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Chapter 1

In tro duction

1.1 Hot and dense strongly interacting matter

The exploration and prediction of the behavior of nuclear matter under ex-
treme conditions is presumably one of the most challenging problems in
particle physicstoday.

At moderate temperatures the strong interaction con nes the quarks and
gluons to form hadrons. Howewer, at temperatures of the order of 102K
hadronic matter dissolvesinto a quark-gluon plasma(QGP), in which quarks
and gluons do no longer exist as colorlessbound states only. At asymptoti-
cally large temperaturesthey can be consideredas a weakly interacting gas.
On the experimental side the formation of a QGP can be accomplishedin
the collision of heavy nuclei. It is expected that a thermally equilibrated
plasma is formed after the collision, before hadronization setsin. Basing
on the AGS and SPS experiments heavy ion collisions are currently under
investigation with the relativistic heavy ion collider (RHIC) at BNL and will
in future be studied with the large hadron collider (LHC) at CERN [1, 2, 3].
Furthermore a QGP existed in the early universe,a few microsecondsafter
the big bang and it may also exist at lower temperatures but higher quark
densitiesin the interior of compact stars.

In an experimental scenariolike heavy ion collisionsthere is not only a nite
temperature T, but there is also a nite baryon chemical potential | (or
quark chemical potential = ,=3) which is provoked through the presence
of the heavy nu%ei. For examplein an Au  Au collision at RHIC with an
CMS-energyof =~ s = 130GeV the hadronic freeze-outoccurs at a baryon
chemical potential of , 45M eV [4]. This is much smaller than the cor-
responding freeze-outtemperature of Tireeze 170M eV [5, 6] and hence
=T << 1.

With increasingbeamenergythe transition temperature aswell asthe freeze
out temperature increasesand the corresponding baryon chemical potential
decreases. Fig. 1.1 shows a qualitativ e sketch of the corresponding QCD
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Figure 1.1: Qualitativ e picture of the phasediagram of QCD.

phase diagram. The 1st order phase transition line (red) endsin a 2nd
order phasetransition point at a positive value of . For smaller or vanish-
ing baryon chemical potentials the transition betweenhadron gasand QGP
is only a crosswer (dashedred line). At = 0 the transition tempera-
ture of 2- avor cortinuum QCD in the chiral limit can be calculated to be
Tc 170 190MeV [7, 8, 9], where typical errors are of the order of 10%
of the value.

The other phasesof QCD like ordinary nuclear matter or color supercon-
ducting phaseswill not be discussedin this work.

1.2 Thermo dynamics and screening

In this work we examine someof the fundamental properties of strongly in-
teracting matter at nite temperature and small baryon chemical potentials,
i.e. we will considerthe properties of matter like those generatedby RHIC
in heavy ion collisions.

The emphasiswill lie on the change of bulk thermodynamical quantities
which is causedthrough the switch-on of a baryon or quark chemical poten-
tial . The quartities of interest are related to the screeningproperties of
heavy quarks and hadronsinside the quark gluonic medium.

We will study QCD as a quantum eld theory with gluons and Nt = 2
avors of dynamical quarks. All our calculations are done in thermal and
baryon chemical equilibrium. Our approad to study the -dependenceis
basedon a Taylor expansionmethod in =T .

The temperatures T under investigation range from 0:76T. to 4T.. The
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range of quark chemical potertials is not known exactly since there are
no seriousestimatesof the radius of corvergence of the Taylor expansion
in =T . Rough estimatesfrom the equation of state suggestthat o)
[10].

In chapter 2 | give a brief summary of the theoretical fundamentals of QCD
at nite temperature and density and describe the framework usedfor the
numerical evaluation. Especially | will give a description of the Taylor ex-
pansion method. This method is used up to the 6th order in in the
subsequeh chapters.

In chapter 3 we discussthe equation of state of the pure quantum elds at
nite temperature and baryon density which is the most simple quartity to
be handled with the Taylor expansionmethod. Becausemost of the work
for this project was accomplishedby my colleagueswe will concertrate on
the main results only. Theseform the basisfor the other chapters. In chap-
ter 4 we changethe scenario. Namely we introduce a number of heavy test
quarks and/or anti-quarks separatedby a xed distancer into the medium.
We study the thermodynamics of this systemby calculating the free energy
with respect to the vacuum case.

The free energy contains the whole thermodynamical information about the
heary quarks/anti-quarks. We will concerirate on the screening proper-
ties of the intermediate quantum elds. In particular we will calculate the
screeningmasseam(T; ).

In chapter 5 we then discussthe screeningof hadrons instead of heavy
quarks.

Finally a summary with conclusionsand an outlook is given in chapter 6.
Someof the technical details about the Taylor expansion method are pre-
serted in the appendix.
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Chapter 2

Quantum chromo dynamics
on the lattice

2.1 QCD at nite temp erature and nite baryon
chemical potential

Quantum chromodynamicsis formulated asa non-Abelian SU(3) gaugethe-

ory cortaining a set of N¢ quark fermion elds 1; ; N, with masses
myq; ;my;, . The interaction with the gluonic gauge elds A%;a = 1; '8

as well as self interactions of the gluons are governed by an overall gauge
coupling g. In the cortinuum the a%tion is written as

S = d'x Lg; 2.1)
wherein the Euclidean formulation the Lagrangian density adopts the form
— 1 a a %f .

j=1
F2 = @A2 @A? + gf ®CAPAC js the eld strength tensor of the gluon
elds andB = D isthe covariant derivative
D =@+ igA ; (2.3)

whereA = A? 2=2, Here are the Euclidean Dirac matricesand 2 the
Gell-Mann matrices which are the generatorsof the gaugegroup.

We now considerthe systemof quantum elds to bein thermal and baryon-
chemical equilibrium. A nite temperature T = 1= and chemical potentials

=( 1, ; ny)areintroducedby consideringthe grand canonical parti-
tion function
2 13
ot
H i Ngj
z(T; )= Trie E Y (2.4)
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where the Hamiltogian H = Rd3x H is related to the Mink owskian QCD
LagrangianLy = d®x Ly via Legendretransformation. The Ng; are con-
sened chargeswhich in our caseare the quark numbersof the corresponding
avor

Z Z

Ngi = &3P0 = & o j: (2.5)

The trace in (2.4) is performed over all possiblequantum states of the elds.
The partition function (2.4) is then translated into the path integral expres-
sion
Z
Z(T; )= DAD D e S¢; (2.6)

where the action Sg has got the samestructure asin the Euclidean contin-
uum caseapart from the fact that the temporal integral is shrinked to the
nite interval [O; ], namely

2z 1

Sg = d d3X @LE i jo jA . (27)
0 v =1

The (anti-) commutation relations for the bosonicand fermionic elds imply
that all eld con gurations covered by the path integral in (2.6) have to ful-
| periodic boundary conditions for the gluons and anti-p eriodic boundary
conditions for the fermions in the temporal direction. In order to keep nu-
merical expressionsnite we also considerthe caseof a nite spatial volume
V instead of integrating over in nite intervals. There are no restrictions on
the boundary conditions in the spatial directions. We always choosethem
to be periodic.
Inserting (2.2) into (2.7) we seethat we can also write

Z Z
Se = d d3x LE( ) ; (28)
\%
0

where Lg () hasthe samefunctional form asLg but we have to make the
replacemen

igAo! igAg js (2.9)

in the avor j. Bulk thermodynamical quartities O(V;T; ) can now be
calculated as ensenfble averages
Z
. 1
O(V;T; )=hOi.q. = > DAD D O(A; ; ;V.T; )e & : (2.10)
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Becausewe are not studying any volume dependencein this work we will
occasionallysuppresshe dependenceon V. In addition in most caseghereis
no explicit dependenceof the quartit y O onthe macroscopicparametersV; T
and . Quarntities likethe energydensity , the pressurep or particle number
densitiesn; are related to derivativesof the grand canonical potential

= TInz; (2.11)

with respect to the macroscopicparameters,i.e. we have for the pressurep
and particle numbers n;

1 1
% = ﬁ%: 2 (T ) (2.12a)
i 1
% = ﬁ% (2.12b)

We will alsorefer to the grand canonical potential as the free energy F of
the system.

For a more detailed discussionabout the fundamertals of QCD and eld
theory at nite temperature and density we refer to standard textb ooks
sud as[11, 12, 13|.

2.2 The lattice regularization

In QCD, path integral expressionslike (2.6) or (2.10) are su ering from
ultraviolet divergencieswhich have to be properly regularized and renor-
malized. One way to do this is to discretize space-timeby usinga nite four
dimensionalhypercubic lattice with lattice spacinga. Each lattice point X is
labeledby an integer array n = (n1;ny;n3;ny) such that x = n a. Thereby
all momerta are cut 0 becausethey can be chosenfrom the 1st Brillouin
zone[ =a; =4d] and the ultraviolet divergenciesdo not appear anymore.
We chooseto take the samenumber N of lattice points in every spatial
direction. In the timelik e direction a smaller number N is chosenin order
to accommalate the nite temperatures. For N =N >4 correctionsto the
in nite  volume limit get small. Therefore we take N =N = TVS = 4
here. The absolute sizesof N and N are chosenas large as allowed by
the available computational power. Temperature and volume can then be
obtained from N and N

1

T = (2.13a)

—_— 1 .
" Na’
V = (N a)d: (2.13b)

The continuum expressionsof the precedingsection are translated into the
lattice regularized formulation by replacing space-timeintegrals and deriva-
tivesby discrete sumsand di erential quotients such that in the limit a! 0
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the continuum physicsis obtained. Dimensionless elds are introduced by
multiplying the elds with appropriate powers of a. The gauge elds are
represerted by the link variables

U (n) = expligaA (X)]: (2.14)

U (n) connectsthe site n to the nearestneighbor n + ~ in the -direction.
The QCD lattice action canthen be written as

SeE=Scg+ S (2.15)

where the Wilson gaugeaction Sg is the discretized gluonic action
X a—q

— 1 ? .
Sc = . 1 N—CReTr né- 6. ; (2.16)
n; <
with = 2N =¢ and the number of colorsis N = 3 here. The sum extends
over all elemenary plaquettes of the lattice and the symbol
a g
° g=U (MU (n+ )W (n+ )UY(n) (2.17)

represerts the product of the four consecutie links of the plaquette, starting
at the lattice point n. In the following we denote products of consecutive
links asdiagramswherethe order of the factors is indicated by the direction
of the links.

The fermionic part of the action is written as

X
Sk = nKnm m; (2.18)

n;m
wherethe sum extendsover all lattice sitesn and m. The choiceof the lattice
action is not unique, i.e. we are allowed to add arbitrary terms, which are
vanishing in the continuum limit. For vanishing chemical potentials the
most naive way of discretization leadsto
n+ /\;mU (n) n /\7mUy(n A) + M n;m , (219)

Knm = 3

2

whereM = a m is the dimensionlessbare massparameter. In the free case
(g = 0) the fermion propagator calculated from this action is

z d4p ip p +M
- 1 _ i .
n m - Kn;m - (2 )4 P |2 + M2 elp(n m) 3 (220)
wherep = sin(p ) and ' ' denotesthe tensor product in Dirac space.

While in the continuum this propagator has got polesat p im only
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there are now two polesin ewery direction  at the cornersof the Brillouin
zone. Thereforein the cortinuum limit this action describes2diM = 24 = 16
independert quarks instead of only one. There are seweral ways to deal with
this doubling problem one of which is introduced in the next section.
Finally we note that the replacemen rule (2.9) for the introduction of a
qguark chemical potential  can be transfered to the lattice gaugelinks [14].
In the action the gaugelinks in the temporal direction have to be replaced

by

Ug(n) = " /9A) | gtigafa(x) a = o @ ,(n); (2.21a)
UJ(n) = e 9A«() 1 g T8aAsl¥a = g*a y¥(n):  (2.21b)

2.3 Staggered fermions

The starting point of the staggeredfermion formulation [15] is to apply a
unitary transformation in spinor space ( n) to the fermion elds at ewvery
lattice point n

(n) n;
n Y(n); (2.22)

=1
1

=1
1

sud that the Dirac matrices  becomediagonal
Yin) (n+ )= (n) 1; (2.23)

wherethe (n) are numbers. One possiblesolution of this task is

(n) 23t an (2.24)
(n) ( pmtornoa (2.25)

where (n) arecalledthe staggeredphases.The fermion action now consists
of four equivalent terms. Leaving away three of them and keepingonly one
we canreducethe number of fermion doublersby afactor of 4. The staggered
action can then be written as

X
Sk = nKnm m; (2.26)
n;m
where the fermion matrix (for quark chemical potential = 0) now hasgot

the form
" #

(n)  n+amU (n) n A;mUy(n N+ M oami(2.27)

Knm =
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Insight in the continuum limit is gained by de ning the fermion elds on
the cornersof a hypercubic lattice with lattice spacing2a and lattice points
atN =2n + where s either O or 1.

X

) = A= @n+)ium @+ ) (@228)
X
f(n) = 5&—2 (2n+ YUY(n) Y@n+ ) (2.28b)

In the limit m ! O there remainsa U(1) U(1) chiral symmetry in the
staggeredaction which is a remnart of the original SU(4) SU(4) symmetry
in the continuum. Due to the Nielsen-Ninomiya no-go theorem there does
not exist a local lattice action in four space-timedimensionshaving the full
chiral symmetry without including any doublers. The staggeredformulation
is a compromisein this respect. While keeping 3 doublers we have got a
remnant chiral symmetry.

Carrying out the integration over the Grassmannvalued elds , and
in (2.6) or (2.10) oneis left with the determinant of the fermion matrix and
the integration measureis proportional to

DUP(U) DU det(K)e Se: (2.29)

For Nt degeneratedermion avorsdet(K ) isthe Nt -th power of the fermion
determinant for one single avor. Thereforein order to compensatefor the
fourfold staggeredfermion degeneracywe take the fourth root of det(K).

DUP(U) DU (det(K )N e Se: (2.30)

We admit that this "fourth root trick" is still a matter of discussionand
that there is no rigorous proof for the correctnessof this proceduresofar.
Due to the s-hermiticity at =0

5K 5= KY (231)

the fermion determinant is real. Furthermore it canbe shown that the eigen-
values of K are pairwise complex conjugated and therefore det(K ) is even
positive.

Becausein our numerical simulations we will have to compute the inverseof
the fermion matrix it is furthermore useful to rewrite det(K) asthe deter-
minant of a symmetric matrix which can be inverted by conjugate gradient
methods. Dividing the lattice into even and odd sites' and writing the
fermion elds in the corresponding represetiation

= %5 =(e o (2.32)

[o]

1A site n is called evenif ny + N, + n3 + ny is even and it is called odd otherwise.
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we seethat the fermion matrix has got the form

—_ M Deo .
K= g5 u (2.33)
wherefor = Owe have D{,= De and therefore
M2  DgoD 0 (KYK) 0
YK — eo oe ee 5
KK 0 M?  DoeDeo 0 (K¥K)o &3

Becausethe determinants of (K YK )ee and (K YK )4, are equal we have
det(K ) = det(K YK )2 = det((K YK )ee) : (2.35)
We seethat if we make the replacemeth
det(K) ! det((KYK)ee) ; (2.36)

in (2.30) we still describe a systemwith N; fermion avors but the fermion
matrix is symmetric.

The lattice regularization method and a detailed description of the staggered
fermion formulation can be found in textb ooks like [16, 17].

2.4 Impro ved actions

The lattice actions (2.16) and (2.18) are not unique. l.e. we are allowed
to add arbitrary terms to the actions as long as the cortinuum limit is
not changed. This can be usedto construct improved actions that showv
reducedcut-o dependencies.On the other hand including additional terms
increaseghe computational e ort. Thereforeimproving the action is always
a compromisebetweennumerical accuracy and computing power.

The original Wilson action (2.16) represens the cortinuum action up to
O(a?). In the Symanzik improvemert program [18, 19] we make an ansatz
for the action including not only 1  1-plaquettes but also higher loops of
gaugelinks. In this work we usethe following Symanzik improved action
containing planar 1 2-and2 1-loopswhich represer the cortinuum limit
up to O(a?),

_ X 1 a9
S g 1 TReTr
. C n'
b° 2 g 931
1 1 0 P
1 2 q :
6?@1 o ReTr ﬁnq o §* : agg L (2.37)
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In the fermionic sector we use the following way of improvemert. First we
replace the gaugelinks U (n) in the fermion matrix by so-calledfat links

[20]
1 X
%ﬂi ! n
1+ 6! &
6

This is a weighted sum of the ordinary gaugelink and all three link paths
connectingthe samenearestneighbor sites. Thesepaths are called "staples".

The fat links improve the avor symmetry that is reducedto aU(1) U(1)
symmetry in the staggeredformulation. l.e. a reducedpion masssplitting

is obsened for non-zerovaluesof ! . In our simulations we use! = 0:2.

In a secondstep we improve the rotational symmetry of the free fermion
propagator in momertum space,which is a function of p? in the cortinuum.
This is accomplishedby including not only paths which connect nearest
neighbor sites but also paths connecting sites which are separatedby three
links [21]. The following general ansatz is appropriate for the staggered
fermion matrix

§§ : (2.38)

Uf at(n) -

LD-Vo;m

X
Knm = (n) (C10Anm + C30B1nm + C2Bonm) + M nm 3 (2.39)

where A is the fat link part connecting nearestneighbor sites.
Amm = neamUTN) oap U A) (2.40)
B consistsof three successie links in the -direction
Binm = n+3am &—4—06—0 n 3°m (8—8—8 qy: (2.41)
and B, connectssites along L-shaped paths.

P
Ban = l

>n+A+2A QGJ T n oA 27m QGJ T

qg M 3 9
? P E
+ n+ "~ 2Am g n A+24m g+ g .
If we neglectO(g?) cortributions to the coe cien ts the relation
1
Cio+ 3C3g + 6C12 = = (242)

2
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guaranteesthe correct cortinuum limit. If we furthermore demand that
Cio + 24c3g + 6C12 = 24Cy2 (2.43)

then the free lattice fermion propagator is rotationally invariant up to order
p*. In order to reducethe computational e ort there are basically two com-
peting possibilities to solve thesetwo equations. Namely we either demand
C3p Or Cp» to vanish. The advantage is that we do not have to calculate
B, or B, respectively. The choice ¢;» = 0 leadsto the Naik action [22].
Becauseof a better high temperature behavior of the pressure(see[23]) we
choosecsp = 0 which leadsto the p4-action [21]. Then the remainder of the
coe cien ts are

Cio = 3-8 (2.44a)
co = 148 (2.44b)

2.5 Simulation of dynamical staggered fermions

The main task of lattice QCD is the numerical computation of the expec-
tation value of an obsenable O[A; ; ]. Assumingthat the dependenceon
the fermion elds is suc that the fermionic path integral can be performed

we have
Z

O(T;V; )= hOi = DU O[U]det (K [U)N e SelVl:  (2.45)

1
Z
where the integral is to be done over the set of all SU(3) matrix con gu-
rations on the lattice. Becausethis range is very high dimensional simple
numerical integration techniquesare not applicable. Fortunately the weight
factor

P[U] = Zldet(K[U])Nfﬂ‘e Se (2.46)

possessesnly one large peak at U, the solution of the classicalequation
of motion. Therefore a con guration U contributes the more to the integral
the closerit isto Ug. In a numerical simulation we generatea Markov chain
of con gurations sud that the obtained ensenble fU;gi=1. ., is distributed
accordingto the probability measureDU P[U] around the peak. The mean
value (2.45) canthen be estimated by the sampleaverageof the correspond-
ing obsenable valuesf O;giz1: n.

In order to take DU P[U] as a probability measureP[U] hasto bereal and
positive. In fact this is only true for vanishing or imaginary quark chemical
potentials. Therefore we will restrict the discussionto the case = 0 here
and commern on the treatment of 6 0 in section2.7.

In order to samplethe con guration accordingto the probability distribu-
tion (2.46) the following procedureis adequate. Starting from an arbitrary
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con guration, we generatea con guration Ui, from U; such that the tran-
sition probability P(U; ! Uj+1) fullls the detailed balance condition

P(UDPUi! Uisa) = P(Ui+1)P(Uisr ! Up); (2.47)

and sud that the Markov chain is ergadic. Then the averagesin Markov
time are equalto the corresponding ensenble averages.If N¢ is a multiple of
4 we can make useof (2.36) and rewrite the fermion determinant in (2.46) as
a Gaussianpath integral over so-calledpseudo-fermionicbosonic elds  ¢; .
on the ewen lattice sites. In addition we need momerta H (n) 2 SU(3)
conjugated to the gaugelinks U (n) for the updating procedure. We then
considerthe probability density

P HiU; o o= Zie BIHZ o(K7Ked’ e S (2.48)
where
Z
1
Z = DHDUD D ce MM «(KMK)e e S (2.49)

and the trace is done over space-time and color indices. We consider the
substitution

¢ =KY; Y=( 0= YK: (2.50)

Then is Gaussiandistributed. In order to generatea new con guration
Ui+1 from U; wetake the exponert in (2.48) asthe Hamiltonian of a classical
systemin four spatial dimensions

1
H = EtrH2+ o(KYK)ed e+ Sc: (2.51)

We introduce an artical time and ewlve U and a H according to the
classicalequations of motion
@ = iHU; @ = @; (2.52)
@ @ @
whereH and aretakenfrom a Gaussianheatbath at the beginning of eat
trajectory. ¢ is calculated from (2.50). Basically the discretized versions
of (2.52) are then solved numerically using the leapfrog algorithm with a
nite time step size  and a total trajectory length = N, . In the
limit I 0 the leapfrog algorithm is energy conservingand the detailed
balancecondition is fullled. For 6 O there is a systematic error of order
2. This error can be corrected using an additional Metropolis step at the
end of ead trajectory, namely the nal con guration is only acceptedasa
new con guration with a probability

p= min 1;e HC+ *HO) (2.53)
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We keepthe old con guration if the acceptancetest fails.

Unfortunately this so-called -algorithm [24] only works if N¢ is a multiple
of 4. For other valuesof N; the standard way of updating is the R algorithm
[24]. Instead of intro ducing pseudo-fermionic elds  we write

h i N
— N
det KK “ = exp Tftr IN(KYK)ee (2.54)
ee
and we have a Hamiltonian
1 N
H = EtrF>2+ Tftr IN(KYK )ee + Sg (2.55)

The equation of motion for the momertum then has got the form

A _ @B N 1 @KK)e

@ @ 4 (KYK)ee @
During the update procedurethe trace is now approximated using a noisy
estimator

(2.56)

1 @KYK)ee @K VK e
tr XY= ==X 2.57
(KK)ea @ @ e 2.57)
where
1
Xoe= ———— KYR ; 2.58
© = (KK )es . (2.58)

and R is a Gaussianrandom noise vector, which is held xed during the
leapfrogsteps. The inversionsof the fermion matrix are doneusing conjugate
gradiert algorithms. Due to the introduction of a stochastic term in the
equations of motion the R algorithm is not time reversible and cannot be
made exact using a Metropolis step.

Recenly there have beensomeideas|25, 26] for exact algorithms which base
on approximating the function x N=* by rational or polynomial functions.

x Nt (%)% (2.59)

Intro ducing pseudo-fermionic elds the Hamiltonian canthen be written as
1
H = 5trH?+ o T(KYK)ee) e+ Sg: (2.60)

While theseideaswill most likely be relevant for future simulations of stag-
geredfermions, all the simulations for this work were still done using the R-
algorithm. The simulation parametersare showvn in table 2.1. The pseudo-
critical coupling on a 16 4 lattice was determined in [27] from the peak
position of the chiral susceptibility. We take

¢ = 3:649 (2.61)

as the numerical value here. Seeral thousands of con gurations were pro-
ducedfor 18 di erent valuesof the coupling listed in table 2.2.
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N¢ 2
ma | 01
0:025
N, 20
0:5

Table 2.1: Simulation parameters.

352 355 358 3.60 3.63 365 3.66 3.68 3.70
T=T. | 0.81 0.87 090 096 1.00 1.02 1.06 1.11 1.16
Neont: | 3000 3000 3500 3800 3000 4000 4000 3600 2000
372 3.75 3.80 3.85 3.90 3.95 4.00 4.245 4.43
T=T. | 1.23 136 136 150 1.65 1.81 1.98 3.00 4.01
Neonf: | 2000 1000 1000 1000 1000 1000 1000 1000 1600

Table 2.2: Number of con gurations per -value/temp erature.

2.6 Setting the scale

Becausein a lattice simulation all parametersand elds in the action are
replacedby dimensionlesgjuanrtities, all computed quartities are dimension-
less,too. Obsenables carrying dimension can only be obtained as dimen-
sionlessratios including an appropriate power of the lattice spacinga. A
physical scalecan then be introduced by xing the value of somequartity
to its physical value. Best suited for this purposeis the string tension
at zero temperature, becauseit can easily and accurately be calculated on
the lattice and it is indirectly accessiblen experiment through the study of
heavy qu%k spectra. At zerotemperature the physical value of the string
tensionis’ ~ 460M eV [28, 29, 30].

The string tension is the proportionality constart describing the linear rise
of the potential betweena heavy quark Q and a heavy anti-quark Q in a
range of large distancesr

Voolr) = gTS + o (2.62)

In full QCD a heavy quark-anti-quark pair splits into two mesonsif the
distancer becomesvery large. This string breaking results in a nite value
of Vog(r) forr ! 1 and (2.62) no longer holds. Fortunately at T = 0 and
= 0 this string breaking doesnot occur within the accessibleangesunder
consideration due to the use of smearedWilson loop operators. Therefore
there are no restrictions to t Vgq(r) to the form (2.62) using the strong
coupling s and the string tension as t parameters. For 2- avor QCD
and a relatively large quark massof M = 0:1 this has beendone in [31],
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leading to
s = 0:212(3): (2.63)

The string tension ( ) at T = 0 as a function of the coupling can be
tted to the form [32]

P—_ 1+ ca’+ cat
a a

= ; 2.64
o (2.64)
where
6 5
a=a_ = ‘e ®o (2.65)
is the solution of the two loop renormalization group equation
d
al= of+ 16°+ O(g); (2.66)
a
with
| 2N;
1 38N¢
= ——— 102 ; 2.67b
1 (16 2)2 3 ( )

The t parametersin (2.64) have beendetermined in [33, 34].

2.7 The Taylor expansion metho d for nite quark
chemical potentials

In order to treat DU P [U] asa probability measurethe fermion determinant
has to be positive de nite. Unfortunately this is in general only true for

= 0 becausefor non-vanishing chemical potential the s-hermiticity is
changedinto

sK( ) s=K( ) (2.68)
and therefore det(K ) is in generalnot even real because
det(K( )) = det(K( )): (2.69)

One consequencef this relation is that for non-real gluonic obsenables O
we have

hOi = hO (2.70)
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There are seeral approadesto circumvert this so-called"sign" problem, i.e.
there are multi-parameter reweighting techniques[35], wherethe simulation
is done at vanishing and results are reweighted to nite . Then there is
the possibility of simulating at imaginary where the fermion determinant
is real and positive as can be seenfrom (2.68). The results are analytically
cortinued to real values of afterwards [36]. A recert overview on these
methods can be found in [37].

In this work we usethe Taylor expansiontechnique [38], where the fermion
determinant and if necessaryalsothe operator of an obsenable are expanded
in powersof or =T . This results in an expansionof our obsenable

hO =og+ 0, +0p 2+ (2.71)

On a nite lattice hO is an analytic function in  and the serieson the
right hand side is convergert for every value of . In the thermodynamic
limit the radius of corvergence may be nite and the obsenable hGi  be-
comessingular at = . If O is a susceptibility then the phasetransition
line should give an upper bound for the radius of convergence.

The explicit expressionsfor the expansioncoe cien ts are discussedin ap-
pendix A. They contain traces of matrices of the form

@K K 1 @rK |
@ @™ -
We evaluate thesetraces on every gaugelink con guration by meansof the

random noisevector method. Givena setof independen equally distributed
random unit vectors 1; »; 3; we have

A=K 1

(2.72)

X
Tr(A) = Im = YA (2.73)
n!l n .
i=1
In this work we always usen = 50 Z2-vectors with componerts 1lto

get reliable estimates of Tr (A). Becausein our estimateswe usethe same
random vectorsfor all the traces,the correct unbiasedestimate for a product
of tracesis
w n my X
Tr (Ai) 7( nl )

i=1 ni: m
niSnj

%IlAl ni xmAm Nm . (2.74)

We note that the sum on the right can contain a large number of terms.
Approximately there are n™ terms, where in this work m is equal to 6 at
maximum. We therefore have to be very careful when executing the sum
numerically. This gets even worseif we consider correlations of obsenables
in which connectedand disconnectedparts almost cancel like for the 6th
order expansioncoe cien t of the equation of state.
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The equation of state

3.1 The equation of state at nite density

The equation of state of QCD at nite temperature and alsoat nite density
hasbeenextensiwely studied and received more and more attention in recen
years. This is due to both the advancesin theoretical predictions and the
possibility of comparisonto experimertal data, collected nowadays and in
future colliders.

The derived quartities like the pressurep, energydensity " and quark num-
ber density nq are just the derivatives of the grand canonical potential, eq.
(2.12), with respect to volume V, temperature T and quark chemical poten-
tial

1 1

= = %+ T@@ % : (3.1b)
1 @

T—‘; e (3.1c)

We will only discussthe pressureand the relation to the quark number
density here. At = 0the equation for the pressurecan be calculated up to
an additiv e integration constart, which is unknown sincein MC simulations
we never calculate the value of the partition function itself. The common
choiceisto put p= Oat T = 0. For T 6 0 the value of p is then obtained
by integrating the derivative of p along a line of constart physics[39].

For 6 0 we have to dierentiate (3.1) with respectto . We then obtain
p=T* asa Taylor series

X
% = c(T)
n=0

T ; (3.2a)

23
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where

1 1 @Inz

VT @) (3-3)

cn(T) =

The ¢, (T) for n > 0 will be the simplest quartities to be presened in this
work. Namely, apart from a multiplicativ e factor, they are just the expan-
sion coe cien ts of NOi  with O = 1.

In appendix A we show that the odd order derivativesof the partition func-
tion vanishandthusc,(T) = Ofor odd n. Becausethe quark number density
is related to the pressurevia

n

Q)

L

— = ; 34
T3 @=1) T (34)
the -expansioncoe cien ts are related to those of the pressure
nq )4 n
T3 = (n+ 1) crea (T) T ; (3.5)

n=0

and nally the coe cien ts ¢,(T) alsooccur in the expansionof susceptibil-
ities
_ 1 e |
T? VT4@ =T )%’
R

(n+ 1)(n+2) ez (T) = " (3.6)

n=0

Another related quartity of interest is the isovector susceptibility which is
de ned as

.1 e .
T2~ VT4@ =T)?’
(3.7)
where | = ( y 4)=2. After taking the derivativeswith respectto |, we

set , = g= sudthat the isovector chemicalpotential | vanishes.Then
I can be expandedin powers of the remaining quark chemical potertial
leading to a series

b3

I n
T2 " _0(n PN+ ) (M) = - (3.8)

Details on the calculation of ¢}, can be found in [10]. In g. 3.1 we show
the coe cients ¢,(T) and ¢, (T). Due to the use of improved actions the
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Figure 3.1: -expansion coe cien ts of the pressurecy;cs;Cs and Ch; cy; ck
versustemperature.
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high temperature limits agreebetter with the continuum Stefan-Boltzmann
limits

l = N¢=2 i = N;=4 2 i =0: .
A = N2 fim =Nt B oin o= 00 @9)

than with the corresponding limits calculated from the free unimproved
lattice action [4Q].

The -expansioncoe cien ts of the equation of state shov someof the typical
features shared by most of the expansioncoe cien ts discussedin the next
chapters. The greatestchangesin the valuesof the coe cien ts occur around
T.. lLe. for ¢, we have got the largest slope, ¢4 has got a strong peak and
Cs shows an abrupt change of sign. At high temperatures all coe cien ts
converge to the corresponding Stefan-Boltzmann value, which for the 4th
and 6th order coe cient is reached within arangeof T  1.2Tc and T
1:8T...

Finally at low temperaturesT < T, the coe cien ts ¢;; C4; Cg are compatible
with predictions of a hadron resonancegas model [41].

Further details like pictures of the susceptibilities and estimatesof the radius
of corvergenceof the power expansionscan be found in [10, 40].
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Heavy quarks

4.1 Heavy quark free energies

Considerthe grand canonical ensenble of QCD including a set of static (or

heavy) quarks placedat positionsr1;rp;  ;rn and anti-quarks at positions
r%;r9;  ;r% which form a color state x. The corresponding free energy
Fam = FXm(ra  ;ry; T ) is dened via
X
exp FXn =Z=N Hje B Ndjgi; (4.1)

jsi

where N dependson the normalization of the states and the sum extends
over all states jsi of the quantum elds in a xed gauge sudc that the
set of static quarks and anti-quarks at the given positions form the color
state x. Let Fx, = FX, Foo the dierence of the free energiesof our
thermodynamical system with and without heavy quarks and anti-quarks.
For example we averageover all color states of every single quark and anti-
qguark. We call this the color averagedstate (x=av).
Using the common anti-commutation relations for the quark creation and
annihilation operators and their static time ewlution equation it can be
shawvn [42] that (4.1) can be written as
D E
exp Fay, = trl(ry) tLrarLYed) wL¥rld) ; 4.2

where the "small" trace is the "real" trace divided by N. = 3
1
tr= —Tr; 4.3
N, (4.3)

and L(r) is the so-calledPolyakov loop

ig Rth4(I';t)
L(r)=Te o : (4.4)

27
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T is the time ordering operator. On the lattice L(r) is the ordered product
of all gaugelinks in the temporal direction at the spatial point r = an

¥
L(n) = Ua(n;ng) : (4.5)

nag=1

From (4.2) we seethat the Polyakov loop represens a static, heavy test
quark. Heavy anti-quarks are described by the hermitian conjugate matrix.
In color spacesingle quark and anti-quark states are represerted astriplets
transforming according to the fundamental represenations 3 and 3 of
SU(3) respectively. For compound statesjsi asin (4.1) the corresponding
product represenations canbe decomposedinto irreducible represenations;
i.e. for a quark anti-quark pair we have

3 3 =1 8; (4.6)
or for a system of two and three quarks we have

3 3= 3 6; (4.7
1 8 8° 10: (4.8)

w

w

w
1

Every state jsi of quarksand anti-quarks decomposesinto multiplets weighted
with the assaiated Clebsth-Gordon coe cien ts. Inserting this into (4.1) it
can be shown [43, 44] that for the color averagedfree energieswe have

exp  F8G = S—laexp Foo + gexp FSQ ; (4.9)
exp F8, = %exp Fdo + éexp FSo (4.10)
exp F84ho = %QXP Fdoo + %exp Féaq

+ %exp FS(E?Q + ;—3exp Fodo :(4.11)

where i.e. FéQ and FSQ are the free energiesof the systemwith a heavy
quark-anti-quark pair in a color singlet and color octet state respectively.
They are de ned in analogy to (4.1), where the sum extends over those
states which cortain a heary QQ pair in the singlet and octet state.

In what follows we will always write "F:::" instead of " F:::" for simplicity.
Then "F:::" cortains only that part of the free energywhich is provoked by
the presenceof the heavy test quarks and anti-quarks. Therefore we will
occasionallycall "F:::" the free energy of the heavy quark-anti-quark part.

The free energiesare related to the correlation functions of the Polyakov
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loops;i.e.
D h iE
exp FéQ = tr LqLY (4.12a)
exp Fdoo = %mtrthrthrLg 3trLqtr [Lolg]
3trLotr [LiLg] 3trLgtr [LiL 2]
+tr [LqLols] + tr[LilsLo]i ; (4.12b)

whereL; = L(rj).
Although the lattice gaugeaction is invariant under local gaugetransforma-
tions G(n) 2 SU(3)

n ! G(n) g, (4.13a)
n ! nG Hn); (4.13b)
U ! GMnU (G Yn+n); (4.13c)

the Polyakov loop L(n) is gaugedependen but tr L(n) is not. Therefore
only the color averagedfree energiesare gaugeinvariant becausethey are
calculated from traces of the Polyakov loop only. Becausewe are also in-
terested in results for the singlet free energy we have to x the gauge. We
chooseto transform our gauge link con gurations to Coulomb gauge us-
ing the overrelaxation algorithm [45] before calculating our Polyakov loop
correlations.

4.2 The renormalized Polyakov loop

In the quended limit (i.e. quark massM ! 1) the action is invariant
under transformations

Us(n) ! zUq4(n) ; (4.14)

wherez is an elemen of the group Z(N¢) = fexp(2 in=N¢g)jn=0; ;Ncg
which is the certer of SU(N¢). The Polyakov loop servesasan order param-
eter for the spontaneousbreaking of this symmetry. In the thermodynamic
limit it is vanishing below and non-vanishing above the transition tempera-
ture. For nite M this symmetry is broken explicitly.

The free energy of a single quark inside a medium cortains the self en-
ergy of the quark which is a divergert quartity in the cortinuum limit. A
consequencas that the cortinuum limit of the Polyakov loop is vanishing
even in the non-symmetric phase. It is therefore necessaryto renormalize
the Polyakov loop with somerenormalization constart Z beforetaking the
continuum limit.

Lren= Z(g%) L: (4.15)
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In generalwe may assumethat Z dependsnot only on the coupling g2 but
also on the value of the chemical potential . In fact we will seelater that
there is no necessiy for the assumptionof a -dependenceso far.
We now briey summarize how to determine the value of Z, more details
canbefound in [46]. Considera quark Q and an anti-quark Q with a spatial
distancer = jrj and the color averagedfree energy
D E

Foo(iT: )= TiIn trblren(r) trL¥e,(0) (4.16)
We note that we replaceour distancesr on the lattice by improved distances
to accommalate for lattice artefactsin the rotational symmetry of the heavy
quark potential [47].
Fg‘é stays nite in the continuum limit. For in nite separationsthe quark
Q and the anti-quark Q are uncorrelated and Fg‘é(r; T; ) canbewritten as

Fg‘é(l ;T; )= 2T In hrLyend (4.17)

wherethe Polyakov loop is calculated at somearbitrary spatial position. We
seethat the multiplication of L with the renormalization constart Z canbe
obtained by adding a constart to Fg‘g?:T.

F T,
# = 2In hrLi +c(®: (4.18)

Now for small distancesr the temperature and density of the medium should
have no inuence on the free energy Therefore we choose ¢ suc that
Fé (r; T;0) matches the zero temperature heavy quark potential Voo (r)
at the smallest available distance rg. For the simulations in this work we

have N = 4 suc that ro = 1=(4T). Voq(r) is givenin the Cornell form

4
Voolr) = 3 TS+ r: (4.19)

After having determined c(g?) in this way the renormalization constart
Z(g?) can be calculated. Then the Polyakov loop aswell asall the valuesof
the corresponding free energiesare xed. All numerical results presened in
this chapter are renormalized following this procedure.

4.3 Singlet and color averaged free energies of a
heavy quark-an ti-quark pair
A purely gluonic obsenable O like the Polyakov loop L(r) or a correspond-

ing correlation function does not explicitly depend on the quark chemical
potential; it is calculated in terms of link variablesU (x) of the gauge eld
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Figure 4.1: The 0" order coe cien ts f o and f 8., in units of the square
root of the string tension for the singlet and color averagedfree energy in
the vicinity of Tc. féQ;O is matched to the T = 0 heavy quark potential at
small distances(a).
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con guration which do not explicitly dependon . Any -dependenceof the
expectation value hOi  thus arisesfrom the -dependenceof the Boltzmann
weights in the QCD partition function, i.e. the -dependenceof the fermion
determinant.

On the lattice we average the values of the Polyakov loop and the corre-
sponding correlation functions over all sites, i.e. for the color averagedand
singlet correlation function we have

C(r) = N trL(x) trLY(y) ; (4.20a)
Xy )
1 X h i
clry= = tr LOLYY) (4.20D)
N X:y

wherethe sumsreferto all sitesx;y with kx ~ yk = r andN isthe number of
thesex;y-pairs. C*:! and the correspnding expectation valuesare strictly
real for every singlegauge eld con guration. For this reasonthe odd orders
in the -expansionvanish asis arguedin appendix A. The sameis true for
the corresponding free energies

Fo(T: )= TInhcV(r)i ; (4.21a)
Fo(T: )= Tin CY(r) (4.21b)

In order to determine the expansion coe cien ts of the color averagedand
singlet free energies,

2
* féQ;4(r; T

6 8
tfogeT) 3 +0 5

Foo(iTi ) = 500 T) + faq.,(rT) T

(4.22)

?

with x = av and 1, we apply (A.13) to the corresponding Polyakov loop
correlation functions.
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Figure 4.2: The 2" order coe cien ts of the singlet (a) and color averaged
(b) free energiesfor someselectedtemperatures below Te.
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From the Polyakov loop correlations we obtain the free energiesin units
of the inverselattice spacingF=a . Theseresults can be transformed into
units of temperature or the string tension via

F—N;— p_pF:; (4.23)
where the factor ap_ is known from (2.64). In g. 4.1-4.5we show the
leading and higher order expansion coe cien ts up to sixth order in =T
expressedin units of the squareroot of the string tension. The gures do
not contain all the analyzed data becausefor T T the absolute values
arevery small and for T < T, the statistical errors are sometimesvery large.
The 0Oth order results show the expectedstring breaking behavior due to the
screeningof the quarks in the surrounding medium. The screeningsetsin at
smallerdistancesthe more the temperature is increased. In [31] the Oth order
data preseried here have beenusedto calculate a screeningradius, de ned
in [46], separatingthe Coulomb part of the potential from the exponertially

screenedpart.
For the secondorder expansion coe cien ts we display separately results
below (g. 4.2) and above (g. 4.3) the = O transition temperature Tg.

As can be seenthe secondorder expansioncoe cien ts are always negative
and increasein magnitude in the vicinity of T.. Therefore for small values
of 6 0 the free energiesget lowered comparedto the = 0 case. The
strongestreduction can be seendirectly at the transition temperature.
The corresponding results for the 4" and 6 order expansioncoe cien ts are
shavn in g. 4.4and g. 4.5, respectively. Here we only shaw results above
T¢; below T, the expansioncoe cien ts are consistert with being zerowithin
errors even at rather short distancesand errors grow large for r T 1.
We note that all expansioncoe cien ts shovn in gs. 4.2 to 4.5 vanish at
small distances. This shows that a quark anti-quark pair is not a ected by
the surrounding medium if its size becomessmall. This obsenation also
justies our procedureto renormalize the Polyakov loop by matching the
= 0 singlet free energyto the T = 0 heavy quark potential, namely that
the renormalization constart is independert of and T.
Also closeto T¢, wherethe -dependenceof the free energiesis strongest,
the absolute values of the fourth and sixth order expansioncoe cien ts are
of the sameorder as or smaller than the secondorder expansioncoe cien t.
Therefore the 4™ and 6" order cortributions rapidly becomenegligible for
=T < 1.
Although the errors are large for the higher order expansioncoe cien ts they
show that at high temperature the 2" and 4th order expansioncoe cien ts
are opposite in sign, fa" i1 (T) < O0andf] v (r T) > 0. This is consisten
with the expectation that at high temperature the asymptotic large distance
value of the heavy quark free energyis proportional to the value of the Debye
mass. In this limit oneobtains alternating signsof the expansioncoe cien ts
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of the heavy quark free energieswhen one expandsthe perturbativ e Debye
mass[13],
S
mo(T; ) _ Moo(M) 3N 2,
o(m)T o(m)T (2Nc+ Nf) 2 T 7
q

with mp.o(T) = g(T)T % + NTf denoting the Debye massfor vanishing

baryon chemical potential. Although the statistical signi cance of our re-
sults for fg"QlG(r;T) rapidly drops with increasingtemperature this pattern
of alternating signsseemsto be valid alsoat sixth order at least for temper-
atures T> 1:05T..

Except for temperatures closeto the transition temperature the asymp-
totic behavior of the free energiesis readhed at distancesr T> 1:5. We deter-
mine their large distance value by taking the weighted averageof the values

at the v e largest distances. The results are shovn in g. 4.6and 4.7. We

(4.24)

note that ijVle(l ; T)j have a pronouncedpeak at T¢. This also holds for
fg"le(r T)j evaluated at any xed distancer asindicated by g. 4.8. The

peak height is maximum forr ! 1 . In fact, ngQl (r; T) is proportional
to the secondderivative of a partition function including a pair of static
sources,QQ. l.e. from appendix A we have

fav-l( T) @TIn CVi(r)
(nT) = - ;
? @=T)? .
CVil(r)D,  C(r) D
- 3 .
= T 1) ; (4.25)

It thus shows the characteristic properties of a susceptibility in the vicinity
of a (phase) transition point.

Fig. 4.6and 4.7 alsoshow that at large distances,within the statistical errors
of our analysis, the expansioncoe cien ts for the color averagedand singlet
free energiesapproac identical values,

fav

Ba(1:T) = (1;7); (4.26)

QQn

where

(1:T) = limf}

QQn(r;T) 7 with x = av; 1: (4.27)

QQ n
This suggeststhat at large distances,e.g. for r T> 1.5, the quark anti-quark
sourcesare screenedindependertly from ead other; their relative color ori-
entation thus becomesirrelevant.
Including all terms up to sixth order we calculated the singlet and color
averagedfree energiesin the range from =T = 0:0 up to 0:8. Results for
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the color singlet free energiesevaluated at a few values of temperature are
showvn in g. 4.9. Similar results hold for the color averagedfree energies.
The free energiesdecreaserelative to their valuesat =T = 0 for all tem-
peratures above and below T.. At small distancesthe curves always agree
within errors. With increasing distance a gap opens up which re ects the
decreasen freeenergyat non zero . As indicated by the asymptotic values
fg‘g%z(l :T), which give the dominant -dependert cortribution at large
distances,the medium e ects are largest closeto the transition temperature
and becomesmaller with increasingtemperature.
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4.4 Screening masses

For temperatures above T and large distancesr the heavy quark free ener-
giesare expectedto be screened,
av 1(r T ) -

avl(l T ) Favl(r-l— )

ie maviL(T; )r

= (4.28)

with n = 1; 2 for the singlet and color averagedfree energiesrespectively. In
the in nite distancelimit we thus can extract the screeningmasses,
av;l/o. — : 1 av;1
m*:+(T; )= I.'lm - In F (r T; ) (4.29)
rt
We usethis asour starting point to derive a Taylor expansionfor the screen-
ing masses.Expanding the logarithm in (4.29) in powersof =T it is obvious
that alsothe screeningmassesare even functions in =T
mav;l(-l—; ) —

2 4

8

+m"g"1(T) _ ‘40 =

T T (4.30)

To analyze the approac of the various expansioncoe cien ts to the large
distance limits we introduce e ective massesmg ., (r; T), with x = av; 1,

1 fo02(hT)

KES FW’ (4.31a)
2 QQ0 3
T fx T
e ; ! r QQ O(I’ T) 2 QQ O(r T) y
mi iy = L et Toqu(tiD) Tooo(riT)
! ’ X . X -
' fQQ;O(F’T) | fQQ;o(raT)
fx (I"T). 3
+% LT (4.31c)
200 T)

In the limit of large distancestheserelations de ne the expansioncoe cien ts
of the color averagedand singlet screeningmasses,
maYH(T) = lim mg“(r; T) : (4.32)

As will becomeobvious in the following the e ective massesde ned above
show only little r-dependence. They are thus suitable for a determination
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of the -dependen correctionsto the screeningmasses.This is not the case
for the leading order, -independert, cortribution. In order to determine
m}(T) we use an ansatz for the large distance behavior of the singlet free
energy motivated by leading order high temperature perturbation theory,

00 T) = f500(l :T) g@e my(T)r. (4.33)
We t our data to this ansatzusing o(T) andm}(T) ast parameterswhere
féQ;O(l ; T) is determined as described in the previous section. We average
results received from v e t windows with left borders betweenrT = 0:8
and rT = 1.0 and right border at rT = 1.:73. While the above ansatz
is known to describe rather well the large distance behavior of the color
singlet free energy it alsois known [44, 48] that the sub-leading power-like
correctionsare much moredi cult to control in the caseof the color averaged
free energy For this reasonwe will analyze here only the leading order
contribution to the singlet screeningmass. Results for e ective massesin
the singlet channelareshowvn in g. 4.11asfunction of r T for onevalue of the
temperature. As can be seenthe asymptotic value is indeedreaced quickly
beforethe errors grow large at distancesrT> 1. The expansioncoe cien ts
m3'H(T), m31(T) and m3"*(T) are thus well determined from the plateau
values of these ratios. Similar results hold in the color averaged channel.
We found the left border of the plateau to lie betweenrT = 0:48 closeto T,
andrT = 0:23for T > 1:15T.. Resultsfor the various expansioncoe cien ts
are showvn in g. 4.12. This gure shaws that at high temperatures the

-dependert corrections to the screeningmass of the color averaged free
energiesm®'(T; ) aretwice aslarge asthose of the (Debye) screeningmass
in the singlet channel, m%(T; ). This is expected from high temperature
perturbation theory [48] , which suggestghat the leading order cortribution
to the color singlet free energyis given by onegluon exchangewhile the color
averagedfree energyis dominated by two gluon exchange. Using resummed
gluon propagators then leadsto screeningmassesthat di er by a factor of
2,

1
mi(T) = 5mf;V(T); n=246: (4.34)

Our results suggestthat this relation holds already closeto T. (g. 4.12).
We thus have no evidencefor large cortributions from the magnetic sector,
which is expectedto dominate the screeningin the color averagedchannel at
asymptotically large temperatures [49] and which would violate the simple
relation givenin (4.34).

In order to comparethe expansioncoe cien ts with perturbation theory we
needto specify the running coupling g(T). We usethe next-to-leading order
perturbativ e result for the running of the coupling with temperature but
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allow for a free overall scalefactor. Wethus t our data onthe T-dependence
of the leading order ( = 0) screeningmassby the ansatz,

mi(T) = A pz—§g(T)T : (4.35)

with the 2nd order perturbativ e running coupling,

29 g 115 eT !
T)2 = In + In In —— ; 4.36
9(T) 24 2 ws 2322 == (4.36)
wherewe useT¢= 35 = 0:77(21) and the scalee = 2 . Fitting our data to

(4.35) with t parameter A, yields
A = 1:397(18): (4.37a)

Our t result is included in g. 4.12. We also compare the temperature
dependenceof m3(T), m%(T) and m}(T) with corresponding expansionco-
e cien ts of the perturbative Debye masswhich result from an expansion
of (4.24) using (4.35) as the Oth order. These expansion coe cien ts are
alternating in sign,

°3
MoaT) = 9 A(T): (4.382)
P
Mow(T) = 23 AS(T); (4.380)
Mos(T) = grzg AS(T): (4.380)

At least for the secondorder coe cient m3(T) we nd that this yields a
satisfactory description of the numerical results for T> 2T.. (4.38) shows
that subsequenterms di er by about an order of magnitude, which explains
why our signal for a non-zero cortribution mi(T) is rather poor for n > 2.
From (4.38) we nd mp.»(T)=mp.o(T) = 3=8 2 which is independert of A
and g(T) and is comparedwith our numerical resultsin g. 4.14(a). We note
that the perturbativ e value for this ratio is already reached for T=T;> 2. In
g. 4.14(b) we show the -dependenceof the singlet screeningmassfor a
small valuesof =T . Here we included only cortributions from the Oth and
2nd order expansionin the calculation of mi(; T)=T.

In order to further justify the procedureto extract the screeningmasses
from our e ective masses,which mainly are basedon fractions of the free
energiesat rather short distances, we additionally performed ts over the
full range of distances. Using an ansatz
6

+ 0

() = oM+ o) = + + o) =
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and expanding (4.28) in powersof we get expressiondor the higher order
coe cien ts, i.e. for the secondorder

1 C2(T) _ 1 féQ;z(r;T) .
m3(T) p = FW ;
where
co(T) = igi : (4.39)

Weusemy(T) andcy(T) as 't parameters. We chooseto vary the left border
of our t window betweenthe rst and 9th value of the available distances
where we nd smooth plateaus. We compare the results obtained in this
way (open squaresin ¢.4.15 (b)) to those of our previous analysis (closed
circles). In fact there are almost no signi cant di erences. Only closeto the
transition the results from the ts are slightly smaller. Unfortunately the
tting procedure su ers from large errors. Results for m4 and mg remain
consistert with zero.
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Figure 4.15: Comparison of the 2nd order coe cien ts obtained with the
e ective masslimit (closed circles) and with the tting procedure (open
squares).
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45 The , T-dependence of the Polyakov loop

In cortrast to the free energiesdiscussedso far the trace of the Polyakov
loop

X

1
tr L NoN ) tr L(x) (4.40)

is not exclusiwely real but is in generala complex quartity. Anyhow in full
QCD the expectation value Po = hir Li at = Oisreal. In fact we nd the
imaginary parts of all the -expansioncoe cien ts to be non-uniform and
vanishing within statistical errors.
We write the expansionof the renormalized Polyakov loop as
_ 2 3

RrLi = Pg+ Pl? + Py ? + P3 ? + ; (4.41)
where we assumePy; P1; to bereal. The results are shovn in g. 4.16to
4.18.
The Oth order Py in g. 4.16isthe = 0 Polyakov loop, which is an order
parameter for the decon ning phasetransition in the quended approxima-
tion. We note that hr Li is not restricted to values belov 1 due to the
multiplication with the renormalization constart Z(g?). The higher orders
are multiplied with the sameconstart.
All the higher order coe cien ts show large peakscloseto or at T, and tend
quickly towards zeroor at leastto comparatively small valuesfor T > T.. At
least for the coe cien ts of order 0,1,2and maybe 3we nd speci ¢ algebraic
signs.
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Figure 4.18: 6th order of the Polyakov loop
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The logarithm of the expectation value of the renormalized Polyakov
loop is related to the free energy of a single heavy quark.

Fo(T; )= Tl htrLi (4.42)

We insert the expansionof the Polyakov loop (4.41) into this equation. Then
the free energy hasthe form

2 3 4
: = : +fo1=+for = +fogz = +fos —
Fo(T; ) fo.0(T) fQ,lT fo2 T fo:3 T foia T

5 6 7
+fore — +fog — +0 — : 4.43
Q5 T Q6 T T ; (4.43)
where
fqQ.0(T)
—~=7 = InP
T 0!
fou(™) _  P1.
T Po’
foa(T) _  PePo 3P7
T Pé ’
foa(T) _  P3P§ PaPiPo+ 3PF
- k , (4.44)
T PS
foa(T) _  PaP§ P3PiPE¢ 3PZPZ+ P,PZPy IPF
T P ’
PsPS  P4P1P$  P3P.P§ + P3P2P¢
fos(T) _ +P2PPE¢  PoP3Po + EP? _
T B P ’
PsP§ PsPiP§  PsPoP¢+ PsPZPs  1PZP§  1PS
fos(T) _ +2P3P,P1PE  P3PEPZ+ IP3PE  3PZPZPZ + P,PiPg
T Pé
For a heavy anti-quark we have
htrLYi = htrLi (4.45)

We concludethat the expansioncoe cien ts of the quark freeenergyFq(T; )
and the anti-quark free energy Fo(T; ) are equal for even orders and have
opposite sign for odd orders

fon(T) = ( 1)"fqn(T): (4.46)

Resultsfor the f .0 (T) areshavn in g. 4.19to 4.21. We alsocomparethem
to the in nite distance limit of the QQ-free energieswhich are discussedin
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the next section. Namely for in nite separation of two heavy quarks we
should have twice the free energy of a single quark

Foo(1:T; )= 2Fq(T; ): (4.47)

We conrm that this relation holds to all orders. The innite distance
valueswere determined in the sameway asin the QQ case. Deviations from
(4.47) occur becausethe asymptotic values are not always reached within
the accessibledistance range. In generalthe sextet free energiesare more
consisten with the single heavy quark free energies,becausehey shaw only
little dependenceon the distance.

We also note that the asymptotic values of the free energiesFéQ(l T )
are consistert with the corresponding relation

Fio(1:T: )= Fo(T: )+ Fo(T: ) (4.48)

This holds for all ordersin . Sofor all valuesof T and we have that the
asymptotic values of the free energiesof heavy quarks and/or anti-quarks
in somecolor state are equalto the free energiesof the corresponding single
quarks and anti-quarks.

From (4.1) we can seethat for the net number of light seaquarks Ng,
i.e. the di erence of quarks and anti-quarks, we have

@ F} : :
@”'m = MNgin, MWNgigo (4.49)
whereh i’rj;m is the ensenble averageof a systemcontaining n heavy quarks

and m heavy anti-quarks in the state x. Then
Ng= Ng MNgigg : (4.50)

can beunderstood asthe changein the light quark number that is causedby
the presenceof the heavy quarks. For one single heary quark the ensenble
averageof Ng is

.- @ _ 1 2y .

Becausef q.1 is positive we expect the light anti-quarks to dominate the
quarks for small valuesof

h Ngi <0: (4.52)

Thus the presenceof a heavy test quark will induce the supply with anti-
quarks from the particle resenaoir.
The lowest order of the light quark number susceptibility f . is related
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Figure 4.21: 6th order coe cien ts of the free energyof a single heavy quark.

to the uctuations in the light quark number which becomelarge at the
transition point, namely we have

1@Fo _ ,fao

N 2 h Ngi2= = =
q! T@Z T3

o(): (4.53)
Looking at the higher order coe cien ts, we obsene that the diagrams of
fo.0and fo:1 (9. 4.19) are similar in sign and shape. The sameis true for
fo2andfq;3 (gs. 4.19and 4.20) aswell asfor fg.4 and fo;5 (9. 4.20). In
generalthe signsof the coe cien ts seemto change ewery two orders.
From perturbation theory we expect that the free energy of a single heavy
quark is proportional to the product of the Debye massand the square of
the coupling [50].

Fo(T; )/ m(T; ) o(T)?; (4.54)

where we assumeonly a small or no dependenceof the coupling g on
Hencethe coe cien ts f o;n (T) should show a similar asymptotic behavior as
a function of T asthe corresponding screeningmasscoe cien ts. A compar-
isonof gs. 4.12and 4.13to the even ordersin 4.19,4.20and 4.21 supports
this picture. Namely the Oth ordersare both monotonically decreasing.The
2nd orders are decreasingvery slowly and still shov a nite value even at
large temperaturesand the 4th and 6th ordersare both consistert with zero
for T > 2T..
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4.6 Free energies of two heavy quarks

In the absenceof a quark resenoir any state of a medium with two heavy
quarks has got the trialit y

t Nmod3= 2: (4.55)

Here N is the total quark number which is the di erence of the number of
quarks and anti-quarks. Therefore no bound states exist and the partition
function is Zgg = 0. Neverthelessin the grand-canonicalcasethe two heavy
quarks may take up additional light quarks or anti-quarks from the quark
resenoir to form trialit y zerostates. Then the partition function is non-zero
Zog 6 0 and the free energyis nite.
l.e. we will considerthe free energy calculated from the color averaged
Polyakov loop correlation function

1 X

C¥(r)= = trL(x)trL(y); (4.56)
N X:y

where the sum refersto all pairs of siteswith distancer.

Furthermore the decomposition of the color states of heavy diquarks into
irreducible represenations leadsto an anti-triplet and a sextet part. The
corresponding Polyakov loop correlation functions are

s, 1% 3 1 .
C3(r)= — trL()trL(y) =tr (L(X)L(Y)) ; (4.57)
N X:y 2 2
6. 1X 3 1 _
C°(r)= = —trL(x)tr L(y) + >tr (L(xX)L(Y)) ; (4.58)
N X:y 4 4
These correlation functions are related via
C¥(r) = %C3(r) + %CG(r) ; (4.59)

The corresponding free energiesare calculated and expandedin powers of
=T in the sameway as for the Polyakov loop.

D E
Thn C™3%(r)

Fag (1iT; )

f oo (1 T) + £ 365, Tr+ (4.60)
In gs. 4.22and 4.23 we show the r-dependert Oth order coe cien ts of the
free energies.Figs. 4.24to 4.32cortain the higher orders of the free energies
F3o and F§, up to 6th orderin =T . We do not show the higher orders
of the color averagedfree energy explicitly here. In fact they are all very
similar to the anti-triplet coe cien ts.
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Figure 4.22: O0th order coe cien t of the color averagedfree energycalculated
from the Polyakov loop correlations.

The Oth order shows that the potential betweenheavy quarks is attractiv e
in the color averagedor anti-triplet and repulsive in the sextet state.

As in the caseof a single heavy quark we also seea non-vanishing 1st or-
der cortribution to the heavy diquark free energies. The amplitude of the
coe cien ts fgg;l get smaller with increasing temperature. While the sex-
tet coe cien t ng; , Is always positive and approadesthe asymptotic clus-
ter value very quickly, the anti-triplet coe cient is negative for very small
distancesand changesthe sign at someintermediate distancer between
r ¥2=1andr ¥ = 1:5. The position of the null r 172 shows only little

dependenceon the temperature. If at all then the data suggestthat r 172
tends to smaller valueswith increasingtemperature.

According to (4.49) we may interpret this change of sign in the following
way. If is small or even zeroand if the two heavy quarks are very closeto
ead other, the particle resenoir provides the systemwith additional light

quarks suc that

av;3

f 24
NS = %+ O()>0: (4.61)

Here Ng&'*®is the number of light quarks in the color averagedand anti-
triplet caserespectively. This behavior is dierent from the QQ-system



64 CHAPTER 4. HEAVY QUARKS

where N(’; = O0for = Owith x = av;1.

The two heavy quarks try to form a trialit y zero state with one of the
provided light quarks. If on the other hand the QQ-separation becomes
very large, the formation of a baryon is unlikely. In this casethe two heavy
quarks try to build two mesonic states with anti-quarks from the particle
resenoir. This is why we obsene a negative total light quark number in the
systemewen if the value of is positive but small.

Ng® <0: (4.62)

In g. 4.34the rst order coe cien ts of the color averagedfree energiesare
shown in units of the temperature. Becauseof eq. (4.61) f =T is just the
light quark numberat = 0. In g. 4.35we shaw the light quark number at
= 0 for the smallestavailable separationr and for the in nite separation
of the QQ-pair. We see,that the light quark number is consistert with the
assumption that in the limit T ! 0, the QQ-pair in a color averaged or
anti-triplet  state picks up exactly onelight quark if r is small and picks up
exactly two light anti-quarks if r becomesin nite.
For a diquark in a sextet state this consideration does not hold. At least
for temperaturesabove T, the sextet free energyis not only repulsive in the
Oth order but a medium with anti-quarks is always preferred by the sextet
QQ-pair. The reasonis, that the formation of a color singlet state made up
of a diquark in a sextet and a third quark in a triplet state is impossible.
This is due to the reduction rule

3 6=8 10: (4.63)

On the other hand a color singlet does exist if the diquark is a color anti-
triplet

3 3=1 8: (4.64)

The question of the binding properties of the sextet QQ-pair belov T, re-
mains still open.

Becausethe absolute value of f J5., is maximum at T, we concludethat the
uctuations in the light quark number are largest at T¢, namely we have

D E av;3;6
N av:3:6 2 N &v:3:6 2 = l% .
q q T @2 °

av;3;6

= 2 QTQj O(): (4.65)

which is always positive for small
The third order coe cien ts fgg;S have the opposite sign of the rst order

coe cien ts and the fourth order coe cien ts fgg;4 have the opposite sign of
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the secondorder ones. This holdsboth for anti-triplet and sextetcoe cien ts.
5th and 6th order result have the same signs as the 1st and 2nd order
respectively. The coe cien ts of order greater than one seemto follow the
rule of thumb that the sign ips wheneer the order is increasedby two.
The large distance asymptotic values of the coe cien ts are determined by
tting the valuesover the v e largest distancesto a constart. The results
areincluded in gs. 4.19to 4.21. They are consistert with the free energies
of two single heavy quarks.
In g. 4.33we shaw the free energiesat T, for typical valuesof = 0:4 and
= 0:4 comparedto the = 0 case.We include all available orders from
0 to 6 in this calculation. For other temperaturesthan T. the -e ects are
smaller. We seethat the free energygetsloweredasin the QQ-casebecause
the main cortribution stems from the secondorder in =T . Nevertheless
the rst orderleadsto a signi cant di erence betweenpositive and negative
quark chemical potential.
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Figure 4.23: Oth order coe cien ts of the artitriplet and sextet color free
energy calculated from the Polyakov loop correlations.
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Figure 4.30: 4th order correction of heavy quark-quark free energiesabove
Te.
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4.7 Screening of diquark free energies

In analogyto the heavy quark anti-quark free energythe anti-triplet diquark
free energyful lls a screeninglaw of the form
Féo(iT: ) = Féo@:T; ) Fdo(rT: );

Fle m3(T )i (4.66)
BecausngQ(r;T; ) alsocontains odd ordersin =T we expectthe screening

massm3(T; ) to be of the form

(T; )= mY(T)+ M)+ my(T) = "+ 0 (4.67)

T T
The Oth order screeningmassm$(T) is equal to the screeningmassmg(T)
as discussedin [51]. Following section 4.4 we determine the higher order

coe cien ts of m3(T; ) by solving (4.66) for m3(T; ) and taking the in nite
distance limit. We then have

m3(T) = lim m3 . (r;T): (4.68)

The expressionsfor the e ective massesmg . (r;T) are similar to those in
the QQ case,apart from contributions of odd orderswhich are zeroin (4.31).

1 80 )

3 . —
mg 4(rT) = 3 — (4.69)
r 2fQQ;O(r,T) 3
3 . 3 Ty 2
ey = tateedlT ol TeealnT) g, 4,
r f3iT) 2 g0 T)

As an examplewe shaw the e ective massedor T=T. = 1:11in g. 4.70. We
determine the large distance limit by tting the ratios in (4.70) to a con-
stant. In comparisonto the QQ-casethe in nite distance limit is reached
at larger separationsrT. Near T, we have to choosethe left border of our
t window at rT = 0:9 for m$ and at rT = 0:7 for m3. The right border we
always place at the maximum distance. With increasing temperature the
left border of the t window can then be shifted further to the left. For
T=T. > 1.5 a t over the full range of distancesis possiblefor both of the
coe cien ts.

The rst order correction to the screeningmassis exclusively negative. This
meansthat for small the screeninglength of a QQ-pair increasesif the
number of light quarks in the medium is increased. At large temperatures
m3(T) approadiesvery small values. We cannot conclude whether there is
an asymptotic value which is signi cantly dierent from zero. At T=T; = 3
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horizontal line represerts the in nite distance limit.
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westill havem$ = 0:0020(20)but at T=T, = 4wehavem$ = 0:0156(16).
To our knowledge perturbativ e predictions for the screeningmassm?(T; ),
which may be gaugedependert, do not exist. Neverthelesswe obsene that
the valuesfor the secondorder coe cien ts of QQ and QQ are in almost per-
fect agreemen This is quite remarkable, becausem3 has got cortributions
from rst order correctionsin the free energy which were absert in m3.
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Figure 4.37: 1st and 2nd order correction of the anti-triplet screeningmass.
The secondorder is comparedto the screeningmassof a QQ-pair in the
singlet state.
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4.8 The singlet free energies of three heavy quarks

The singlet free energiesFéQQ of three heavy quarks in a singlet state are
calculated from the correlation function

1

N0
NO,

3trL(x)tr [L(y)L(z)] 3trL(y)tr [L(x)L(2)]
3trL(z)tr [L(x)L(y)] + tr [L(x)L(y)L(2)]
+r [L(X)L(2)L(Y)] ; (4.71)

C(ngQ(rlzi r13;r23) 9trL(x)trL(y)trL(z)

N O extends over all positions x;y;z of the three heary quarks which lead
to the samequark-quark separationsr1o;r13;ro3, Whererj is the distance
betweenthe quarksi and j, i.e. rip = jx yj. In the following we will

restrict to thosesinglet free energiesin which the three quarks are placedon
the cornersof an equilateral triangle such that r1» = ry3 = rp3. Furthermore
we will usethe perimeterr = rio+ riz+ rpz = 3rj asparameter instead
of r12;rq13 Or ros.

As can be seenfrom ¢g. 4.38 and 4.39 the Oth order coecients are T

independent at short distancesand féQQ;n for n 1 approades zero for
r ! 0. This behavior could be obsened for the QQ-singlet free energies,
too. In any casewe seethat the surrounding medium has no in uence on
small colorlessheavy quark states.

Due to the small number of data points per temperature a quartitativ e
estimate of the asymptotic value of féQQ;n is dicult especially for low
temperatures and odd n. Neverthelesswe seethat our coe cien ts are still

consistent with the expansioncoe cien ts of 3Fo(T; ), which is the expected
cluster value.

At = 0 the singlet free energy FéQQ(r ;T; ) can be comparedto the
free energiesof two heavy quarks. From the lowest non-vanishing order in

perturbation theory the following relation hasbeenproposedat = 0 [51].

Fooo@nT: ) = 3F&o(iT; ) 3Fg(T: ): 4.72)

In g. 4.38(a) we compare the left handside (red closedsymbols) and the
right handside (underlying open grey symbols) of this equality for = 0. In
fact they are in good agreemet We can verify that this relation seemsto
hold also for the secondorderin  (g. 4.39(a)), whereasfor the 1st order
it is violated. Therefore the relation (4.72) doesnot hold for 6 0.

Although we cannot make a quartitativ e analysis of the screening mass
mLQQQ for three heavy quarks, we can still make somestatemerts. The Oth
order m¥QQQ should be equal to m$ because(4.72) is fulllled at = 0.
The e ectiv e massis calculated in the sameway asin the QQ-case.
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For the rst order ofm‘fQQQ we have

féQQ; l(r;T) .

LQQQ . 1y - 4
m_ee(rT)= = —
el r féQQ;O(r,T)

(4.73)

Becauseboth fé;gg;o and fé;gg;l approac their asymptotic values from

below, the rst order correction meQQ is negative. This we obsened for
the heavy diquark, too.
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Figure 4.38: Oth (a) and 1st (b) order of the singlet free energy of three
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Chapter 5

Hadrons

5.1 Meson correlation functions at nite density

On the lattice of hypercubeswith lattice spacing 2a the meson operators
are de ned as

M@= (nm(o £ (n) (5.1

where p and ¢ are products of -matrices which contain the symmetry
properties of the corresponding meson. p acts on the Dirac indicesand ¢
on the avor part of the fermionic elds. We will restrict the discussionto
thecase p = . The mesoncorrelation functions are gaugeinvariant
obsenables.

According to (2.28) the elds ( n) and ( n) can be replacedby the stag-
gered elds. Then the local mesonoperator is

M(@M)="7n) n n; (5.2)

where 7(n) is a phasefactor depending on the choiceof . The mesoncorre-
lation function in the spatial z-direction and at zero transversemomertum
is then obtained as

X
Qz) = M) M (n)M Y(0)0i : (5.3)

ni;N2;N4 ns=z=a

It can be shown that the connectedpart of this correlation function hasthe

form
X
G(2) = ~(n)G(n;0) G(O;n) (5.4)

niN2;N4

The minus sign originates from the transposition of the fermionic elds.
G(n; 0) is the quark propagator

G(n;0) =M n 0j0i =K( )y (5.5)

87
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In this work we use pointlik e quark sourcesfor the quark propagators. The
mesoncorrelation function is therefore gaugeinvariant and there is no need
to x the gaugehere.

For non-vanishing the quark propagator hasthe property

G(m;0) = (MGO;n)’ ; (5.6)
with
(n) = ( yraenernesna (5.7)

A proof of the relation (5.6) for vanishing can be found in [52]. The
generalizationto non-vanishing is straight forward.
Inserting (5.6) into the mesoncorrelation operator we get

X
C(2) = (n)G(n; 0) G(n;0)’ (5.8)

N1;N2;N4

where (n) = (n)7(n). The minus sign originates from the transposition of
the fermionic elds. The valuesof (n) for various choicesof arelisted in
table 5.1. We alsolist the cortributing particle states. Further details canbe
found in [53, 54]. The -dependenceof hadronic correlation function is much

No. =(n) particle states
1 13 ()™ ar; T

2 23 ()™ ar; T

3 43 ()™ a; L

4 1 1 fo;

5 1 ()neTna br; 1

6 > ()mtns br; 1

7 a4 ()mtn2 b; L

8 5 ( )n1+n2+n4 ’

Table 5.1: Meson phasefactors, the partners of ar.. and br.. are also re-
ferredto as , and 1 respectively.

moreinvolved than for the other obsenablesdiscussedsofar. This is because
not only the fermion determinant but also the correlation function C(z)

dependson the quark chemical potential . Namely the quark propagator

is itself -dependert and can be written asa power expansionin

. _ 0 1 2 .
Gno) = GO+l +6% 2+0 3 (5.9)
Expanding eq. (5.6) in powersof we get an alternating sign.

G =( 1) (MGYY for i=012 (5.10)
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Hencethe propagator for the anti-quarks corntains the corresponding adjoint
coe cien ts and the opposite signin front of

Gn;0Y =6% Gty +c% 2 o 3 . (5.11)

Becauseof eq. (5.5) the expansioncoe cien ts Gﬂ;)o are calculated from the
derivatives of the inverseof the fermion matrix, i.e.

o _ 1
Gn;O = K,o o
@(m"
GY = Kpi =Mk i
n; n,m @ J; o
@ _ 1 @ 1@(k;j 1@Km;j 1 .
Gho = Ky K« — K.o ; (5.12)
”' nme @ @ 2 @2 L

where K is the fermion matrix and doubly occuring indices on the right
hand side are implicitly summed. We then have

C(2)= Q@)+ G(2) +G2) 2+0 2 ; (5.13)
which correspondsto the expansion(A.14) and where
0 1
X X ) i)
G(z) = (M@ (1) 1GPyGy YA (5.14)
Nni;n2;na j=0
fori = 0;1;2; . Taking the adjoint of this equation we can immediately

seethat the coe cient Ci(z) of orderi is real for even and imaginary for odd
i. Becausethis also holds for the expansioncoe cien ts D; of the fermion
determinant the -expansionof the expectation value hC.(z)i is also real
in the even and imaginary in the odd orders. Moreover becausehC.(z)i is
an even function in  the odd orders vanish and only the real even orders
remain.

C(2) = hG(2)i = Co@)+ Cal2) = +Ca(2) = +O = (515)

In particlular C¢(z) is real and the coe cien ts C;(z) can be calculated using
eg. (A.18).

5.2 Screening of mesons

On a nite lattice the screeningbehaviour of mesoncorrelation functions at
large distancesz can for staggeredfermions be parametrized as the sum of
an oscillating and a non-oszillating cosh.

Cc(z) = Acosh(maz) + ( )*B cosh(mg?) ; (5.16)
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Figure 5.1: (a): Someexamplesof the Oth order pion correlation function.
(b): Example for the +t;ar-correlation function (seeertry no.l in table
5.1). The multiplicativ e factor of ( 1)?*! has been added to make the
correlation function positive for every value of z. The values of the tting

function at the positions z=a = 0;1;2;

lines for convenience.

;16 are connectedvia straight
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wherez= z N =2. ma and mg are the screeningmassesof the con-
tributing particle states. For small z there may in general be corrections
to this t ansatzresulting from contributions of excited states. In this case
additional cosh'swould have to be taken into account in order to get an
improved t ansatz. Due to the small number of independert data points in
the z-direction we cannot proceedin this way here. Therefore we will only
considerthe t ansatz (5.16) which is valid in the vicinity of 2= 0.
Furthermore, for the screeningbehaviour of the pion (no. 8 in table 5.1)
there is only one lowest contributing state and we can put B = 0 explicitly.
The -dependenceis included in the ansatz (5.16) by assumingpower ex-
pansionsfor the parameters.

2 4
AT ) = AdM+AAT) = +0 = , (5.17a)
2 4
B(T: ) = Bo(M+B2AT) + +0 < ; (5.17b)
2 4
Mma(T; ) = mao(T) + maz(T) T +0 T ; (5.17¢)
2 4
mg(T; ) = mpo(T)+ mp2(T) T + 0 T (5.17d)
Inserting these expansionsinto (5.16) we get
Co(z) = Agcosh(mag?) + ( )*Bgcosh(mgo?) (5.18a)
Co(z) = Ascosh(maoz) + Apmazzsinh(maoz)

+

( )*[B2cosh(mpoz) + Bompozsinh(mgoz)] (5.18b)

For the Oth order we perform 2-ts accordingto eq. (5.18a)using mag, Ao,
mgo and By asparameters. In caseof the pion channel (no.8) wecansetmpgg
and Bg to zero and the oscillating terms drop out. It turns out that apart
from the pion the initial values of our parameters have to be chosenvery
carefully in order to guarantee the corvergenceof the Leverberg-Marquardt
algorithm [55]. We choosethe left and the right borders of our t windows
at +z, and #, symmetric to the point z= 0. We then look for plateaus
in the t parametersasa function of the window size 2z,. Our plateaus are
located in the range z,=a 2 [2; 6].

In g. 5.1 we shav someexamplesof the Oth order correlation functions for
the pion and the rho comparedto the corresponding t results. The middle
points around z=a= 8 match the tting function quite well. The higher the
temperature the more the border points near z=a= 0 and z=a= 16 violate
our t ansatz. On the one hand this is a consequenceof higher excited
states cortributing to the outer points. On the other hand it is related to
the fact that for small meson-mesonseparationsz and high temperatures
the meson correlation function is best described by perturbation theory.
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For very large temperatures we evertually seethe free propagation of the
constituting mesons.

Let Cf (z) the pion correlation function for non-interacting free quarks with
a -expansion

c'(z)=cl(z)+ cl(2) = ‘0 = (5.19)

C' (z) canbecalculated on the lattice by calculating the correlation function

on a unit con guration whereall the links areput to U (n) = 1. In g. 5.2
(a) we calculated the ratio of Cy(z) for sometemperatures and the free cor-
relation Cé(z). We seethat with increasing temperature Co(z) cornverges
slowly to the free correlation Cg (2). This is especially true for the borders
of our z-range where the ratio Co(z):C(f)(z) is closestto one.

Following this consideration especially the border points shawv only the free
propagation of quarks and our t window becomesnarrower if temperature
increases.

The coe cien ts Ag and Bg are temperature dependert. For sometempera-
tures and in somechannelsewven for all temperatures one of the coe cien ts

Ag or By is sewral orders of magnitude greater than the other one. In this

casegood plateauscan only be seenfor that particle state which corresponds
to the greater coe cient. This is why the results shavn in g. 5.4 do not

include all particle states.

The lowest screeningmassis obsened for the pion. Here we seea constart

value of mg=T 4 for temperatures belov T.. At T; the value of mg=T
starts increasing monotonically up to an in nite temperature limit mB=T
which is the samefor all particle states apart from lattice corrections. In

the cortinuum and chiral limit mg is twice the lowest quark momertum

which is twice the lowest Matsubara frequency

mi=2T: (5.20)

In order to determine the 2nd order we t the data of the Oth and 2nd order
to the functional forms (5.18a) and (5.18b) simultaneously. Unfortunately

ts including non-vanishing parametersBg; B>; mgo and mg2 could not be
accomplished. The tting processwas not able to nd a stable minimum

of 2. Therefore we always drop the oscillating terms, i.e. we set By =

B, = mgg = mgo = 0 explicitly. For the pion this is correct. For other
mesonsthis only leadsto good results if the correct value of B is very small
comparedto A. In this way we could get reliable estimatesfor the screening
masscoe cient m», of the meson.

For corveniencewe furthermore replaceeq. (5.18b) by the ratio

Ca(2)
Co(2)

= mazztanh (Mao2) + Az : (5.21)



5.2. SCREENING OF MESONS 93

Thereby the exponertial factor contained in the Oth and 2nd order drops
out. A, = Ay=Ag isthe oset at 2= 0 and ma» is basically the slope of
Cy(2)=Cy(z) near z = 0. We use (5.21) asa t ansatz for C,=Cj in the
vicinity of z= 0.

The statemert that the data points at large temperaturesand small meson

seperations t in the picture of free quark propagation carries over to the
ratio Co(z2)=Co(z). In g. 5.2 (b) we compare this ratio to the free case.
Again we seethat the border points show the characteristics of a free prop-
agation of the quarks.
Fig. 5.3 (a) shawvsthe ratio Co=Cy for the pion at low temperaturesT < 1.2T.
and the corresponding tting functions of the form (5.21). We seethat the
tting functions and the data are in good agreemen For higher tempera-
tures the outer points start to deviate from this behaviour as can be seen
in g. 5.3 (b). Generalizing the results for nite T in [56] to nite  the
cortinuum pseudoscalarmeson correlation function for freely propagating
quarks in the chiral limit hasthe form [57]

N.T

cont —
G (@) 2 z2sinh(2 T2)

fcos(2z )[1+ 2 Tzcoth(2 Tz)]

+2z sin(2z )g: (5.22)
Using T = 1=(N a) and

1 C(:Oﬂt
cpmn= 2E@ (5.23)
! @ =T ) -0
we get
2 3
Ccont 1 2 2
2 @) 1z2y 5 (5.24)
&™) N2 a 1+ 2-Zcoth 2-Z

In g. 5.3(c) weinclude this function asthe red curve. We seethat it is quali-
tativ ely in good agreemem with the ratio C,=C, for the highesttemperature
evaluated by us. Hencewith increasingtemperature we have to restrict our
tting range for the screeningansatz (5.21) to a smaller interval around
#z = 0. We averagethe obtained values for the screeningmass coe cien t
m, over the t results obtained from symmetric t windows with left(right)
borders betweenz=a = 7(+7) and zza = 6(+6) for low temperatures
and betweenz=a= 5(+5) and z=a= 2(+2) for large temperatures.
The results for the screeningmasscoe cien ts for higher temperatures have
to be treated with care as there is a more distinctive dependenceon the
tting range. For T=T; < 1.5 the results are non-amnbiguous.

The result for the secondorder screeningmassof the pion m, and the
transversal -mesonm, are shovn in g. 5.4 (b). They are qualitativ ely in
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Figure 5.2: The Oth order pion correlation function Cy(z) (a) and the ratio
C2(2)=Cy(2) (b) comparedto the free casecalculated on the lattice.
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Figure 5.3: The ratio of C,=Cy for the pion at temperatures T < 1.2T.
including the tting functions (a). For temperaturesT > 1:2T. the screening
ansatz becomesmore and more misleading especially for large z (b). For
very high temperatures (c) the free continuum quark propagator (red line)
is in better agreememn with the data at large z than the screeningansatz
(black line)
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good agreemem with results from QCD-TARO [58].
For both mesonam,=T starts from zeroat low temperaturesand risesquickly
to higher valuesespecially at T.. At T 1:07T. we obsene a small bump
for both particles which could still be a statistical e ect. Below T there is
no signi cant di erence betweenm, and m,. Above T, m, increasesfaster
than m, sud that for temperatures T > 1:2T; m, is almost twice as large
asm,.

This picture results from the t ansatz (5.16) with the assumption of
a -dependent screeningmass. On the other hand in view of eq. (5.22)
the conceptof a -dependent mesonscreeningmassmay be misleading at
least for the caseof free quark propagation. Namely we have for the free
correlation at large distancesz

com(z) :Z—Le MoZ [mgcos(2z ) + 2 sin(2z )] (5.25)

wheremg = 2 T. We seethat the exponertial screeningpart is independert
of and that the -dependenceis contained solely in a factor which is
oscillating in z for 6 0. Therefore the screeningmass cortained in the
exponertial factor is independert of in the in nite temperature limit. On
the one hand our t ansatz (5.16) leadsto a good description of our data.
On the other hand there is no connection of m, to the caseof free quark
propagation so far.

5.3 Nucleon correlation function

For compound patrticles like mesonswhich e ectively cortain two quarks
the total momertum of the constituents is zeroin the rest frame. This does
not hold for particles made up of more than two constituents like baryons.
According to [59] we therefore include the lowest Matsubara frequency for
afermion T in the staggerednucleon propagator in the following way

X
Q(Z) = COS( T ) ij k Gl;i (O; n)Gz;j (O; n)G3;k(O; n) . (5.26)

ni;N2;N4 ng= =a
I’13= Z=a

The quark propagator G,,(0; n) describesthe propagation of a quark with
color a at position 0 to a quark with color bin n.
5.4 Screening of nucleons

On a nite lattice the screeningbehaviour of the nucleoncorrelation function
can be parametrized in the form

Cc(2) = hG(2)i = A e M2+ ()% ma(N  z=a)

+ B ( )Z:ae mp Z:a+ e mB(N Z:a) : (5.27)



98 CHAPTER 5. HADRONS

In contrast to the t ansatz for temporal nucleon-rucleon separations[54]
there are plus signsbetweenthe terms inside the brackets dueto the periodic
boundary conditions in the spatial direction.

In practice we nd that B is in generalmuch smallerthan A. This prevens
our t algorithm to corvergeif we take the full ansatz. Therefore we put
B = 0 explicitly.

Someexamplesof the = 0 correlation function are givenin g. 5.5. We
shaw the absolute value jC(z)j of the correlation function in a logarithmic
plot multiplied with the sign of C.(z).

For low temperaturesthe tting function matchesthe data almost perfectly.
With increasing temperature the data points oscillate around the tting
function dueto a nite value of B which we do not take into accourt here.
Neverthelesswe are allowed to assumethat the extracted valuesfor A and
Mo = ma give us good estimates of the correct values although the value
of 2=d:o0:f: may be quite large. l.e. mq is given by the slope of the tting
function in the region of zza< N =2. The oscillation of the points doesnot
have a large e ect on this slope.

In g. 5.6we show the screeningenergyfor the nucleon. For all tempera-
tures we only seesmall deviations from the freecontinum limit ofmg= 3 T.
We alsotried to get information about the -dependenceof the nucleoncor-
relation funcion C¢(z) by assuming -dependert parametersA; B;ma and
mg. The -expansionshouldin generalinclude non-vanishing even and also
odd ordersin =T . The corresponding n'th order correction of the screening
masswould then be extracted from the ratios C,=Cy. We nd that all these
ratios vanish within statistical errors.
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Chapter 6

Conclusions and outlo ok

This work is devoted to the application of the Taylor expansionin the baryon
chemical potential. Using this method we could extend results obtained at
nite temperature QCD to the caseof non-vanishing baryon densities.

The simplest quantities under investigation are the pressureand particle
number densitiesin a hot and densemedium. Here reliable results could be
obtained up to the 6th order in the baryon chemical potential

Intro ducing a set of static heary quarks and/or anti-quarks into the medium
we could calculate the changesof the free energyin comparisonto a medium
without any heavy quarks. The free energieswere evaluated with respect to
the screeningproperties of the medium. We could give geruine expressions
on how to calculate the corresponding screeningmass coe cien ts exactly.
For temperaturesT > 2T the -expansioncoe cien ts of the screeningmass
of a heavy quark-anti-quark pair could be related to results from high tem-
perature perturbation theory. A non-vanishing 1st order appears in the
screeningmasscoe cien ts of a heary quark pair. This order is totally ab-
sert in high temperature perturbation theory. Neverthelessthe obsened
high temperature limit is zero such that there is no contradiction.
Furthermore we obsenedthat for temperaturesT < T, heavy quarksinduce
the generationof light quarks and/or anti-quarks from the particle resenoir.
This is dueto the fact that at temperature T = 0 only color singlet states of
quarks are stable. Further data at lower temperaturesasthose studied by us
are still desirable. It would alsobe interesting to investigate the coe cien ts
of the local free energydensity in order to localize the induced light quarks.
Finally the screeningof hadron correlation functions was studied. For the
Oth order screening masseswe could get numerous results which are at
high temperature in agreemen with the free propagation of the constituting
quarks. The 2nd order coe cien t m, of the - andthe -mesonshow almost
the samebehaviour belov T.. Above T the m,-value of the becomessig-
ni cantly larger than the value of the . On the one hand an explanation
for this obsenation is missing so far. On the other hand the coe cien ts at

101
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large temperatures have to be treated with care as the free propagation of
quarks starts dominating the correlation functions.



App endix A

Details on the power
expansion in

A.1 Calculation of -expansion coe cien ts

The -dependert expectation value of a complex quantity O is

Z
1 Uo e S

hoi = =~ DUO e °= ; Al

' T Z DU e S ' A1)

whereZ isthe partition function for nite andwhere = (detK ( ))N*=
is the determinant of the fermion matrix. In the following we denote expec-

tation valuesfor vanishing ash i=h i, Wedene
d"In Nt d"IndetK
L = — : A.2
. an o, 4 dn - (A-2)
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The L, can be written astraces over the inverseof the fermion matrix and
its derivatives

L1

Lo

L3

Ls

Le

N 1@& .

TTr K @ N (A.3a)
Neoo 1@K 1@, &

21T K a? K @ K e . (A.3b)
Nf 1@K 1@( 1@K

2T Kilgs X IgK'lgz

2K 1@(}( 1@K 1 &K (A.3c)

6 @ @ 1 @ . (A.3d)
Nf 1@K 1@( 1@K 1@K 1@K
20K ng l%K l%+30|( l%K l%K 1%
1@( 1@( 1@( 1@K
K 1=k 1=k ==
K el e e e
24K 1@(K l@(K 1@(K l@(K 1 &K : (A.3e)

@ @ @e @ @ L

NTfTr K 1% 6K 1%K 1% 15K 1%}( 1%
10K 1%K 1%+ 30K l%K l%K 1%
60K 1%1( 1%K 1%+ 60K 1%K 1%1( 1%
@K @K @K @ @ @&
1 1 1 15N 1= 1=
30K @2K @2K a2 12K @K @K @
@K @ @& @K @K @
1@R 1SN 1SN 1€" 1€ 15N
K Q3 18K @K @K @2K a2 90K @
K 1%1( 1%}( 1%+ 36K 1%}( 1%K 1%
1@ @K 1 &K K&K
K @ K @’ 120K @ K @ K @ K @
K l%K 1% ; (A.3f)
=0
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From
KY() = sK( )s (A.4)
it follows that L, is real for even and imaginary for odd n. Using = €
we nd
() = (0 1+D; +Dz %+ +Dg®+0O(") ; (A5)
where
Do = 1; (A.6a)
Di = Li; (A.6b)
D, = % L2+ Ly ; (A.6¢C)
D3 = % L3+ 3Lilo+ Lg ; (A.6d)
Dy = 2—14 LT+ 6L+ 3L+ 4Lqlz+ Lyg ; (A.6e)
Ds = 1—20 L3+ 1003, + 15045+ 1021 3
+ 10LoLz+ 5Lilg4+ Ls) ; (A.6f)
D¢ = 7—20 LS+ 15L7Lo+ 45L2L2+ 153 + 20L3L 3+ 60L1L oL 5
+10L3+ 15L2L 4+ 15LoL4+ 6Lils+ Lg : (A.60)

We immediately seethat D, is real for even and imaginary for odd n. Be-
cause

Z =Zy 1+D; + Dg® +0(7) (A7)

isrealonehashD i = 0for odd n. We considerthe casewherethe obsenable
O is independent of . The expectation value (A.1) then becomes

. hOi + hOD i + + hODgi 6 7
: A.8
oI 1+ hDyi 2+ + hDgi 6 +00) (A-8)
Expanding in powersof we get
hOi = hOi 1+0; + (D 2+ 0y) 2+ (D 5,01+ 03) 3+ D3 Dy

D505 + 04) 4+ D%Ol D4O;1 D303+ Og >+ D g
+2D2Ds Dg+ D%Oz D40, D204+ Og & 4 O( 7)(A.9)

where we usethe notation

hOD;i
hO -’
Di = HDji: (A.lOb)

(A.10a)
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In the casethat O is strictly real on every con guration OD,, is imaginary
for odd n. In order to keephQOi real hOD,i hasto vanish for odd n and
the precedingexpansionsimpli es to

hOi = hOi 1+ (D 2+ 0Oy) 2+ D5 Dy DO+ 0, *
+ D 3+ 2D,D4 Dg+ D30,
D 402 D04+ Og) ® +0O( 9); (A.11)

i.e. this formula is applicable to the correlation function in (4.20). Because
free energiesare calculated from logarithms of correlation functions we give
here the expansioncoe cien ts of the logarithm of an obsenable O which
can be obtained by inserting the above expansioninto the expansionof the
logarithm. For a generic,not necessarilyreal obsenable the expansionis

1

3o§ 010,+

InhO = InhGi+0; + D, %O%"‘Oz 2 +
1 1 1
03) %+ ZD3 D, >0+ 0%0, 03 0,03
2 4 2
1
+04) 4+ gof 030, + 0,03+ 0203 0,03

1 1
O 104+ Os5) °+ §D§+ D,D4s Dg 6o‘f+ 070;

3 1 1
éo%og + éog 0303 + 20,0,04 Eo§+ 020,

0 ,04 005+ 0g) 8+ 0O( "): (A.12)

For obsenableswhich are real on every con guration and have a real expec-
tation value at every value of this reducesto

. . 1 1
INPOi = IntOi + (D 2+ 0) 2+ D3 D4 03+0, *

1
+ §D§+D2D4 De +

1

303 0,04+ 0g &+ O( 8):(A.13)

Finally we can considerthe casewhere O = O( ) is dependingon explic-
itly . Assuming that we have a Taylor expansion

O()=0p 1+0; +0, 2+ : (A.14)
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and inserting this into (A.8) we get

hOi = hOgi 1+ (Ogy+ O10) + (D 2+ Ogp+ O11+ Ogp) 2
+ (D 2(Opy+ O10) + Opg+ O12+ Opy+ Og0) 3+ D 4+ D3
D 2(Ogz2+ O11+ Oz0) + Ogs + O13+ Opp+ Og+ Oyg) *
+ D2 Dy (Og1+ O1g) D2(Ogz+ O12+ Op1+ Oz0) + Ogs
+014+ O3+ Og2+ Og1+ Osp) °+ D 3+ 2D,D4 D
+ D2 D4 (Opz+ O11+ Op) D3(Ogsa+ O13+ Oz + Oz
+0y0) + Ops+ O15+ O+ O3z + Ogp + Osy + Ogo) °©
+0( ") ; (A.15)

where

hoiD; i

i = "o

(A.16)

If hOi aswell asall the coe cien ts O; are real O; is vanishing for odd j
and we are left with

hO = hOgi 1+ Og9 + (D 2+ Oga+ Oz) 2+ (D 2050+ Oy
+030) 3+ D 4+ D3 Dy(Op2+ Og)+ Opg+ Opp+ Ogp *
+ D3 D4 Oy D3(Og2+ Oz0) + O14+ Ozp+ Osg  °
+ D 3+ 2D;D4 Dg+ D3 Dy (Opz+ Oz) D2(Oos
+ O+ Og0) + Ogs+ Opa+ Og2+ Ogo) 6+ 0O( 8 :  (AL7)

In chapter 5 we are faced with the special casethat O; is real for even and
imaginary for odd i. Then Oj is realif and only if both i and j are even or
both are odd. In particular Oj; is imaginary if only i or only j is even and
the other index is odd. If we demand now that hOi is real for every value
of the imaginary O; have to cancelin someway. Becausethe odd orders
of hGi in the expansion (A.15) are made up of imaginary Oj; only these
orders must vanish. We are then left with

hO = MOpi 1+ (D 2+ Opp+ O11+ Oz) 2+ D 4+ D5 Dy(Oo2
+011+ Op0) + Oga+ O13+ Ozp+ Ogy+ Os0) *+ D 3
+2D,Ds Dg+ D5 Dy (Ogz+ O11+ Op) D2(Oos+ Og3
+ 022+ O3z + Oyp) + Ogg + O15+ O4+ O3z + Oz + Osy
+0g0) %+ 0O( 8 (A.18)
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App endix B

Tabulated results

B.1

Table B.1: Screening mass coecien ts of the heavy QQ pair in a

singlet state:

Screening mass coe cien ts

T=Tc | m{=T  m3=T mz=T mg=T
1.002| 3.03(32) 1.846(77) -1.28(22)  -0.38(59)
1.02 | 2.95(46) 1.710(53) -0.50(19)  -1.70(71)
1.07 | 3.14(17) 1.034(53) -0.57(18)  -0.09(48)
1.11 | 3.24(26) 0.529(21) -0.32(5) 0.043(81)
1.16 | 3.39(28) 0.427(12) -0.072(18) -0.056(23)
1.23 | 3.16(26) 0.345(12) -0.117(14) -0.022(17)
1.35 | 3.08(24) 0.211(9) -0.038(10) -0.0052(71)
1.50 | 2.90(17) 0.157(7) -0.0255(64) -0.0013(66)
1.65 | 2.84(11) 0.122(5) -0.0233(56) 0.0120(48)
1.81 | 2.85(19) 0.162(5) 0.0176(33) 0.0031(37)
1.98 | 2.57(7) 0.131(3) -0.0006(34) 0.0042(24)
3.00 | 2.46(8) 0.098(3) -0.0013(35) -0.0025(15)
4.01 | 2.34(9) 0.071(2) -0.0084(8) -0.0012(3)
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Table B.2: Screening mass coe cien ts of the heavy QQ pair in a
color averaged state:

T=Tc | m§=T mZ'=T mg'=T
1.002| 2.72(36) -1.15(1.17) 0.44(3.39)
1.02 | 2.90(33) -0.56(1.24) -2.26(4.59)
1.07 | 1.91(44) -1.04(1.56) -0.22(4.26)
1.11 | 1.13(22) -0.63(57) -0.01(92)
1.16 | 1.02(11) -0.21(19) -0.07(24)
1.23 | 0.80(13) -0.24(16) -0.05(23)
1.35 | 0.46(13) -0.02(14) -0.00(11)
1.50 | 0.38(10) -0.13(10) -0.02(10)
1.65 | 0.25(11) -0.07(12) 0.00(9)
1.81 | 0.32(8) -0.01(5) 0.00(7)
1.98 | 0.28(7) -0.01(5) 0.00(5)
3.00 | 0.23(7) -0.02(9) -0.00(4)
4.01 | 0.15(6) -0.01(2) -0.00(1)

Table B.3: Screening mass coe cien ts of the heavy QQ pair in a
anti-triplet  state:

T=T. | m3=T m3=T

1.002| -0.459(56) 1.78(32)
1.02 | -0.354(63) 1.66(22)
1.07 | -0.210(17) 1.20(11)
1.11 | -0.170(12) 0.60(55)
1.16 | -0.138(8) 0.48(38)
1.23 | -0.133(10) 0.37(30)
1.35 | -0.079(6) 0.23(25)
1.50 | -0.062(4) 0.18(19)
1.65 | -0.035(3) 0.13(14)
1.81 | -0.040(4) 0.17(11)
1.98 | -0.042(3) 0.15(14)
3.00 | -0.002(2) 0.10(7)
4.01 | -0.016(2) 0.08(6)
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Table B.4: Oth order screening masses mp=T of mesons:
T=T¢ ag 1 2 T o} ar
0.76 | 3.983(3) 6.248(55) 6.85(57)
0.81 | 3.989(3) 6.163(44) 6.58(22)
0.87 | 4.001(5) 6.101(52) 6.45(12)
0.90 | 4.001(5) 5.970(59) 6.25(11) 8.37(56)
0.96 | 4.085(8) 5.38(90) 5.977(55) 6.17(10) 7.48(40)
1.002 | 4.199(11) 5.09(49) 5.986(37) 6.51(52) 7.26(21)
1.02 | 4.300(12) 5.34(41) 6.032(57) 7.22(75) 7.06(19)
1.07 | 4.562(16) 5.33(20) 6.181(53) 6.96(28) 6.78(15)
1.11 | 4.736(18) 5.37(16) 6.276(51) 6.99(30) 6.71(14)
1.16 | 4.906(22) 5.37(12) 6.359(60) 6.92(15) 6.681(65)
1.23 | 5.119(26) 5.48(13) 6.432(66) 6.84(27) 6.66(14)
1.35 | 5.301(20) 5.521(77) 6.401(62) 6.61(20) 6.559(97)
1.50 | 5.471(24) 5.58(28) 6.493(42) 6.76(12) 6.63(11)
1.65 | 5.590(27) 5.673(97) 6.475(61) 6.71(11) 6.565(86)
1.81 | 5.671(28) 5.72(14) 6.550(56) 6.76(14) 6.62(13)
1.98 | 5.765(32) 5.847(85) 6.516(65) 6.68(11) 6.55(11)
3.00 | 6.075(37) 6.32(42) 6.632(11) 6.67(10) 6.57(11)
4.01 | 6.243(40) 6.19(12) 6.692(61) 6.76(11) 6.70(10)
Table B.5: 2nd order screening masses m,=T of mesons:

T=T,

0.76 | 0.013(13) -0.11(13)

0.81 | 0.060(11) 0.238(90)

0.87 | 0.120(8) 0.28(13)

0.90 | 0.171(15) 0.203(76)

0.96 | 0.344(26) 0.505(89)

1.002 | 0.649(37) 0.727(78)

1.02 | 0.724(29) 0.773(79)

1.07 | 0.864(52) 1.098(47)

1.11 | 0.717(19) 0.948(30)

1.16 | 0.754(24) 1.646(67)

1.23 | 0.800(38) 1.738(90)

1.35 | 1.044(24) 2.037(64)

1.50 | 1.216(16) 2.389(44)

1.65 | 1.334(7) 2.517(45)

1.81 | 1.472(20) 2.70(10)

1.98 | 1.603(31) 2.853(80)

3.00 | 2.058(11) 3.409(28)

4.01 | 2.228(17) 3.726(19)
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Table B.6: 2nd order screening masses m,=T of mesons:

T=T,
0.76 | 0.013(13) -0.11(13)
0.81 | 0.060(11) 0.238(90)
0.87 | 0.120(8) 0.28(13)
0.90 | 0.171(15) 0.203(76)
0.96 | 0.344(26) 0.505(89)
1.002 | 0.649(37) 0.727(78)
1.02 | 0.724(29) 0.773(79)
1.07 | 0.864(52) 1.098(47)
1.11 | 0.717(19) 0.948(30)
1.16 | 0.754(24) 1.646(67)
1.23 | 0.800(38) 1.738(90)
1.35 | 1.044(24) 2.037(64)
1.50 | 1.216(16) 2.389(44)
1.65 | 1.334(7) 2.517(45)
1.81 | 1.472(20) 2.70(10)
1.98 | 1.603(31) 2.853(80)
3.00 | 2.058(11) 3.409(28)
4.01 | 2.228(17) 3.726(19)

Table B.7: Oth order screening masses mo=T of the nucleon:
T=T. | N

0.76 | 9.86(21)
0.81 | 9.70(15)
0.87 | 10.00(20)
0.90 | 9.49(20)
0.96 | 9.34(22)
1.002| 9.28(15)
1.02 | 9.22(20)
1.07 | 9.29(15)
1.11 | 9.29(28)
1.16 | 9.29(26)
1.23 | 9.30(37)
1.35 | 9.45(22)
1.50 | 9.67(32)
1.65 | 9.59(25)
1.81 | 9.73(27)
1.98 | 9.49(31)
3.00 | 9.79(27)
4.01 | 9.95(25)
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