $M \mapsto M_s$ is exact on $\text{Noeth}(R)$ (in particular if $N \subseteq M$, there is a canonical embedding
\(\hat{N}(s) \subseteq \hat{M}(s) \) and whereas the localization-completion square above is a pullback square if \(M \in \mathcal{N}oeth(R) \), these facts fail to hold over \(\mathcal{M}od(R) \). To rectify this problem, Bak [3] has defined for any \(R \)-module \(M \), its \textit{finite completion} at \(s \) by \(\hat{M}(s) = \varinjlim_{j} (M_{j}(s)) \) where \(\{R_{j}| j \in J\} \) is any directed system of subrings \(R_{j} \subseteq R \) such that each \(R_{j} \) is finitely generated as a \(\mathbb{Z} \)-algebra, contains \(s \), and \(\varinjlim_{j} R_{j} = R \) and \(\{M_{j}| j \in J\} \) is any directed system of abelian subgroups \(M_{j} \subseteq M \) such that each \(M_{j} \) is a finitely generated \(R_{j} \)-module and \(\varinjlim_{j} M_{j} = M \). It is easy to check that \(\hat{M}(s) \) does not depend on the choice of the directed system above. Clearly \(\hat{M}(s) = \hat{M}(s) \) if \(M \in \mathcal{N}oeth(R) \) and \(R \) is finitely generated as a \(\mathbb{Z} \)-algebra. The square

\[
\begin{array}{ccc}
M & \longrightarrow & \langle s \rangle^{-1}M \\
\downarrow & & \downarrow \\
\hat{M}(s) & \longrightarrow & \langle s \rangle^{-1}\hat{M}(s)
\end{array}
\]

is called the \textit{localization-finite-completion square} of \(M \) at \(s \). The exactness of finite completion on \(\mathcal{M}od(R) \) and the pullback property for localization-finite-completion squares on \(\mathcal{M}od(R) \) follow from the analogous properties, respectively, of ordinary completion and of ordinary localization-completion squares on \(\mathcal{N}oeth(R) \).

Let \(M \in \mathcal{M}od(R) \). Whereas ordinary completion \(\hat{M}(s) \) does not depend on \(R \), finite completion \(\hat{M}(s) \) does. If confusion can arise, we shall write \((\hat{M}(s))_{\hat{R}(s)} \) in place of \(\hat{M}(s) \).

Definition-Lemma 3.6 (Bak). Let \(A_{R} \) be an \(R \)-algebra. Let \(s \in R \) and let \(\{R_{\alpha}| \alpha \in J\} \) and \(\{A_{\alpha}| \alpha \in J\} \) be directed systems in \(R \) and \(A \), respectively, used to construct \((\hat{A}_{(s)})_{\hat{R}(s)} \). Let \(x, y \in \hat{A}_{(s)} \). Choose \(\alpha, \beta \in J \) and elements \(x' \in (\hat{A}_{\alpha})(s) \) and \(y' \in (\hat{A}_{\beta})(s) \) such that \(x' \) and \(y' \) represent \(x \) and \(y \), respectively. Neither \(A_{\alpha} \) nor \(A_{\beta} \) is necessarily closed under multiplication in \(A \). However, since \(A_{\alpha} \) is module finite over \(R_{\alpha} \) and \(A_{\beta} \) is module finite over \(R_{\beta} \), there is a \(\gamma \in J \) such that \(\alpha \leq \gamma, \beta \leq \gamma \), and \(A_{\alpha}A_{\beta} \subseteq A_{\gamma} \). Let \(\prod_{i \geq 0} x_{i} \in \prod_{i \geq 0} A_{\alpha} \) represent \(x' \) and \(\prod_{i \geq 0} y_{i} \in \prod_{i \geq 0} A_{\beta} \) represent \(y' \). Define \(x \circ y \) to be the class in \(\hat{A}_{(s)} \) of the element of \((\hat{A}_{\gamma})(s) \) defined by \(\prod_{i \geq 0} x_{i} y_{i} \in \prod_{i \geq 0} A_{\gamma} \). Then the product \(x \circ y \) is independent of all the choices made and makes \(\hat{A}_{(s)} \) into an \(\hat{R}_{(s)} \)-algebra.

Proof. Straightforward.

The result above paves the way for defining finite completions of formal algebras. Let \((A_{R}, \Lambda) \) be a formal algebra and let \(s \in R_{0} \). Define the \textit{finite completion} of \((A_{R}, \Lambda) \) at \(s \) by

\[
(A_{R}, \Lambda)^{(s)} = (A_{R}, \Lambda)^{(\hat{R}_{0}(s))} = \left((\hat{A}_{(s)})_{\hat{R}(s)}^{(s)}, (\hat{\Lambda}_{(s)})_{\hat{R}(s)}^{(s)} \right).
\]
Define the ordinary completion of \((A_R, \Lambda) \) at \(s \) by \((A_R, \Lambda)_\mathfrak{m} = (\hat{A}_s, \hat{\Lambda}_s) \).

Lemma 3.7. Let \((A_R, \Lambda)\) be a module finite form algebra such that \(R \) is finitely generated as a \(\mathbb{Z} \)-algebra. If \(s \in R_0 \) then \((A_R, \Lambda)_\mathfrak{m} = (A_R, \Lambda)_\mathfrak{m}\).

Proof. It suffices to show that \(R \) is finitely generated as an \(R_0 \)-module and that \(R_0 \) is finitely generated as a \(\mathbb{Z} \)-algebra. Let \(a_1, \ldots, a_n \in R \) such that \(a_1, \ldots, a_n, \pi_1, \ldots, \pi_n \) generate \(R \) as a \(\mathbb{Z} \)-algebra. Clearly each \(a_i \) and \(\pi_i \) satisfies the monic polynomial \(X^2 + (a_i + \pi_i)X + a_i\pi_i \) whose coefficients lie in \(R_0 \). Thus \(R \) is finitely generated as an \(R_0 \)-module. It is an easy exercise to show that \(R_0 \) is generated as a \(\mathbb{Z} \)-algebra by all elements \(a_i \pi_i \) such that \(1 \leq i \leq n \) and all elements \((x_1 \cdots x_k)(\pi_1 \cdots \pi_k) + (y_1 \cdots y_l)(\pi_1 \cdots \pi_k)\) where \(\{x_1, \ldots, x_k\} \) and \(\{y_1, \ldots, y_l\} \) range over all disjoint, possibly empty subsets of \(\{a_1, \ldots, a_n\} \). \(\square \)

The following corollary is an easy consequence of the lemma above and its proof.

Corollary 3.8. Let \((A_R, \Lambda)\) be a quasi-finite form algebra. Then there is a directed system of module finite form subalgebras \(((A_{\alpha})_{R_{\alpha}}, \Lambda_{\alpha}) \subseteq (A_R, \Lambda), (\alpha \in J) \) such that each \(R_{\alpha} \) is finitely generated as a \(\mathbb{Z} \)-algebra and

\[
(A_R, \Lambda) = \lim_{\to J} ((A_{\alpha})_{R_{\alpha}}, \Lambda_{\alpha}).
\]

Furthermore if \(s \in R_0 \), we can assume that \(s \in (R_{\alpha})_0 \), for all \(\alpha \in J \). Thus

\[
(A_R, \Lambda)_\mathfrak{m} = \lim_{\to J} (A_{\alpha}, \Lambda_{\alpha})_\mathfrak{m} = \lim_{\to J} ((A_{\alpha})_\mathfrak{m}, (\Lambda_{\alpha})_\mathfrak{m}).
\]

In particular \((A_R, \Lambda)_\mathfrak{m}\) is quasi-finite.

Reduction Lemma 3.9. Let \((A_R, \Lambda)\) be a form algebra such that \(0 < \delta(A_R, \Lambda) < \infty \). Then there is a multiplicative subset \(S \subseteq R_0 \) such that

\[
\delta((S^{-1}A_R)_{S^{-1}R}, S^{-1}\Lambda) = 0
\]

and for all \(s \in S \), \(\delta((A_R, \Lambda)_\mathfrak{m}) < \delta(A_R, \Lambda) \).

Proof. Let \(X_1 U \cdots U X_r \) be a decomposition of \(Max(R_0) \) into irreducible Noetherian subspaces such that \(\delta(X_i) \leq \delta(A_R, \Lambda) \) for all \(1 \leq i \leq r \) and \(\delta(X_{i_0}) = \delta(A_R, \Lambda) \) for some \(i_0 \). For each \(1 \leq i \leq r \), let \(M_i \subseteq X_i \). Let

\[
S = R_0 - M_1 U \cdots U M_r.
\]

Since \((S^{-1}A_{S^{-1}R}, S^{-1}\Lambda)\) is obviously quasi-finite and \(S^{-1}R_0 \) is semilocal, it follows that

\[
\delta(S^{-1}A_{S^{-1}R}, S^{-1}\Lambda) = \delta(S^{-1}R_0) = 0
\]
By the corollary above, $(A_R, \Lambda)_{(s)}$ is quasi-finite and by [3.4.17], $\delta(\overline{R}_{0(s)}) < \delta(R_0)$. Thus

$$\delta(A_R, \Lambda)_{(s)} = \delta(\overline{R}_{0(s)}) < \delta(R_0) = \delta(A_R, \Lambda). \quad \square$$

We can now make the category $\mathcal{C} = \mathcal{F}_{orm\ algebras}$ into a category with dimension. As structure squares, we take all localization-finite-completion squares

$$\begin{array}{ccc}
(A_R, \Lambda) & \longrightarrow & \left((s)^{-1}A_{(s)}^{-1}R, (s)^{-1}\Lambda \right) \\
\downarrow & & \downarrow \\
(A_R, \Lambda)_{(s)} & \longrightarrow & \left((s)^{-1}(A_R, \Lambda)_{(s)} \right)
\end{array}$$

where $s \in R_0$. If $S \subseteq R_0$ is a multiplicative set, give S a quasi-ordering by defining $s \leq t$ if and only if there is a $u \in S$ such that $su = t$. As infrastructure functors, we take all functors of the kind

$$F : S \to \mathcal{C}, s \mapsto \left((s)^{-1}A_{(s)}^{-1}R, (s)^{-1}\Lambda \right).$$

Clearly $\lim_s F = (S^{-1}A_{S^{-1}R}, S^{-1}\Lambda)$. From the Reduction Lemma above, it follows immediately that $(\mathcal{C}, S(\mathcal{C}), I(\mathcal{C}), \delta)$ is a category with dimension.

Main Theorem 3.10. Let $n \geq 3$. Let G_{2n} denote the general quadratic group functor on $\mathcal{C} = \mathcal{F}_{orm\ algebras}$ and let E_{2n} denote its elementary subgroup. Let $G_{2n} \supseteq G_{2n}^0 \supseteq G_{2n}^1 \supseteq \cdots$ denote the dimension filtration on G_{2n} with respect to E_{2n}. Then this filtration is normal, the quotient functor G_{2n}/G_{2n}^0 is abelian, and the filtration $G_{2n}^0 \supseteq G_{2n}^1 \supseteq \cdots$ is a descending central series such that $G_{2n}^i (A_R, \Lambda) = E_{2n} (A_R, \Lambda)$ whenever $i \geq \delta(A_R, \Lambda)$.

Proof. It suffices to show by Theorem 3.5 that the pair (G_{2n}, E_{2n}) is good on $(\mathcal{C}, S(\mathcal{C}), I(\mathcal{C}), \delta)$. Property (1) for being good is obvious. Property (2) follows from R(1)-R(6) in §2, because $n \geq 3$. We shall prove property (3) next. Property (4) is the subject of the next section.

Suppose $\delta(A_R, \Lambda) = 0$. By definition $\delta(R_0) = 0$. Thus R_0 is semilocal. Since (A_R, Λ) is quasi-finite, it follows that it is a direct limit $\lim_j (A_j, \Lambda_j)$ of a directed system of form subalgebras $(A_j, \Lambda_j) \subseteq (A_R, \Lambda)$ such that each A_j is module finite over R_j, $R_0 \subseteq R_j$ and R_j is finitely generated as an R_0-module. It follows (cf. proof of Lemma 3.7) that A_j is finitely generated as an R_0-module. Thus A_j is semilocal, by [8,II(2.5),2.11]. It follows by Theorem 2.6 that $E_{2n} (A_j, \Lambda_j)$ is normal in $G_{2n} (A_j, \Lambda_j)$ and the quotient $G_{2n} (A_j, \Lambda_j)/E_{2n} (A_j, \Lambda_j)$ is abelian. Taking direct limits, we obtain that the same is true for $G_{2n} (A, \Lambda)$ and $E_{2n} (A, \Lambda). \quad \square$
Section 4. Computation

The goal of this section is to complete the proof of Theorem 3.10 by showing that \((G_{2n}, E_{2n})\) satisfies property (4) in Definition 3.4 of a good pair of group valued functors on a category with dimension. This is achieved in Theorem 4.6 below. Throughout the section it will be assumed that \(n \geq 3\). We follow closely Bak’s method in section 4 of [3], with an obvious complication due to the existence of long and short roots in elementary quadratic groups. In passing, we also prove that \(E_{2n}(A, \Lambda)\) is a normal subgroup of \(G_{2n}(A, \Lambda)\).

The following notation will be used. Suppose \((\mathfrak{I}, \Gamma) \subseteq (A, \Lambda)\) is a form ideal and \(s \in R_0\). Let \(\frac{1}{s}\mathfrak{I}\) (resp. \(\frac{1}{s}\Gamma\)) denote the additive subgroup of \(\langle s \rangle^{-1}A\) (resp. \(\langle s \rangle^{-1}\Gamma\)) consisting of all elements \(\frac{1}{s}a\) such that \(a \in \mathfrak{I}\) (resp. \(a \in \Gamma\)). For any natural number \(N\), let \(E_N(\frac{1}{s}\mathfrak{I}, \frac{1}{s}\Gamma)\) denote the subset of \(G_{2n}(\langle s \rangle^{-1}A, \langle s \rangle^{-1}\Lambda)\) consisting of all products of \(N\) elementary transvections \(T_{ij}(a)\) such that \(a \in \frac{1}{s}\mathfrak{I}\) if \(T_{ij}\) is a short root. If \(t \in R_0\), we let \(E_N(t\mathfrak{I}, t\Gamma)\) denote the subset of \(E_N(\frac{1}{s}\mathfrak{I}, \frac{1}{s}\Gamma)\) consisting all products of \(N\) elementary transvections \(T_{ij}(a)\) such that \(a \in \text{Im}(t\mathfrak{I} \to \langle s \rangle^{-1}\mathfrak{I})\) if \(T_{ij}\) is short and such that \(a \in \lambda^{-\epsilon(i)+1/2}t\Gamma\) if \(T_{ij}\) is long. Note that if the canonical map \(t\mathfrak{I} \to \langle s \rangle^{-1}A\) is injective then \(E_N(t\mathfrak{I}, t\Gamma)\) is identified under the injective map \(G_{2n}(t\mathfrak{I}, t\Gamma) \to G_{2n}(\langle s \rangle^{-1}A, \langle s \rangle^{-1}\Lambda)\) with its preimage in \(G_{2n}(t\mathfrak{I}, t\Gamma)\) consisting of all products of \(N\) elementary transvections \(T_{ij}(a)\) such that \(a \in t\mathfrak{I}\) if \(T_{ij}\) is short and \(a \in \lambda^{-\epsilon(i)+1/2}t\Gamma\) if \(T_{ij}\) is long. We also use the notation \(E(\frac{1}{s}(\mathfrak{I}), \frac{1}{s}(\Gamma))\) for \(\bigcup_N E_N(\frac{1}{s}(\mathfrak{I}), \frac{1}{s}(\Gamma))\).

Lemma 4.1. Let \(s, t \in R_0\). If \(K, L\) and \(m\) are given, there are \(\mathfrak{t}\) and \(M\), e.g. \(\mathfrak{t} = (m+1)4^K + 4^{K-1} + \cdots + 4\) and \(M = 14^K L\), such that

\[
E^K((t/s)A, (t/s)\Lambda) E^L(s^{\mathfrak{t}}tA, s^{\mathfrak{t}}t\Lambda) \subseteq E^M(s^m tA, s^m t\Lambda).
\]

Proof. Once the lemma is proved for \(K = 1, L = 1\), then by an easy induction procedure we can establish the lemma for any pair of \(K\) and \(L\). Therefore we shall first show that

\[
E^1((t/s)A, (t/s)\Lambda) E^1(s^{(m+1)}tA, s^{(m+1)}t\Lambda) \subseteq E^{14}(s^m tA, s^m t\Lambda).
\]

Let \(\rho = T_{(s)}a T_{ij}(b)\). We must show that \(\rho \in E^{14}(s^m tA, s^m t\Lambda)\). The proof breaks into 4 cases depending on the length of the roots \(T_{hk}\) and \(T_{ij}\). It will be seen that
the most complicated situations are when we have either two short roots such that
$T_{hk} = T_{-i,j}$ and $\rho = T_{-i,-j}(a)T_{ij}(b)$ or two long roots such that $T_{h,-h} = T_{-i,i}$ and
$\rho = T_{-i,-j}(a)T_{ij}(b)$.

Case I. T_{hk} and T_{ij} are short roots, namely $h \neq \pm k$ and $i \neq \pm j$. This case is handled by dividing further into 4 subcases: (1) $h \neq j, k \neq i$ (2) $h = j, k \neq i$
(3) $h \neq j, k = i$ (4) $h = j, k = i$. We shall prove (1) and leave it to the reader to reduce cases (2)-(4) to the case (1). Our proof of (1) breaks again into 4 subcases:
(i) $h \neq -i, k \neq -j$ (ii) $h = -i, k \neq -j$ (iii) $h \neq -i, k = -j$ (iv) $h = -i, k = -j$.
Thus consider $\rho = T_{hk}(a)T_{ij}(b)$ where $h \neq \pm k$, $i \neq \pm j$, $h \neq j, k \neq i$ and $a \in (t/s)A$, $b \in s^{(m+1)\frac{4}{\ell}}A$.

(i). In this case $T_{hk}(a)$ commutes with $T_{ij}(b)$. Therefore $\rho = T_{ij}(b)$ and we are done.

(ii). In this case $\rho = T_{hk}(a)T_{-h,j}(b)T_{hk}(-a)$. Two cases can occur. If $k \neq j$ use
(R1) to write $T_{-h,j}(b) = T_{-j,h}(\lambda^{(e(j)-e(h))/2\ell} b)$. By definition, $b = s^{(m+1)\frac{4}{\ell}t}c$ for
some $c \in A$. Since $s, t \in R_0$

$$\lambda^{(e(j)-e(h))/2\ell} = \lambda^{(e(j)-e(h))/2s^{(m+1)\frac{4}{\ell}t}} \in s^{(m+1)\frac{4}{\ell}t}A.$$

To simplify notation, we denote $\lambda^{(e(j)-e(h))/2\ell} b by b$. This done, we have

$$\rho = T_{hk}(a)T_{-j,h}(b)T_{hk}(-a) = T_{-j,h}(b)T_{-j,h}(-b)T_{hk}(a)T_{j,k}(b)T_{hk}(-a)$$

$$= T_{-j,h}(b)T_{j,k}(-ba) \quad \text{(But } a = ta'/s, b = s^{(m+1)\frac{4}{\ell}t}b')$$

$$= T_{-j,h}(s^{(m+1)\frac{4}{\ell}t}b')T_{j,k}(s^{(m+1)\frac{4}{\ell}t^2b'a'}) \in E^2(s^m t A, s^m t A).$$

On the other hand if $k = j$ then

$$\rho = T_{hk}(a)T_{-k,h}(b)T_{hk}(-a) = T_{-k,h}(b)T_{-k,h}(-b)T_{hk}(a)T_{k,k}(b)T_{hk}(-a)$$

$$= T_{-k,h}(b)T_{k,k}(-ba + \lambda^{e(k)} b')$$

$$= T_{-k,h}(s^{(m+1)\frac{4}{\ell}t}b')T_{k,k}(s^{(m+1)\frac{4}{\ell}t^2(-b'a' + \lambda^{e(k)} b'))} \in E^2(s^m t A, s^m t A)$$

for some $a', b' \in A$.

(iii) The argument is similar to that in the previous case and is omitted.

(iv) In this case $\rho = T_{hk}(a)T_{-h,-k}(b)T_{hk}(-a)$. By (R1) we can rewrite ρ as
$T_{hk}(a)T_{kh}(b)T_{hk}(-a)$ where $a = ta'/s, b = s^{(m+1)\frac{4}{\ell}t}b'$. Choose $i \neq \pm h, \pm k$ and set
\[x = s^{(m+1)2} \text{ and } y = s^{(m+1)2}t^2b'. \] Thus \(b = xy \). Now the computation goes as follows,

\[
\begin{align*}
\rho &= T_{hk}(a)T_{kh}(b)T_{hk}(-a) \\
&= T_{hk}(a) \left[T_{ki}(x), T_{th}(y) \right] T_{hk}(-a) \\
&= T_{hk}(a)T_{ki}(x)T_{hk}(-a)T_{ki}(-x)T_{ki}(x)T_{th}(a)T_{ki}(-x)T_{ih}(y)T_{th}(-y)T_{hk}(-a) \\
&\quad \text{(R(3))} \\
&= T_{hi}(ax)T_{ki}(x)T_{th}(y)T_{ih}(-ya)T_{ih}(-y)T_{hk}(a)T_{th}(a)T_{ki}(x) \times \\
&\quad \text{(commutes)} \\
&= T_{hi}(ax)T_{ki}(x)T_{ih}(-ya)T_{th}(a)T_{th}(-ya)T_{ki}(-x)T_{ih}(-ya)T_{th}(-y)T_{hk}(-a) \\
&\quad \text{(R(3))} \\
&= T_{hi}(ax)T_{ki}(x)T_{ih}(-ya)T_{th}(a)T_{th}(-ya)T_{ki}(-x)T_{ih}(-ya)T_{th}(-y)T_{hk}(-a) \times \\
&\quad \text{(R(3))} \\
&= T_{ih}(-ya)T_{ih}(ya).
\end{align*}
\]

Clearly \(-ya = -s^{(m+1)2}t^2b'a'\). Let \(c = -s^m t \) and \(d = s^{m+1}t^2b'a' \). Therefore \(-ya = cd\). Thus,

\[
T_1 = T_{ki}(x) \left[T_{th}(c), T_{hk}(d) \right] T_{ki}(-x) = \left[T_{kh}(xc)T_{th}(c), T_{hk}(d)T_{ki}(-dx) \right],
\]

and

\[
T_2 = T_{ki}(x)T_{ih}(ya)T_{th}(-dx) = \left[T_{ih}(xyT_{th}(ya), T_{th}(-ax) \right].
\]

A quick inspection shows that \(ax, xc, c, d, dx, xy, ya \in s^m t A \). Therefore,

\[
\rho = T_{hi}(ax) \underbrace{T_1}_{\text{3 terms}} \underbrace{T_2}_{\text{3 terms}} \underbrace{T_{ih}(-ya)T_{ih}(ya)}_{\text{2 terms}} \in E^{14}(s^m t A, s^m t A).
\]

Case II. \(T_{hk} \) is a long root and \(T_{ij} \) a short one. Thus \(k = -h \) and \(a \in \lambda^{-((h+1)/2)}(t/s)A \) whereas \(i \neq \pm j \) and \(b \in s^{(m+1)4}t A \). This case is handled by dividing further into 3 possible subcases: (1) \(j \neq h, i \neq -h \) (2) \(j = h, i \neq -h \) (3) \(j \neq h, i = -h \).

(1) By R(3), \(T_{h,-h}(a) \) commutes with \(T_{ij}(b) \). Therefore \(\rho = T_{ij}(b) \) and we are done.
(2) We have

\[
\rho = T_{h,-h}(a)T_{ih}(b)T_{h,-h}(-a) \\
= T_{ih}(b)T_{ih}(-b)T_{h,-h}(a)T_{ih}(b)T_{h,-h}(-a) \\
\xrightarrow{R(\theta)} \\
= T_{ih}(b)T_{h,-h}(-ba)T_{h,-i}(\lambda^{(\varepsilon(h)-\varepsilon(i))/2}ba) \in E^3(s^m t \Lambda, s^m t \Lambda).
\]

(3) This case is similar to the above argument in (2).

Case III. \(T_{hh} \) and \(T_{ij} \) are long roots. Thus \(h = -k, i = -j \) and \(a \in \lambda^{-\frac{(\varepsilon(j)+1)}{2}} s^m \Lambda, \ b \in \lambda^{-\frac{(\varepsilon(i)+1)}{2}} s^{(m+1)} t \Lambda \). Suppose \(h \neq -i \). Then \(T_{h,-i} \) commutes with \(T_{h,-h} \) and we are done. The only case which remains is when \(h = -i \), i.e. \(\rho = T_{h,-h}(a)T_{-h,h}(b)T_{h,-h}(-a) \) where \(a \in \lambda^{-\frac{(\varepsilon(j)+1)}{2}} s^m \Lambda \) and \(b \in \lambda^{-\frac{(\varepsilon(-h)+1)}{2}} s^{(m+1)} t \Lambda \). Choose \(p \neq \pm h \) such that \(p < 0 \). Let \(c = s^{(m+1)} \) and \(d = s^{(m+1)2} \mu \), where \(b' \in \Lambda \) and therefore \(d \in s^m t \Lambda \). Since \(s \in R_0, c = \overline{c} \). Set \(\mu = \lambda^{-\frac{(\varepsilon(-h)+1)}{2}} \). For a suitable \(b', b = \mu cd \overline{c} \). By \(R(\theta) \), we can write \(T_{-h,h}(pcd \overline{c}) = T_{ph}(-\mu cd)[T_{-p}(d), T_{-p,h}(c)] \). Thus
\[
\rho = T_{h,-h}(a) T_{p,h}(-\mu c d) [T_{p,-p}(d), T_{-p,h}(c)] T_{h,-h}(-a)
\]

\[
= T_{h,-h}(a) T_{p,h}(-\mu c d) T_{h,-h}(-a) T_{p,h}(\mu c d) T_{p,-p}(d) T_{p,h}(c) T_{h,-h}(a) \\
\]

\[
\begin{align*}
&= T_{h,-p}(\lambda^{(\varepsilon(h) - \varepsilon(p))/2} \mu c d) T_{p,-p}(c d a c d) T_{p,h}(-\mu c d) T_{h,-h}(a) T_{p,-p}(d) T_{-p,h}(c) \\
&\quad \text{commutes} \\
&= T_{h,-h}(a) T_{p,-p}(-a) T_{-p,h}(c) T_{h,-h}(c) \\
&\quad \text{commutes} \\
&= T_{1} T_{p,-p}(d) T_{h,-h}(a) T_{-p,h}(c) T_{h,-h}(-a) T_{p,-p}(d) T_{-p,h}(c) T_{h,-h}(a) \\
&\quad \text{commutes} \\
&= T_{1} T_{2} T_{p,-p}(d) T_{p,h}(c) T_{h,-h}(c) T_{p,-p}(d) T_{-p,h}(-c) T_{h,-h}(c) T_{p,-p}(d) T_{-p,h}(c) T_{h,-h}(c) \\
&\quad \text{commutes} \\
&= T_{1} T_{2} T_{3} T_{p,-p}(d) T_{p,h}(d c) T_{h,-h}(-\lambda^{-(\varepsilon(h) + 1)/2} c d c) T_{3} \in E^{11} (s^{m} t A, s^{m} t A).
\]

Case IV. \(T_{h,k}\) is a short root and \(T_{i,j}\) is a long one. All the possibilities which may occur here reduce to the one of the cases above.

Therefore we have shown that

\[
E^{1}((t/s) A, (t/s) A) E^{1}(s^{m+1} t A, s^{m+1} t A) \subseteq E^{14} (s^{m} t A, s^{m} t A).
\]

Now suppose that \(K > 0\) and \(L > 0\). Since

\[
E^{K} ((t/s) A, (t/s) A) E^{L} (s^{m+1} t A, s^{m+1} t A)
\]

is the set of all products of \(L\) or fewer elements of

\[
E^{K} ((t/s) A, (t/s) A) E^{1} (s^{m+1} t A, s^{m+1} t A),
\]
we will be done if we can prove the assertion of the lemma for arbitrary K and $L = 1$. We proceed by induction on K. The case $K = 1$ is proved above. Let $K > 1$. We shall show that

$$E^K((t/s)A, (t/s)A) E^1(e^{(m+1)4K-1+4K-2+\ldots+4}) tA, s^{(m+1)4K-1+4K-2+\ldots+4}) tA) \subseteq E^{K-1}(s^{(m+1)4K-1+4K-2+\ldots+4}) tA, s^{(m+1)4K-1+4K-2+\ldots+4}) tA).$$

To prove this, it suffices to show that $E^1((t/s)A, (t/s)A) E^1(e^{(m+1)4K-1+4K-2+\ldots+4}) tA, s^{(m+1)4K-1+4K-2+\ldots+4}) tA) \subseteq E(s^m tA, s^m tA)$, where $m' = (m+1)4K-1+4K-2+\ldots+4$. But this is just a special case of the first step of the induction which we have already proved. Therefore the proof is complete. □

If U and V are subsets of a group, let $[u, v]$ denote the set of all commutators $[u, v]$ such that $u \in U$ and $v \in V$.

Lemma 4.2. Let $s, t \in R_0$. If $K \geq 1$ and $t \geq 0$, let $E^K(t^i/sA, t^i/sA)$ denote the subset of $G_2_n((st)^{-1}, (st)^{-1}A)$ consisting of all products of K or fewer elementary translations $T_{ij}(a)$ such that $a \in t^i/sA(\subseteq (st)^{-1}A)$ if T_{ij} is short and $a \in \lambda^{-(e(i)+1)/2} t^i/sA(\subseteq (st)^{-1}A)$ if T_{ij} is long. If $L \geq 1$ and $t \geq 0$, define $E^L(s^j/tA, s^j/tA)$ similarly. If $M \geq 1$ and $p, q \geq 0$, let $E^M(s^p t^q A, s^p t^q A)$ denote the subset of $G_2_n((st)^{-1}A, (st)^{-1}A)$ consisting of all products of M or fewer elementary translations $T_{ij}(a)$ such that $a \in s^p t^q A(\subseteq (st)^{-1}A)$ if T_{ij} is short and $a \in \lambda^{-(e(i)+1)/2} s^p t^q A(\subseteq (st)^{-1}A)$ if T_{ij} is long. If K, L, p and q are given, there are k, l and M, e.g. $k = (p+1)4K+2 + 4K+1 + \ldots + 4, l = (q+1)4L+2 + 4L+1 + \ldots + 4$, and $M = 14^{K+L+3} K L$, such that

$$E^K\left(\frac{t^i}{s} A, s^\frac{t^i}{s} A\right), E^L\left(\frac{s^j}{t} A, s^\frac{s^j}{t} A\right) \subseteq E^M(s^p t^q A, s^p t^q A).$$

Proof. If U is a subset of a group and N a nonnegative integer, let $Prod^N(U)$ denote the set of all products of N or fewer elements of U. Using commutator formulas, it is easy to see that

$$(4.2.1) \quad [Prod^K(U_1), Prod^L(U_2)] \subseteq [Prod^K(U_1) Prod^L(U_2)] U_1, U_2 \right].$$

Let $U_1 = E^1(t^i/s^j A, t^i/s^j A)$ and $U_2 = E^1(s^j/t^i A, s^j/t^i A)$. Since $E^K(t^i/s^j A, t^i/s^j A) = Prod^K(U_1)$ and $E^L(s^j/t^i A, s^j/t^i A) = Prod^L(U_2)$, it follows from (4.2.1) that

$$[E^K(t^i/s^j A, t^i/s^j A), E^L(s^j/t^i A, s^j/t^i A)] \subseteq [Prod^K(U_1) Prod^L(U_2)] U_1, U_2 \right].$$
By Lemma 4.1, it suffices to show that

\[
(4.2.2) \quad \left[E^1 \left(\frac{t}{s} A, \frac{t}{s} A \right), E^1 \left(\frac{s}{t} A, \frac{s}{t} A \right) \right] \subseteq E^1^{14^5} \left(s^q t^q A, s^q t^q A \right),
\]

where \(p' = (p + 1)4^{K-1} + 4^{K-2} + \cdots + 4 \) and \(q' = (q + 1)4^{L-1} + 4^{L-2} + \cdots + 4 \). Let \(\rho = [T_{hh}((t/s)a), T_{ij}((s^j/t)b)] \). The proof breaks into 4 cases depending on the length of the roots \(T_{hh} \) and \(T_{ij} \).

Case I. \(T_{hh} \) and \(T_{ij} \) are short roots, namely \(h \neq \pm k \) and \(i \neq \pm j \). This case is handled by dividing further into 4 subcases: (1) \(h \neq j, k \neq i \) (2) \(h = j, k \neq i \) (3) \(h \neq j, k = i \) (4) \(h = j, k = i \). We shall prove (1) and leave it to the reader to reduce cases (2)-(4) to the case (1). Our proof of (1) breaks again into 4 subcases: (i) \(h \neq -i, k \neq -j \) (ii) \(h = -i, k \neq -j \) (iii) \(h \neq -i, k = -j \) (iv) \(h = -i, k = -j \).

(i) By R(1), \(T_{hh}((t/s)a) \) commutes with \(T_{ij}((s^j/t)b) \) and therefore \(\rho = 1 \). Thus we are done.

(ii) In this case \(\rho = [T_{hh}((t/s)a), T_{-hj}((s^j/t)b)] \). Two cases can occur. If \(k \neq j \) then use R(1) to write

\[
T_{hh}((t/s)a) = T_{-k,-h}(\lambda^{(e(k) - e(h))/2}(t/s)a).
\]

Set \(a' = \lambda^{(e(k) - e(h))/2}a \). Then

\[
\rho = [T_{-k,-h}((t/s)a'), T_{-hj}((s^j/t)b)] = \text{ (by R(4)) } T_{-k,j}(t^{-1} s^{-1} a'b).
\]

If \(k = j \) then we obtain

\[
\rho = [T_{-k,-h}((t/s)a'), T_{-hk}((s^j/t)b)] = T_{-k,h}((t^{-1} s^{-1} a'b - \lambda^{(e(k) - e(h))/2}a'))
\]

(iii) This case is similar to what we have just shown.

(iv) In this case \(\rho = [T_{hh}((t/s)a), T_{-h,-k}((s^j/t)b)] \). Choose \(p \neq \pm h, \pm k \). Write \(T_{-h,-k}((s^j/t)b) = T_{kh}((s^j/t)b') \) where \(b' = \lambda^{(e(-k) - e(-h))/2}b \). Then

\[
\rho = [T_{kh}((t/s)a), T_{kh}((s^j/t)b')]
\]

\[
= [T_{kh}((t/s)a), T_{kh}(s^{j/2}/t)b'], T_{ph}(s^{j/2})].
\]

Using the commutator formula \([x, y, z] = [x, y]^y[x, z]^{yz}[x, y^{-1}]^{y^{-1}z^{-1}}[x, z^{-1}] \), we have

\[
\rho = [T_{kh}((t/s)a), T_{kh}(s^{j/2}/t)b'], T_{ph}(s^{j/2})]
\]

\[
= [T_{kh}((t/s)a), T_{kh}(s^{j/2}/t)b'] \times
\]

\[
T_{kh}(s^{j/2}/t)b'T_{ph}(s^{j/2})[T_{kh}((t/s)a), T_{kh}(s^{j/2}/t)b'] \times
\]

\[
T_{kh}(s^{j/2}/t)b'T_{ph}(s^{j/2})[T_{kh}(-s^{j/2}/t)b'], T_{ph}(-s^{j/2})].
\]
Applying R(4) repeatedly, we obtain
\[
\rho = T_{hp}(t^{l_1-1}s^{l_2/2-1}a b') \times \left(E(s\tilde{t}^{q'} A, s\tilde{t}^{q'} A) \right)
\]
\[
T_{kp}((s^{l_1/2}t^{l_2/2})^{-1})T_{pk}(t^{l_1-1}s^{l_2/2-1}a b') \times \left(\text{by Lemma 4.1 } \in E^{14}(s\tilde{t}^{q'} A, s\tilde{t}^{q'} A) \right)
\]
\[
T_{kp}((s^{l_1/2}t^{l_2/2})^{-1})T_{ph}(-t^{l_1-1}s^{l_2/2-1}a b') \times \left(\text{by L. 4.1 } \in E^{14}(s\tilde{t}^{q'} A, s\tilde{t}^{q'} A) \right)
\]
\[
T_{kp}((s^{l_1/2}t^{l_2/2})^{-1})T_{ph}(-s^{l_1/2}t^{l_2/2})T_{pk}(-t^{l_1-1}s^{l_2/2-1}a') \times \left(\text{by L. 4.1 } \in E^{14}(s\tilde{t}^{q'} A, s\tilde{t}^{q'} A) \right).
\]
Therefore \(\rho \in E^{14}(s\tilde{t}^{q'} A, s\tilde{t}^{q'} A) \).

Case II. \(T_{h} \) is long and \(T_{ij} \) is short. Thus \(\rho = [T_{h,-h}((t^i/s)a), T_{ij}((s^j/t)b)] \)
where \(i \neq \pm j, a \in \lambda^{-(\varepsilon(h)+1)/2} \) and \(b \in A. \) This case is handled by dividing further into 3 possible subcases: (1) \(j \neq h, i \neq -h \) (2) \(j = h, i \neq -h \) (3) \(j \neq h, i = -h. \)

(1) In this case \(\rho = 1 \) and we are done.
(2) In this case
\[
\rho = [T_{h,-h}((t^i/s)a), T_{i,-i}((s^j/t)b)] \]
\[
= [T_{h,-h}((t^i/s)a), T_{-i,-i}((s^j/t)b)] \text{ where } b' = \lambda^{(\varepsilon(h)-\varepsilon(i))/2}T_{b'}
\]
\[
= (\text{by R(6)}) T_{-i,-i}(-t^{l_1-1}s^{l_2/2-1}a b) T_{-i,-i}(-\mu_1 s^{l_2-1}t^{l_2-2}y'a b) \in E^2(s\tilde{t}^{q'} A, s\tilde{t}^{q'} A)
\]
where \(\mu_1 = \lambda^{(\varepsilon(-i)-\varepsilon(-h))/2}. \)
(3) Here the argument is the same as in the previous case.

Case III. \(T_{h} \) and \(T_{ij} \) are long roots. Thus \(\rho = [T_{h,-h}((t^i/s)a), T_{i,-i}((s^j/t)b)]. \)
If \(h \neq -i \) then \(\rho = 1 \) and we are done. The only case which remains is when \(h = -i. \) Then
\[
\rho = [T_{h,-h}((t^i/s)a), T_{-h,h}((s^j/t)b)]
\]
where \(a \in \lambda^{-(\varepsilon(h)+1)/2} \) and \(b \in \lambda^{-(\varepsilon(h)+1)/2} A. \) Choose \(p \neq \pm h. \) By R(6), we can decompose
\[
T_{-h,h}((s^j/t)b) = T_{ph} \left(-((s^{l_2/2}/t)b(s^{l_2/4}) \right) T_{p,-p}(\mu(s^{l_2/2}/t)b), T_{-p,h}(s^{l_4/4})
\]
where \(\mu = \lambda^{(\varepsilon(h)-\varepsilon(p))}/2. \) Therefore
\[
\rho = [T_{h,-h}((t^i/s)a), T_{ph} \left(-((s^{l_2/2}/t)b(s^{l_2/4}) \right) T_{p,-p}(\mu(s^{l_2/2}/t)b), T_{-p,h}(s^{l_4/4})].
\]
Now using the commutator formula
\[
[x, \mu[y, z]] = [x, \mu][x, y]^{\mu} [x, z]^{\mu y z} [x, y^{-1}]^{\mu y z^{-1}} [x, z^{-1}].
\]
we have

\[
\rho = T_{h,-p}(t^{(-1} s^{3/4-1} \mu_1 a) T_{p,-p}(t^{(-2} s^{8/4-1} b \overline{a})) \times \\
T_{p,h}(s^{3/4} t^b) T_{p,-p}(s^{(s^2/2)} t^b) \left(T_{h,p}(t^{(s^8/4-1} \mu_2 a) T_{-p,p}(\mu_2 s^{8/2-1} t^a) \right) \times \\
T_{p,h}(s^{3/4} t^b) T_{p,-p}(s^{(s^2/2)} t^b) T_{p,h}(s^{(s^4/4)} t^b) T_{p,-p}(-s^{(s^2/2)} t^b) \left(T_{h,p}(t^{(s^8/4-1} \mu_2 a) \times \\
T_{-p,p}(-\mu_2 s^{8/2-1} t^a) \right)
\]

where \(\mu_1 = \lambda(\varepsilon(h) - \varepsilon(p))/2 \) and \(\mu_2 = \lambda(\varepsilon(h) - \varepsilon(-p))/2 \).

Now the same argument as in the case II, shows that \(\rho \in E_1^{145}(s^p t^q A, s^p t^q \Lambda) \).

Case IV \(T_{h,k} \) is short and \(T_{ij} \) is long. This case is handled in the same spirit as the others above. \(\square \)

Lemma 4.3. Let \((A_R, \Lambda) \) be a quasi-finite form algebra. Let \((s^mA, s^m\Lambda) \) be the subgroup of \((s^{-1} A, s^{-1} \Lambda) \). Let \(^{\mu}G''(s^p A, s^p \Lambda) \) denote the image of \(G_{2n}(s^p A, s^p \Lambda) \) in \(G_{2n}(s^{-1} A, s^{-1} \Lambda) \). Given \(K \) and \(m \), there is a \(t \), e.g., \(t = 9((m+1)4^K+3 + 4^{K+2} + \cdots + 4) \), such that

\[
E^K \left(\frac{1}{s}, \frac{1}{s} \right), ^{\mu}G''(s^p A, s^p \Lambda) \subseteq E(s^mA, s^m\Lambda).
\]

Proof. Since \((A_R, \Lambda) \) is quasi-finite, the proof reduces to the case \(A \) is module finite over \(R \) and \(R \) is finitely generated as a \(\mathbb{Z} \)-algebra. This implies (cf. proof of 3.7) that \(A \) is module finite over \(R_0 \) and \(R_0 \) is also finitely generated as a \(\mathbb{Z} \)-algebra. In particular \(A \) is a Noetherian \(R_0 \)-module. We shall show that

\[
E^1 \left(\frac{1}{s}, \frac{1}{s} \right), ^{\mu}G''(s^p A, s^p \Lambda) \subseteq E(s^mA, s^m\Lambda)
\]

where \(m' = (m+1)4^K-1 + 4^{K-2} + \cdots + 4 \). The conclusion of the lemma follows from this result, the commutator formulas \(\text{C(1)} \) and \(\text{C(2)} \) of the introduction, and Lemma 4.1.

Let \(T_{ij}(a/s) \in E^1(1/s A, 1/s \Lambda) \) and \(^{\sigma''}G''(s^p A, s^p \Lambda) \). We do not treat the short and long roots separately. We use the standard localization-patching method to prove our result. We shall show that for any maximal ideal \(\mathfrak{M} \) of \(R_0 \), there is an element \(t \in R_0 - \mathfrak{M} \) and a nonnegative integer \(l \) such that for any \(a \in A \),

\[
(4.3.1) \quad T_{ij}(1/s a), ^{\sigma''}G''(s^{(m'+1)4} A, s^{(m'+1)4} \Lambda).
\]

Suppose this is done. Since the set \(\{ t_{\mathfrak{M}} \mid \mathfrak{M} \in Max(R_0) \} \) is not contained in any maximal ideal of \(R_0 \), there is a finite set \(\{ t_{\mathfrak{M}_1}, \ldots, t_{\mathfrak{M}_r} \} \) such that the ideal
\langle t_{m_1}^{l_1}, \ldots, t_{m_r}^{l_r} \rangle \) is the whole ring \(R_0 \). Choose \(x_1, \ldots, x_r \in R_0 \) such that \(x_1 t_{m_1}^{l_1} + \cdots + x_r t_{m_r}^{l_r} = 1 \). Then

\[
[T_{ij}(\frac{a}{s},)^{'''''} \sigma^{'''''}] = \left[T_{ij}(\frac{t_{m_1}^{l_1} x_1 a}{s}) \cdots T_{ij}(\frac{t_{m_r}^{l_r} x_r a}{s}),^{'''''} \sigma^{'''''} \right] \\
(\text{by (4.3.1)} \) and C(2) \(E^1((1/s)A,(1/s)\Lambda)E(s^{(m'+1)4}A,s^{(m'+1)4}\Lambda) \subseteq \)

(by Lemma 4.1) \(\subseteq E(s^{m'}A,s^{m'}\Lambda). \)

This finishes the proof.

It remains to prove (4.3.1). Let \(\mathfrak{M} \) be a maximal ideal of \(R_0 \). Then \(A_{\mathfrak{M}} \) is a semilocal ring. By Theorem 2.6 (cf. also [10, 9.1.4]) and Corollary 2.4 we have

\[
(4.3.2) \quad G_{2n}(s^A_{\mathfrak{M}}, s^\Lambda_{\mathfrak{M}}) \subseteq F_{2n}(s^{t/3}A_{\mathfrak{M}}, s^{t/3}\Lambda_{\mathfrak{M}})G_2(s^A_{\mathfrak{M}}, s^\Lambda_{\mathfrak{M}}).
\]

Therefore the image of \(\sigma \) in \(A_{\mathfrak{M}} \) can be decomposed as a product of elements of \(G_{2n}(s^A_{\mathfrak{M}}, s^\Lambda_{\mathfrak{M}}) \) and \(F_{2n}(s^{t/3}A_{\mathfrak{M}}, s^{t/3}\Lambda_{\mathfrak{M}}) \). Thus we can find an element \(t \in R_0 - \mathfrak{M} \) such that over \(\langle (t)^{-1}A,(t)^{-1}\Lambda \rangle \), \(\sigma \) can be factored as \(\xi \delta \), where \(\delta \in G_2(s^{t/3}(t)^{-1}A,s^{t/3}(t)^{-1}\Lambda) \) and \(\xi \in F_{2n}(s^{t/3}(t)^{-1}A,s^{t/3}(t)^{-1}\Lambda) \). By Lemma 2.7, there is a \(q \) such that the canonical homomorphism

\[
(4.3.3) \quad G_{2n}\left(t^q(s)^{-1}A,t^q(s)^{-1}\Lambda \right) \xrightarrow{\text{inj}} G_{2n}\left((st)^{-1}A,(st)^{-1}\Lambda \right)
\]

is injective. Let \(I > q \). Since \(T_{ij}(t^q a/s) \in G_{2n}\left(t^q(s)^{-1}A,t^q(s)^{-1}\Lambda \right) \), we have by Theorem 2.1 that

\[\rho = [T_{ij}(t^q a/s),^{'''''} \sigma^{'''''}] \in G_{2n}\left(t^q(s)^{-1}A,t^q(s)^{-1}\Lambda \right). \]

Let \(\overline{\rho} \) denote the image of \(\rho \) in \(G_{2n}\left((st)^{-1}A,(st)^{-1}\Lambda \right) \). If we can show that

\[\overline{\rho} \in E(s^q t^A,s^q t^\Lambda) \]

where \(p = (m'+1)4 \) then because of the injectivity of the map in (4.3.3) we obtain that

\[\rho \in E(s^p t^A,s^p t^\Lambda). \]

Let \(T_{ij}(t^q a/s), \sigma, \delta \) and \(\xi \) denote respectively the images of \(T_{ij}(t^q a/s),\sigma,\delta \) and \(\xi \) in \(G_{2n}\left((st)^{-1}A,(st)^{-1}\Lambda \right) \). Then

\[\overline{\rho} = [T_{ij}(\frac{t^q a}{s}), \overline{\sigma}] = [T_{ij}(\frac{t^q a}{s}), \overline{\xi} \delta] = (\text{by C(1))} = [T_{ij}(\frac{t^q a}{s}), \overline{\xi}]^* [T_{ij}(\frac{t^q a}{s}), \overline{\delta}] \]
If \(\{ \pm i, \pm j \} \cap \{ \pm 1 \} = \emptyset \) then \(|T_{ij}(\frac{t^i}{s}, \zeta)| = 1 \). If \(\{ \pm i, \pm j \} \cap \{ \pm 1 \} \neq \emptyset \) then we choose \(k \notin \{ \pm i, \pm j \} \) and change the embedding of \(G_2 \) in \(G_{2n} \) to that corresponding to \(\{ \pm k \} \), without sacrificing the validity of Corollary 2.4, Theorem 2.6 and (4.3.2). This done, we obtain again that \(|T_{ij}(\frac{t^i}{s}, \zeta)| = 1 \). Thus, in either case, we achieve that \(\varphi = |T_{ij}(\frac{t^i}{s}, \zeta)| \).

Since \(\tilde{\zeta} \in E(\frac{s^{i/3}A}{s^{i/3}}, \frac{s^{i/3}}{s}) < (p + 1)4^3 + 4^2 + 4 \) and \(K = 1 \), it follows from Lemma 4.2 that there is a \(1 \) such that \(|T_{ij}(t^i/s, \tilde{\zeta})| \in E(s^p t^4 A, sp^4 A) \). This completes the proof. \(\Box \)

If \(s = 1 \) then the above lemma implies the result of Bak-Vavilov [4,5], that \(E_{2n}(A, \Lambda) \) is a normal subgroup of \(G_{2n}(A, \Lambda) \) when \(n \geq 3 \).

Theorem 4.4. Let \((A_R, \Lambda) \) be a quasi-finite form algebra. Then \(E_{2n}(A, \Lambda) \) is a normal subgroup of \(G_{2n}(A, \Lambda) \). \(\Box \)

Definition 4.5. Let \((A_R, \Lambda) \) be a quasi-finite form algebra. Let \(s \in R_0 \). Define

\[
G(s^{-1}, A) = \text{Ker} \left(G_{2n}(A, \Lambda) \rightarrow G_{2n}(\langle s \rangle^{-1} A, \langle s \rangle^{-1} \Lambda) / E_{2n}(\langle s \rangle^{-1} A, \langle s \rangle^{-1} \Lambda) \right),
\]

and

\[
G(s, A) = \text{Ker} \left(G_{2n}(A, \Lambda) \rightarrow G_{2n}(A_R, \Lambda)_{\langle s \rangle} / E_{2n}(A_R, \Lambda)_{\langle s \rangle} \right).
\]

Theorem 4.6. Let \((A_R, \Lambda) \) be a quasi-finite form algebra. Then

\[
[G(s^{-1}, A), G(s, A)] \subseteq E_{2n}(A, \Lambda).
\]

Proof. As in Lemma 4.3, the proof reduces to the case \(A \) is module finite over \(R_0 \) and \(R_0 \) is Noetherian. We first show that

\[
E_{2n}(\langle s \rangle^{-1} A, \langle s \rangle^{-1} \Lambda) = \bigcup_{K \geq 0} E^K \left(\frac{1}{s} A, \frac{1}{s} \Lambda \right).
\]

Let \(m > 1 \) and \(T_{ij}(a/s^m) \in E_{2n}(\langle s \rangle^{-1} A, \langle s \rangle^{-1} \Lambda) \). Suppose first that \(T_{ij} \) is a short root, namely \(i \neq \pm j \). Choose \(h \neq \pm i, \pm j \). By R(4), we have that

\[
T_{ij}(\frac{a}{s^m}) = \left[T_{ih}(\frac{a}{s^{-m-1}}), T_{jh}(\frac{1}{s}) \right].
\]

By induction on \(m \), we conclude that there is a \(K \) such that \(T_{ij}(\frac{a}{s^m}) \in E^K \left(\frac{1}{s} A, \frac{1}{s} \Lambda \right) \). Suppose now that \(T_{ij} = T_{i,-i} \) is a long root. If \(m \) is odd, decompose \(\frac{a}{s^m} =
\[\frac{1}{s^{m-1/2}} g \frac{1}{s^{m-1/2}} \] and if \(m \) is even then decompose \(\frac{a}{s^m} = \frac{1}{s^{m/2}} g \frac{1}{s^{m/2}} \). Suppose \(m \) is odd. Then by R(6), we have

\[
T_{i,-i}(\frac{a}{s^m}) = T_{j,i}(\frac{a}{s^{m+1/2}}) \left[T_{j,-j}(\frac{a}{s^{m-1/2}}), T_{-j,i}(\frac{1}{s^m}) \right],
\]

where \(j \neq \pm i \). Suppose \(m \) is even. Then by R(6), we have

\[
T_{i,-i}(\frac{a}{s^m}) = T_{j,i}(\frac{a}{s^{m/2}}) \left[T_{j,-j}(\frac{a}{1}), T_{-j,i}(\frac{1}{s^m}) \right].
\]

Since the short roots are in

\[
\bigcup_{K \geq 0} E^K((1/s)A, (1/s)\Lambda),
\]

we conclude that there is a \(K \) such that \(T_{i,-i}(\frac{a}{s^m}) \in E^K((1/s)A, (1/s)\Lambda) \). This completes the proof of (4.6.1).

By Lemma 2.7 there is an \(m \) such that the canonical homomorphism,

\[
\psi : G_{2n}(s^mA, s^m\Lambda) \rightarrow G_{2n}(\langle s \rangle^{-1}A, \langle s \rangle^{-1}\Lambda)
\]
is injective. Since \(A \) is module finite over \(R_0 \) and \(R_0 \) is Noetherian, the Artin-Rees Lemma [1,10.10] tells us that given an integer \(n \geq 0 \), there is an integer \(l \geq 0 \) such that

\[s^{l+n} A \cap \Lambda \subseteq s^n \Lambda. \]

Let \(\sigma \in G(s^{-1}, A) \) and \(\rho \in G(s, A) \). We must show that \([\sigma, \rho] \in E_{2n}(A, \Lambda)\). Choose \(K \) such that \(\psi'' \sigma'' \in E^K((1/s)A, (1/s)\Lambda) \). Let \(t = 9(m + 1)4^K + 4^{K+2} + \cdots + 4 \) (see Lemma 4.3) and choose \(p = t + l \). Using the Artin-Rees Lemma

(4.6.2)

\[G_{2n}(s^mA, s^pA \cap \Lambda) \subseteq G_{2n}(s^pA, s^p\Lambda). \]

Let

\[
\theta : G_{2n}(A, \Lambda) \rightarrow G_{2n}(\frac{A}{s^pA \cap \Lambda}, \frac{\Lambda}{s^pA \cap \Lambda})
\]
denote the canonical map. Thus \(K\ker \theta = G_{2n}(s^pA, s^pA \cap \Lambda) \). Since \(\theta(\rho) \in E_{2n}(\frac{A}{s^pA \cap \Lambda}) \), there is an element \(\xi^{-1} \in E_{2n}(A, \Lambda) \) such that \(\theta(\xi^{-1}) = \theta(\rho) \).

This and (4.6.2) imply that \(\rho' \in G_{2n}(s^pA, s^p\Lambda) \). By Theorem 4.4, \(E_{2n}(A, \Lambda) \) is a normal subgroup of \(G_{2n}(A, \Lambda) \). Thus by C(1), \([\sigma, \rho] \in E_{2n}(A, \Lambda)\) if and only if \([\sigma, \rho'] \in E_{2n}(A, \Lambda)\). Because \(G_{2n}(s^mA, s^m\Lambda) \) is normal in \(G_{2n}(A, \Lambda) \), it follows that \([\sigma, \rho'] \in E_{2n}(s^mA, s^m\Lambda)\). Since the image \(\psi'' \sigma'' \) of \(\sigma \) is in \(E^K((1/s)A, (1/s)\Lambda) \) and the image \(\psi'' \rho'' \) of \(\rho' \) is in \(E^K((1/s)A, (1/s)\Lambda) \), it follows from Lemma 4.3 that

\[
[\sigma, \rho'] \in E(s^mA, s^m\Lambda).
\]

Since \(\psi \) is injective and takes \(F_{2n}(s^mA, s^m\Lambda) \) bijectively onto \(E(s^mA, s^m\Lambda) \), it follows that

\[
[\sigma, \rho'] \in F_{2n}(s^mA, s^m\Lambda) \subseteq E_{2n}(A, \Lambda),
\]

and the proof is complete. \(\square \)
References

11. A. Mundkur, Dimension theory and nonstable K_1, Algebras and Representation Theory (to appear).