Auswirkungen von Wettbewerb auf Investitionsentscheidungen

Dissertation zur Erlangung des akademischen Grades
"Doktor der Wirtschaftswissenschaften" (Dr. rer. pol.)
vorgelegt von
Dipl. Kfm. Olaf Amling

Universität Bielefeld
Fakultät für Wirtschaftswissenschaften

im März, 2007
Inhaltsverzeichnis

1 Einleitung 1
 1.1 Der Realoptionsansatz ... 1
 1.2 Anwendungsbeispiel .. 4
 1.3 Analogien und Unterschiede zwischen Finanz- und Realoptionen 7
 1.4 Literaturüberblick .. 12
 1.5 Ziel der Arbeit und Überblick 18

2 Bewertungsgrundlagen 23
 2.1 Contingent Claim Analyse .. 23
 2.2 Spieltheorie .. 28

3 Das Modell 39
 3.1 Der Modellrahmen .. 39
 3.2 Net Present Value-Analyse ... 42
 3.2.1 Barwertberechnung .. 42
 3.2.2 Optimale Investitionsstrategie 46
 3.3 Realoptionsbetrachtung ... 59
 3.3.1 Im Monopol ... 59
 3.3.2 Unter Konkurrenz ... 64
 3.3.3 Optimale Investitionsstrategie 73
 3.4 Komparative Statik .. 78
 3.5 Interpretation ... 83

4 Erweiterungen 85
 4.1 Vom Duopol zum perfekten Wettbewerb 85
 4.2 Inhomogene Unternehmen .. 89
 4.2.1 Variable Kosten ... 91
 4.2.2 Investitionsausgaben ... 98
 4.2.3 Markanteil .. 106
 4.3 Begrenzter Zeithorizont / Produktlebenszyklus 111
 4.3.1 Net Present Value-Analyse 112
 4.3.2 Realoptionsberechnung 120
5 Fazit und Ausblick 128

Anhang 132

A Gleichungen und Herleitungen 132
A.1 Die quadratische Gleichung Θ 132
A.2 Gleichungen der Unternehmens- und Optionswerte bei einer direkten Investitionsgelegenheit 132
A.3 Berechnung der Erwartungswerte aus (31) und (32) 134
A.4 Unternehmenswerte/Schwellenwerte für 3 Unternehmen 137
A.5 Inhomogene Unternehmen in Bezug auf die variablen Kosten 140
A.6 Gleichungen der Unternehmenswerte für Firmen mit unterschiedlichem Marktanteil 141
A.7 Investition des Leaders im NPV-Fall für inhomogene Unternehmen (Marktanteil) 142
A.8 Beschreibung der Error-Function erf(x) 143

B Grafiken 144

Literaturverzeichnis 149
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Abbildung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NPV-Struktur</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Unternehmenswerte NPV</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>RO-Monopol</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>RO Nachfolger</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>RO-Innovator</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Investitionsoption/Stillhalterposition</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>RO, $\sigma=0.03$</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Unternehmenswerte RO</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>Optimale Investitionsstrategie</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>Stillhalterposition</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>Unternehmenswerte, inhomogene UN</td>
<td>95</td>
</tr>
<tr>
<td>12</td>
<td>Optimale Investitionsstrategie, inhomogene UN</td>
<td>97</td>
</tr>
<tr>
<td>13</td>
<td>Unternehmenswerte NPV, inhomogene UN</td>
<td>102</td>
</tr>
<tr>
<td>14</td>
<td>Unternehmenswerte RO, inhomogene UN</td>
<td>105</td>
</tr>
<tr>
<td>15</td>
<td>Optimale Investitionsstrategie, inhomogene UN II, NPV</td>
<td>109</td>
</tr>
<tr>
<td>16</td>
<td>Optimale Investitionsstrategie, inhomogene UN II, RO</td>
<td>110</td>
</tr>
<tr>
<td>17</td>
<td>Phasen eines Produktlebenszyklus</td>
<td>113</td>
</tr>
<tr>
<td>18</td>
<td>Produktlebenszyklus, Erwartungswert und Realisation</td>
<td>114</td>
</tr>
<tr>
<td>19</td>
<td>Nachfolger Unternehmenswert und Option, PLZ</td>
<td>118</td>
</tr>
<tr>
<td>20</td>
<td>Optimale Investitionsstrategie, PLZ, NPV</td>
<td>120</td>
</tr>
<tr>
<td>21</td>
<td>Optimale Investitionsstrategie, PLZ, RO</td>
<td>125</td>
</tr>
<tr>
<td>22</td>
<td>Optimale Investitionsstrategie, Investitionsausgaben</td>
<td>144</td>
</tr>
<tr>
<td>23</td>
<td>Optimale Investitionsstrategie, relatives Einsparpotential</td>
<td>145</td>
</tr>
<tr>
<td>24</td>
<td>Optimale Investitionsstrategie, risikoloser Zins</td>
<td>145</td>
</tr>
<tr>
<td>25</td>
<td>Optimale Investitionsstrategie, Opportunitätskosten</td>
<td>146</td>
</tr>
<tr>
<td>26</td>
<td>Optimale Investitionsstrategie, Steigung $D(Q)$</td>
<td>147</td>
</tr>
<tr>
<td>27</td>
<td>Optimale Investitionsstrategie, SMA</td>
<td>148</td>
</tr>
<tr>
<td>28</td>
<td>Optimale Investitionsstrategie, SMD</td>
<td>148</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

1 Ereignismatrix Gefangenendilemma .. 30
2 Auszahlungsmatrix Gefangenendilemma 31
3 Auszahlungsmatrix Kampf der Geschlechter 33
4 Auszahlungsmatrix Kampf der Geschlechter einschl. gemischter Strategien 35
5 Investitionsspiel in strategischer Form 46
6 Auszahlungsmatrix Investitionsspiel, Bereich I 48
7 Auszahlungsmatrix Investitionsspiel, Bereich II 49
8 Investitionsspiel nach Huisman .. 51
9 Investitionsspiel, gemischte Strategien 51
10 Auszahlungsmatrix Investitionsspiel, Bereich III 53
11 Auszahlungsmatrix Investitionsspiel, Bereich IV 55
12 Komparative Statik .. 83
13 Auszahlungsmatrix Investitionsspiel, inhomogene Unternehmen 92
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>ff</td>
<td>folgende Seiten</td>
</tr>
<tr>
<td>FMA</td>
<td>first mover advantage</td>
</tr>
<tr>
<td>NPV</td>
<td>net present value</td>
</tr>
<tr>
<td>PLZ</td>
<td>Produktlebenszyklus</td>
</tr>
<tr>
<td>RO</td>
<td>Realoption</td>
</tr>
<tr>
<td>SMA</td>
<td>second mover advantage</td>
</tr>
<tr>
<td>SMD</td>
<td>second mover disadvantage</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>UN</td>
<td>Unternehmen</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

\(\alpha\) Driftkoeffizient
\(\beta\) Nullstelle von \(\Theta\)
\(\delta\) Dividenden- oder Verfügbarkeitsrendite
\(\Theta\) quadratische Gleichung
\(\sigma\) Diffusionskoeffizient
\(\Phi\) Verteilungsfunktion der Standardnormalverteilung
\(\Omega\) Portfolio
\(a\) Achsenabschnitt der allgemeinen inversen Nachfragefunktion \(D(Y)\)
\(A\) Parameter des Optionswertes bei unendlicher Laufzeit
\(b\) Steigung der allgemeinen inversen Nachfragefunktion \(D(Y)\)
\(B\) Parameter der Stillhalterposition bei unendlicher Laufzeit
\(c(x)\) Call-Option
\(D(Y)\) inverse Nachfragefunktion
\(e\) Ereignis
\(E\) Ereignisraum
\(F(x)\) Unternehmenswert des Nachfolgers (RO)
\(F_b(x)\) Unternehmenswert des Nachfolgers (NPV)
\(F_2(x)\) Unternehmenswert der zwei Nachfolger im Modell mit drei Unternehmen (RO)
\(F_{2b}(x)\) Unternehmenswert der zwei Nachfolger im Modell mit drei Unternehmen (NPV)
\(I\) Investitionsausgaben
\(I_A\) Investitionsausgaben für Unternehmen A
\(I_B\) Investitionsausgaben für Unternehmen B
\(I_L\) Investitionsausgaben des Innovators
\(I_F\) Investitionsausgaben des Nachfolgers
\(k\) variable Kosten
\(k_0\) variable Kosten bei einer Produktion mit der alten Technologie
\(k\) variable Kosten nach Einführung der neuen Technologie
\(K\) Strike-Preis
\begin{itemize}
\item $L(x)$ Unternehmenswert des Innovators (RO)
\item $L_b(x)$ Unternehmenswert des Innovators (NPV)
\item $L_2(x)$ Unternehmenswert der zwei Leader im Modell mit drei UN (RO)
\item $L_{2b}(x)$ Unternehmenswert der zwei Leader im Modell mit drei UN (NPV)
\item $M(x)$ Unternehmenswert eines Monopolisten
\item N Menge aller Spieler
\item $o(x)$ unspezifiziertes Derivat
\item $p(t)$ Preis des Produktes
\item q Wahrscheinlichkeit
\item r risikoloser Zins
\item s_i Strategie Spieler i
\item S Strategieraum
\item $S(x)$ Unternehmenswert bei simultaner Investition
\item $S_F(x)$ Unternehmenswert bei simultaner Investition für das Unternehmen, welches zuletzt investiert hat
\item $S_L(x)$ Unternehmenswert bei simultaner Investition für das Unternehmen, welches zuerst investiert hat
\item t Zeitindex
\item t^* (stochastischer) Zeitpunkt, an dem die Nachfrage den Schwellenwert x^* erreicht
\item t_a Zeitpunkt des Produktionsbeginns
\item t_b Zeitpunkt des Produktionsendes
\item t_M erwartetes Maximum der Nachfrage (PLZ)
\item T Fälligkeitszeitpunkt der Option
\item $u(e)$ Nutzen eines Ereignisses
\item $W(x)$ Unternehmenswert im Status Quo
\item x Wertpapierkurs/Nachfrage
\item x^* optimaler Schwellenwert zur Ausübung der Option
\item x_F Schwellenwert der Trigger-Strategie
\item x_{F1} Schwellenwert des Bereichs der zweiten Trigger-Strategie im Modell mit drei UN (NPV)
\end{itemize}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{F2}</td>
<td>Schwellenwert des Bereichs der ersten Trigger-Strategie im Modell mit drei UN (NPV)</td>
</tr>
<tr>
<td>x_L</td>
<td>Investitionsschwellenwert des Innovators (NPV)</td>
</tr>
<tr>
<td>x_{L1}</td>
<td>Investitionsschwellenwert des Innovators im Modell mit drei UN (NPV)</td>
</tr>
<tr>
<td>x_{L2}</td>
<td>Schwellenwert der zweiten Investition im Modell mit drei UN (NPV)</td>
</tr>
<tr>
<td>x^*_M</td>
<td>optimaler Investitionsschwellenwert im Monopol (RO)</td>
</tr>
<tr>
<td>x_S</td>
<td>Schwellenwert der simultanen Investition (NPV)</td>
</tr>
<tr>
<td>x^*_w</td>
<td>optimaler Investitionsschwellenwert des Konkurrenten</td>
</tr>
<tr>
<td>y</td>
<td>Output</td>
</tr>
<tr>
<td>Y</td>
<td>Gesamtoutput</td>
</tr>
<tr>
<td>z</td>
<td>relatives Einsparpotential in den variablen Kosten</td>
</tr>
<tr>
<td>A</td>
<td>Unternehmen A</td>
</tr>
<tr>
<td>B</td>
<td>Unternehmen B</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Der Realoptionsansatz

4 Vgl. [Mye77].
5 Vgl. Trigeorgis [Tri96] S. 121ff „options on real assets“.
Einleitung

tionsansatz an dieser Stelle eine Erweiterung des Nettokapitalwertkriteriums vor. Die ursprüngliche Entscheidungsregel lautet: Akzeptiere alle Projekte, die einen positiven Beitrag zum Reinvermögen leisten, d.h. deren NPV größer als null ist. Ergänzt um den Flexibilitätswert lautet die modifizierte Regel: Beginne mit einem Projekt, wenn der NPV größer ist als der Optionswert, der durch die Investition verloren geht.

Des Weiteren wies Kester8 darauf hin, dass die Marktwerte von börsennotierten Unternehmen teilweise drei- bis viermal höher waren als die Summe ihrer prognostizierten und diskontierten Einzahlungsüberschüsse. Dies war insbesondere dann der Fall, wenn

6 Vgl. [PS95] oder Summers [Sum87].
7 Vgl. Dixit/Pindyck [DP94] S. 7ff.
8 Vgl. [Kes84] S. 155 Exhibit I.
die Unternehmen hohe Wachstumsraten aufwiesen. Kester führte diesen zusätzlichen Wert auf bereits im Kurs eingepreiste Wachstumsoptionen zurück.

9 Während der Wertanteil von Wachstumsoptionen bei Unternehmen aus der Lebensmittel-Industrie im Mittel lediglich 25% betrug, lag er bei Unternehmen der Elektronik-Branche dagegen weit über 50%.
10 Die bekanntesten sind: Mason/Merton [MM85], McDonald/Siegel [McDS85] oder Brennan/Schwartz [BS85a].
11 Vgl. [BS73] und [Mer73].
12 Vgl. [CRR79].
13 Siehe hierzu Kapitel 1.3 „Analogien und Unterschiede zwischen Finanz- und Realoptionen“.
14 Vgl. u.a. Brennan/Schwartz [BS85a], Paddock/Siegel/Smith [PSM88], Trigeorgis [Tri90] oder Kemna [Kem93].
15 Ausführlich beschrieben in Trigeorgis [Tri96] S. 2ff Table 1.1.
Optionen in ihrer Definition unterscheiden, so ist ihnen allen jedoch gemein, dass sie durch Kombination einfacher Put- und Call-Optionen abgebildet werden können.

Die bekanntesten Monographien zum Thema Realoptionen wurden von Dixit/Pindyck, Trigeorgis, Amram/Kulatilaka und Smit/Trigeorgis\(^\text{16}\). Inzwischen ist der Realoptionsansatz weitestgehend akzeptiert, so dass er auch Einzug in einschlägige finanzwirtschaftliche Literatur wie z.B. Brealey/Myers\(^\text{17}\) gefunden hat. In deutscher Sprache sind zwei Bücher von Hommel (Herausgeber) zum Thema veröffentlicht worden. Es handelt sich dabei um Sammlungen, in denen u.a. Anwendungsbeispiele aus der Praxis von Beratungsfirmen dargestellt werden\(^\text{18}\).

1.2 Anwendungsbeispiel

Um den Unterschied einer Investitionsentscheidung basierend auf dem Realoptionsansatz und dem NPV-Kriterium zu verdeutlichen und die modifizierte Entscheidungsregel des Realoptionsansatzes vorzustellen, soll ein einfaches Beispiel in Anlehnung an Pindyck\(^\text{19}\) betrachtet werden.

Gegeben sei ein Investitionsprojekt zur Einführung eines neuen Produktes. Nach der Installation kann ein Produkt pro Periode für immer hergestellt werden. Die Investitionsausgaben für das Projekt betragen \(I = 100\). Es entstehen keine variablen Kosten, und das Produkt erzielt einen Überschuss in Höhe von \(p\). Der Preis \(p\) sei unsicher, wobei sich die Unsicherheit in \(t = 1\) auflöst. Ab diesem Zeitpunkt bleibt der Preis konstant für \(t = 2\) bis unendlich. In \(t_0\) sei der Verkaufspreis für das Produkt \(p_0 = 10\). In \(t_1\) steigt \(p\) mit einer Wahrscheinlichkeit \(q = 0,5\) auf \(p_{11} = 12\) und fällt mit einer Wahrscheinlichkeit von \((1-q) = 0,5\) auf \(p_{12} = 8\). Für alle weiteren Perioden bleibt der Preis auf dem Niveau von \(t_1\). Der Erwartungswert von \(p_1\) ist \(\mathcal{E}[p_1] = 10\), der risikolose Zins sei \(r = 0,1\). Mit den gegebenen Daten ergibt sich der Nettokapitalwert (NPV) des Investitionsprojektes als

\[
\text{NPV}_0 = -I + \sum_{t=0}^{\infty} \frac{\mathcal{E}[p_t]}{(1+r)^t} = 10.
\]

Da das Projekt einen positiven Beitrag zum Reinvermögen liefert, empfiehlt sich au-

\(^{16}\) Vgl. [DP94], [Tri96], [AK99], [ST04].
\(^{17}\) Vgl. [BM00] Kapitel 21.
\(^{18}\) Vgl. [Hom01] und [Hom03].
grund des Nettokapitalwertkriteriums die Durchführung der Investition in $t = 0$.

Besteht jedoch die Möglichkeit die Investitionsentscheidung bis zum Zeitpunkt t_1 zu verzögern, so wird sich zeigen, dass diese Alternative die Investition in t_0 dominiert. Die Berechnung der Nettokapitalwerte für die beiden Zustände in $t = 1$ ergibt

$$NPV_{11} = -I + \sum_{t=0}^{\infty} \frac{p_{11}}{(1 + r)^t} = 32$$

für den Fall, dass der Preis steigt und

$$NPV_{12} = -I + \sum_{t=0}^{\infty} \frac{p_{12}}{(1 + r)^t} = -12$$

falls er sinkt.

Bei einer Investitionsentscheidung in t_1 würde das Projekt nur unter der Voraussetzung durchgeführt, dass der Preis auf 12 gestiegen ist. Andernfalls würde auf die Durchführung verzichtet. Anhand dieser Differenzierung wird der Optionscharakter des Investitionsprojektes deutlich. Während bei einem gestiegenen Preis das Projekt realisiert wird und das Unternehmen von dem Anstieg profitiert, hat eine negative Preisentwicklung keinerlei Auswirkungen, da in diesem Fall nicht investiert wird. Diskontiert man den Kapitalwert NPV_{11} auf $t = 0$ ab und gewichtet ihn mit der Eintrittswahrscheinlichkeit q ergibt sich\(^{20}\)

$$ENPV_0 = \frac{NPV_{11}}{(1 + r)} q = 14,55.$$

Da sich die beiden Alternativen (Investition in t_0 oder in t_1) gegenseitig ausschließen, zeigt ein Vergleich der beiden Kapitalwerte NPV_0 und $ENPV_0$, dass die Alternative, die Investitionsentscheidung erst in t_1 zu treffen, dominiert. Die Differenz der beiden Kapitalwerte

$$ENPV_0 - NPV_0 = 4,55$$

beziffert gerade den Wert der Flexibilität die Investition zu verschieben (Wert des War-

\(^{20}\) NPV_{12} bleibt unberücksichtigt, da nachdem der Preis gesunken ist nicht mehr investiert wird.
tens). In der Literatur wird der um den Flexibilitätswert erweiterte Nettokapitalwert auch als „expanded net present value“ bezeichnet21.

Im Wesentlichen müssen drei Voraussetzungen erfüllt sein, unter denen das Nettokapitalwertkriterium zu einer suboptimalen Handlungsempfehlung führen kann22.

1. Zeitliche Flexibilität
Duldet die Investitionsentscheidung keinen zeitlichen Aufschub, existieren auch keine Alternativen neben der „jetzt oder nie“ Entscheidung und damit ebenfalls kein Optionswert.

2. Unsichere Zahlungsströme
Bei sicheren Auszahlungen lässt sich der optimale Investitionszeitpunkt deterministisch bestimmen.

3. Irreversibilität der Investition
Ein Unternehmen kann ein einmal initiiertes Projekt nicht wieder rückgängig machen und gleichzeitig die Investitionsauszahlung zurückerhalten. Wenn ein Unternehmen z.B. im Rahmen eines Projektes eine neue Maschine erwirbt, kann es diese zwar wieder veräußern, wird in der Regel jedoch nicht den vollen Kaufpreis erzielen. Man spricht in diesem Fall auch von einer teilweisen Irreversibilität. In der Literatur werden diesbezüglich die Investitionsausgaben auch als „sunk costs“ bezeichnet23. Könnte das Unternehmen aus dem obigen Beispiel die Investition ohne finanzielle Einbußen rückgängig machen, so würde es bereits in $t = 0$ investieren. Damit sichert es sich die Auszahlung von 10 in t_0 und entscheidet erst in t_1, je nach Umweltsituation, ob es die Produktion weiterlaufen lässt oder die Investition rückgängig macht. Der Erwartungswert eines solchen Projekts beträgt

$$-I + p_0 + \left[\sum_{t=1}^{\infty} \frac{p_{11}}{(1+r)^t} + \frac{I}{(1+r)} \right] q = 15, 45.$$

Da dieser größer ist als der des erweiterten NPV, wird deutlich, dass die Investition

\begin{footnotesize}
\end{footnotesize}
in diesem Fall bereits in $t = 0$ durchgeführt werden würde. Je nach dem ob der Preis in der nächsten Periode steigt oder fällt, würde dann weiter produziert oder die Investition rückgängig gemacht werden.

1.3 Analogien und Unterschiede zwischen Finanz- und Real-optionen

Sind die drei oben genannten Voraussetzungen für ein Investitionsprojekt erfüllt, so werden die Parallelen zu einer amerikanischen Call-Option deutlich. Das Unternehmen hat die Möglichkeit innerhalb eines bestimmten Zeitraums die Investitionsausgabe zu tätigen, um damit das Projekt zu initiieren. Entsprechend zahlt der Inhaber einer Option den Basispreis, um das zugrunde liegende Wertpapier\(^{24}\) zu beziehen. Options-typisch besteht für das Unternehmen die Möglichkeit, jedoch keine Verpflichtung zur Durchführung des Projektes. Auf der einen Seite profitiert es dadurch von einer positiven Entwicklung und ist auf der anderen Seite von einer negativen Entwicklung nicht betroffen. Entspricht die Umweltsituation nicht den Vorstellungen des Unternehmens, wird das Projekt nicht durchgeführt und die Investitionsgelegenheit verstreicht ungenutzt. Aus diesem asymmetrischen Chance-/Risikoprofil leitet sich der Wert der Investitionsgelegenheit ab. Selbst wenn der NPV des Projektes negativ sein sollte, besitzt die Investitionsgelegenheit einen Wert. Im Optionskontext spricht man in diesem Fall von einer Option „out of the money“\(^{25}\).

Der nächste Schritt besteht darin, den Wert realer Optionen zu quantifizieren. Aufgrund der beschriebenen Analogien bietet es sich an, auf die Methoden der Optionspreistheorie zurückzugreifen. Dazu muss zunächst überprüft werden, ob die dem Black-Scholes-Modell zugrunde liegenden Annahmen auch im Kontext von Realoptionen an-

\(^{24}\) Abhängig von der Option kann es sich z.B. auch um einen Rohstoff handeln.

Einleitung

wendbar sind. Die wichtigsten sind:

- Die Märkte sind vollkommen und reibungslos.
- Der risikolose Zinssatz ist konstant im Zeitablauf.
- Dividendenzahlungen sind bekannt.
- Das Underlying folgt einem bekannten stochastischen Prozess.
- Die Investoren sind rational.
- Es herrscht Arbitragefreiheit.

Hinter dem Ausdruck „vollkommene Märkte“ verbergen sich eine Reihe weiterer Annahmen, die kurz zusammengefasst werden sollen. Fama und Miller definieren diese wie folgt:

- Die auf dem Markt gehandelten Finanztitel sind beliebig teilbar.
- Informationen stehen jedem Marktteilnehmer zur gleichen Zeit zur Verfügung.
- Es existiert ein einheitlicher Zinssatz für Kapitalaufnahme und -anlage.
- Leerverkäufe sind ohne zusätzliche Kosten möglich.

die Annahme vollständiger Märkte wird gewährleistet, dass die Spanning-Bedingung erfüllt ist.

Wie bei einer Option, deren Underlying keine Dividende ausschüttet, wird im Falle einer negativen convenience yield noch deutlicher, warum eine solche reale Option nicht vor ihrem Laufzeitende ausgeübt wird. In diesem Fall lässt der Optionsinhaber den Halter des Assets die gesamten Lagerkosten bis zum Laufzeitende tragen. Erst dann entscheidet er sich, die Option auszuüben oder nicht. Würde er die Option bereits vorzeitig ausüben, müsste er die Lagerhaltungskosten selbst tragen.

Dixit und Pindyck weisen jedoch auch darauf hin, dass die Verwendung der geometrisch Brownischen Bewegung nicht zwingend notwendig ist, um eine Bewertung durchführen zu können. Sie zeigen in ihrer Arbeit auf, wie eine Bewertung von Optionen mit einem Mean-Reverting- oder Jump-Prozess als zugrunde liegendem Diffusionsprozess durchgeführt werden kann.

Siehe auch Abschnitt 4.3.
Vgl. [BS73].

zess erfolgen kann36. Auch in der vorliegenden Arbeit wird in einer der Erweiterungen in Kapitel vier ein alternativer stochastischer Prozess unterstellt. Dabei soll unter Verwendung eines zeitvarianten Ito-Prozesses der Verlauf eines idealisierten Produktlebenszyklusses abgebildet werden.

Das Unternehmen aus dem obigen Beispiel in Abschnitt 1.2 hat die Möglichkeit in ein Projekt zur Einführung eines neuen Produktes zu investieren. Diese Investitionsgelegenheit wurde als Realoption identifiziert und bewertet. Sie ist jedoch im Gegensatz zur Call-Option nicht exklusiv. D.h. jedes andere Unternehmen könnte eine entsprechende Produktionsanlage erwerben und ebenfalls das Produkt auf dem Markt anbieten. Tritt ein Konkurrent in den Markt ein, führt dies zu einem Absinken der erwarteten Cashflows und damit auch zu einem geringeren Optionswert. Im extremsten Fall, z.B. bei einem sehr engen Markt, könnte die Option gar wertlos werden. Einige Autoren sprechen in diesem Zusammenhang auch von einer „geteilten“-Option38.

Eine Nicht-Exclusivität liegt also immer dann vor, wenn durch das Verhalten eines Konkurrenten der Wert der eigenen Option beeinflusst werden kann. Entscheidend ist dabei nicht ob der Konkurrent ebenfalls über eine entsprechende Option verfügt, sondern allein der Einfluss, der durch sein Verhalten entsteht. Dies trifft jedoch nicht pauschal auf alle Realoptionen zu. Es existieren auch Optionen, die aus sich selbst heraus eine Exclusivität beinhalten. Ein Unternehmen hat z.B. die Möglichkeit sich aus einem Markt zurückzuziehen und seine Produktionsanlagen zu verkaufen. Eine solche Abbruchoption birgt eine Exclusivität in sich, da sie nicht von anderen Unternehmen

36 Vgl. [DP94] S. 161 ff.
38 Vgl. Trigeorgis [Tri96] S. 128ff „shared Option“.
beeinflusst werden kann. Gleiches gilt auch für Produkte, die unter einen Patentschutz fallen39. Hier garantiert das Patent eine befristete Exklusivität.

\section*{1.4 Literaturüberblick}

Bereits Kester weist darauf hin, dass geteilte Optionen für Unternehmen weniger attraktiv und wertvoll sind als exklusive40. Neben dem Hinweis auf die Verbindung zur Optionspreistheorie werden in seiner qualitativen Arbeit jedoch keine konkreten Bewertungsansätze für Realoptionen präsentiert.

39 Unter der Voraussetzung, dass es keine vergleichbaren Produkte oder Substitute gibt.
40 Vgl. \cite{Kes84} S. 156ff.
41 Vgl. \cite{Tri91}.
Erreicht werden kann dieses gewünschte Verhalten durch die Modellierung mittels spieltheoretischer Methoden. Smit und Ankum42 unternehmen einen ersten Schritt in diese Richtung. Sie veranschaulichen anhand eines einfachen numerischen Beispiels über drei Perioden den Einfluss von Wettbewerb auf den Projektwert sowie die optimale Investitionsentscheidung. Grundlage bildet eine Entscheidungsbaum-Analyse sowie die binomiale Optionsbewertung nach Cox, Ross und Rubinstein43. Zwei identische Unternehmen sind nach einer ersten Investition auf einem Markt vertreten. Im Anschluss haben sie die Möglichkeit, in ein Folgeprojekt zu investieren, das eine Erhöhung der Produktionskapazität beinhaltet. Da der zukünftige Cashflow, der durch das Projekt generiert werden kann, unsicher ist, wird diese Investitionsgelegenheit als Erweiterungsoption definiert. Annahmebedingt existiert ein first mover advantage (FMA). D.h. das Unternehmen, welches sich als erstes zur Investition entschließt, kann zunächst einen höheren Cashflow generieren als alle anderen Unternehmen, die später investieren44. Auf die Ursache des FMA oder wie dieser in das Modell einfließt wird dabei nicht näher eingegangen. Wie oben beschrieben ist diese Investitionsoption nicht exklusiv. Entscheidet sich ein Unternehmen zur Investition so verringert sich dadurch der Optionswert für den Konkurrenten.

Im Ergebnis führt der Wettbewerb zu einer frühzeitigen Investition der Unterneh-

43 Vgl. [CRR79].
44 Da in diesem Fall ein Duopol betrachtet wird, existieren hier lediglich zwei Unternehmen.
45 Auf eine exakte Definition der Rahmenbedingungen des Spiels wurde in der Arbeit jedoch ebenfalls verzichtet.
46 Siehe hierzu Abschnitt 2.2. zur Spieltheorie.
men. Anders als bei einer exklusiven Option kann der Wert des Wartens dadurch nicht voll ausgeschöpft werden.

Dixit und Pindyck diskutieren, aufbauend auf eine Arbeit von Smets, ein Modell in kontinuierlicher Zeit. Ähnlich wie bei Smit und Ankum gehen sie von einem symmetrischen Duopol aus. In ihrem Modell haben die beiden Unternehmen die Möglichkeit, in die Einführung eines neuen Produktes mit unendlicher Laufzeit zu investieren. Durch den Einfluss des Wettbewerbers entsteht auch hier ein FMA. Anders als bei Smit und Ankum ergibt sich dieser jedoch durch die Modellierung einer inversen Nachfragefunktion. Das Unternehmen, welches zuerst in den Markt eintritt, kann zunächst einen höhe-

49 Vgl. [Sme91].

In einem zweiten Schritt wird darüber hinaus für den Leader der erwartete Wertverlust, der durch den Eintritt des Konkurrenten entsteht, quantifiziert. Dieser drohende Verlust wird ebenfalls durch eine Option abgebildet. Ermöglicht wird die Berechnung des Optionswertes aufgrund der Tatsache, dass der Schwellenwert des Nachfolgers und damit sein Investitionsverhalten bereits bekannt ist. Gegenüber einer NPV-Betrachtung reduziert sich also der Projektwert des Leaders aufgrund des drohenden Eintritts des Nachfolgers, was zu einer Verzögerung seiner Investition führt.

Als Ergebnis präsentieren Dixit und Pindyck drei unterschiedliche Bereiche der Nachfrage, die jeweils eine eigene Investitionsstrategie erfordern.

Im ersten Abschnitt ist die Nachfrage zu gering, so dass die Investition für die Unternehmen nicht attraktiv erscheint. Beide verzichten auf eine Investition und warten ab wie sich die Nachfrage weiter entwickelt.

Der zweite Bereich ist durch ein Gleichgewicht gekennzeichnet, in dem ein Unternehmen investiert, während das zweite abwartet. Da die Auszahlungen für den Leader jedoch höher sind als für den Nachfolger, sind beide Unternehmen bestrebt die Rolle des Leaders einzunehmen. Würden beide gleichzeitig investieren, wäre die Auszahlung gerin- ger als im Gleichgewicht. Dixit/Pindyck bezeichnen diesen Ausgang der Strategiewahl als „Fehler“. Da im Modell keine Absprachen zwischen den Unternehmen vorgesehen sind, treffen die Autoren eine zusätzliche Annahme, die das Erreichen des Gleichge-

Im dritten Bereich ist die Nachfrage so hoch, dass es auch für den Nachfolger attraktiv ist zu investieren. In diesem Bereich der Nachfrage sind also beide Unternehmen auf dem Markt aktiv.

Anders als bei Smit und Ankum kann hier sowohl der Projektwert als auch das Investitionsverhalten der Firmen in Abhängigkeit des Underlyings\footnote{In diesem Fall die Höhe der Nachfrage.} dargestellt werden. Die Anwendung spieltheoretischer Methoden erfolgt jedoch eher intuitiv. Die zugrunde liegenden Bimatrixspiele werden weder in ihrer Normalform präsentiert noch wird auf die Lösung eines solchen Spiels eingegangen. Des Weiteren wird zwar die Reaktion der Unternehmen in den einzelnen Bereichen beschrieben, auf die Definition einer optimalen gleichgewichtigen Investitionsstrategie wird jedoch verzichtet.

Grenadier\footnote{Vgl. [Gre00].} greift dieses Modell auf und erweitert es um die Möglichkeit der gemischten Strategien\footnote{Siehe hierzu Abschnitt 2.2 zur Spieltheorie.}. In diesem Zusammenhang wird die oben beschriebene Annahme, dass die Wahrscheinlichkeit eines „Fehlers“ gegen null geht, wieder aufgehoben. Während

In Grenadiers Sammlung sind weitere Arbeiten zum Thema enthalten, die sich unter anderem mit Anwendungsbeispielen von Realoptionen im Wettbewerbskontext beschäftigen. So wird z.B. erklärt, wie es beim Bau von Immobilien zu einem Wechsel von Phasen der schnellen Entwicklung und der Inaktivität kommen kann\(^{56}\). Moel und Truffano stellen eine Fallstudie zur Auktion von Schüürfrechten einer Mine in Peru vor\(^{57}\). Im Vordergrund steht hierbei die optimale Bietstrategie unter Berücksichtigung des Verhaltens der Mitbieter.

In einem weiteren Kapitel beschäftigt sich Grenadier mit Informationsasymmetrien\(^{58}\). In diesem Beitrag wird der Frage nachgegangen, in wie weit sich für andere Unternehmen Informationen durch die Ausübung einer Option gewinnen lassen. In einem Teilaspekt dieser Frage wird untersucht, ob dadurch ein Trittbrettfahrerverhalten von weniger informierten Agenten auftreten kann.

Bei Huisman\(^{59}\) steht die Einführung einer neuen Technologie im Mittelpunkt. In den ersten Kapiteln wird das klassische Realoptionsmodell ohne Konkurrenz mit verschiedenen

\(^{57}\) Vgl. [Gre00] Kapitel 8.
\(^{59}\) Vgl. [Hui01].
Annahmen hinsichtlich der neuen Technologie kombiniert. Unsicherheit besteht unter anderem bezüglich der Effizienzsteigerung, die durch die Technologie erreicht werden kann und bezüglich der zeitlichen Verfügbarkeit. Dabei wird die Entscheidung eines einzelnen Unternehmens für eine einmalige und für mehrmalige Investitionen untersucht. Dieses Grundmodell wird durch die Einführung einer zweiten Technologie oder durch im Zeitablauf fallende Investitionsausgaben ergänzt.

Eine gute Zusammenfassung der gesamten Realoptionsthematik liefert das Buch „Strategic Investment“ von Smit und Trigeorgis60, in dem auch eine Reihe der oben genannten Arbeiten diskutiert werden.

1.5 Ziel der Arbeit und Überblick

In der vorliegenden Arbeit soll der Einfluss von Konkurrenz auf den Wert einer Investitionsgelegenheit untersucht werden. Als Entscheidungskriterien zur Beurteilung des Projektes werden zum einen das Nettokapitalwertkriterium und zum anderen der andiskutierte Realoptionsansatz verwendet. Das Nettokapitalwertkriterium ist in der

60 Vgl. [ST04].

Unter Berücksichtigung von spieltheoretischen Methoden soll für beide Bewertungsverfahren eine optimale gleichgewichtige Investitionsstrategie ermittelt werden. Anschließend werden die Strategien der beiden Verfahren miteinander verglichen. In den oben genannten Arbeiten zeichnete sich eine Tendenz ab, in der die Unternehmen versuchen sich bei der Investition zuvorzukommen. Bedingt durch einen FMA will sich jedes Unternehmen die höheren Auszahlungen sichern, indem es als Erstes investiert. Das frühzeitige Investieren ist jedoch ein Verhalten, das dem ursprünglichen Ergebnis des Realoptionsansatzes entgegenläuft. Durch die Definition des Flexibilitätswertes wird ein Unternehmen angehalten die Investition zu verzögern, um neue Information abzuwarten. Dies, so scheint es, ist unter der Einbeziehung eines Konkurrenten nicht mehr möglich.

In der existierenden Literatur beschränken sich die Autoren meist darauf, Methoden zur Bewertung von Realoptionen für verschiedene Situationen aufzuzeigen. Sie vernachlässigen dabei die Frage, inwieweit sich die daraus resultierenden Investitionsentscheidungen noch von denen des NPV-Kriteriums unterscheiden. Diesem Punkt versucht die Dissertation nachzugehen. Führt die Existenz eines Konkurrenten und der Versuch, ihm bei der Investition zuvorzukommen, eventuell dazu, dass auf eine Bewertung mittels des Realoptionsansatzes verzichtet werden kann? Welche Faktoren des Modells verstärken die beobachtete Tendenz, welche schwächen sie ab?

Im Unterabschnitt 2.2. werden einige grundlegende Methoden der Spieltheorie erläutert. Mit Hilfe dieser Methoden ist es möglich, das Verhalten der Konkurrenten zu modellieren. Anstatt Investitionszeitpunkte exogen vorzugeben, können Spieler in einem spieltheoretischen Rahmen auf sich verändernde Umweltbedingungen reagieren. Ihr Verhalten wird endogenisiert. Das zentrale Konzept bildet in diesem Zusammenhang das Nash-Gleichgewicht\(^{64}\). Kennzeichnend für dieses Gleichgewicht ist eine Konstellation, in der sich keiner der Mitspieler durch die Wahl einer anderen Strategie verbessern kann. Nicht immer ist das Nash-Gleichgewicht auch mit der höchstmöglichen Auszahlung für die Spieler verbunden. In solchen Situationen stellt sich die Frage, ob unter anderen Voraussetzungen eine höhere Auszahlung erreicht werden kann. Das bekannteste Spiel dieser Art ist das Gefangenendilemma\(^{65}\), welches sich auch im Modell wiederfinden wird.

Um die einzelnen Spiele zu analysieren, werden die Handlungsmöglichkeiten der Teilnehmer und die aus der Kombination resultierenden Auszahlungen in einer Matrix dargestellt. Dies bietet sich an, da im wesentlichen Spiele mit zwei Konkurrenten und jeweils zwei Handlungsalternativen (investieren / nicht investieren) betrachtet werden. Aufgrund der beschriebenen Struktur werden solche Spiele auch als Bimatrixspiele\(^{66}\) bezeichnet.

\(^{64}\) Vgl. Holler/Illing [HI00] S. 56 ff.

In Kapitel drei wird damit begonnen in Anlehnung an Dixit/Pindyck67 und Huisman68 einen Modellrahmen zu definieren. Ausgangspunkt der Betrachtung sind zwei auf einem Absatzmarkt konkurrierende Unternehmen. Es besteht Unsicherheit über die Höhe der Nachfrage. Beide besitzen die Möglichkeit zur Investition in eine neue Produktionstechnologie, die neben Einsparungen in den Produktionskosten gleichzeitig eine Erhöhung der Kapazitäten mit sich bringt. Zur Vereinfachung der Berechnungen ist der Zeithorizont zunächst unendlich. Es folgt die Bestimmung der optimalen Investitionssstrategie zum einen auf Grundlage des NPV-Kriteriums und zum anderen auf Grundlage des Realoptionsansatzes. Wie bereits oben beschrieben wird sich zeigen, dass eine als Realoption bewertete Investitionsgelegenheit unter Wettbewerb eher durchgeführt wird als eine exklusive. Damit nähert sich das Ergebnis der NPV-Bewertung an und wirft die Frage auf, ob unter dem Einfluss von Wettbewerb der gesamte Realoptionsansatz überflüssig wird und eine Rückkehr zum klassischen Nettokapitalwertkriterium angezeigt ist. In einem weiteren Unterabschnitt wird im Sinne einer komparativen Statik untersucht, welche Parameter des Modells die beobachtete Tendenz unterstützen und welche ihr entgegenlaufen.

Kapitel vier geht der Frage nach, inwieweit die zugrunde liegenden, sehr vereinfachenden Annahmen das Ergebnis beeinflussen. Zu diesem Zweck werden einzelne Annahmen des Modells aufgehoben und die Auswirkungen auf die optimalen Investitionssstrategien untersucht.

In einem ersten Schritt wird die Intensität des Wettbewerbs variiert. Nach der Einführung eines dritten Unternehmens wird argumentativ der Übergang zum perfekten Wettbewerb beschrieben.

In Abschnitt 4.2 wird wieder ausgehend vom ursprünglichen Duopol die Annahme homogener Unternehmen aufgehoben. Eine Differenzierung erfolgt hinsichtlich der Investitionsausgaben, der Produktionskosten und des Marktanteils. In diesem Zusammenhang soll untersucht werden, inwieweit das Unternehmen mit einem Wettbewerbsvorteil (niedrigere Ausgaben/Kosten oder höherer Marktanteil) von diesem profitieren kann und welche Unterschiede sich in Bezug auf die optimalen Investitionsstrategien ergeben.

67 Vgl. [DP94] Kapitel 9.
68 Vgl. [Hui01] Kapitel 7.

Die Arbeit schließt mit einem Fazit sowie einem Ausblick auf mögliche weitere Untersuchungen.
2 Bewertungsgrundlagen

2.1 Contingent Claim Analyse

Zur Bewertung von Investitionsoptionen im Rahmen des Realoptionsansatzes wird auf die Methoden der Optionspreistheorie zurückgegriffen. Diese werden im Folgenden in Form der Contingent Claim Analyse kurz erläutert. Im Anschluss wird die vereinfachte Bewertung einer amerikanischen Call-Option mit unendlicher Laufzeit dargestellt.

Zunächst soll ein beliebiges Derivat \(o(x, t) \) bewertet werden, dessen zugrunde liegendes Wertpapier \(x(t) \) einer geometrisch Brownschen Bewegung folgt

\[
dx = \alpha x dt + \sigma x dz. \tag{1}\]

Der risikolose Zinssatz ist \(r \) und das Wertpapier schüttet eine kontinuierliche Dividende \(\delta \) aus. Als erster Schritt wird ein Portfolio \(\Omega \) bestehend aus \(n \) Anteilen des Underlyings (long) und einem Derivat (short) generiert\(^{69}\).

\[
\Omega(x, t) = nx(t) - o(x, t)
\]

Im Anschluss betrachtet man die Veränderung des Portfolios über einen kurzen Zeitraum \([t, t+dt]\). Insgesamt sind in diesem Zeitraum drei Veränderungen zu beobachten: erstens ändert sich der der Kurs des Wertpapiers, zweitens der des Derivats und drittens schüttet das Wertpapier eine Dividende aus.

Aufgrund der Annahme einer geometrisch Brownschen Bewegung ist die Veränderung des Wertpapiers \(dx \) bereits aus (1) bekannt.

Entsprechend ergibt sich für das Derivat \(do \) aufgrund Itos Lemma\(^{70}\)

\[
do = \left(\frac{\partial o}{\partial x} \alpha x + \frac{\partial o}{\partial t} + \frac{1}{2} \frac{\partial^2 o}{\partial x^2} \sigma^2 x^2 \right) dt + \frac{\partial o}{\partial x} \sigma x dz.
\]

Die Höhe der Dividende, die in diesem Zeitraum ausgeschüttet wird, beträgt \(\delta x dt \).

\(^{69}\) Vgl. u.a. Hull [Hul00] S. 246ff.

\(^{70}\) Vgl. Hull [Hul00] S. 235ff Appendix 10A.
Zusammengefasst ergibt sich die Veränderung des Portfolios, bestehend aus n Anteilen des Underlyings und einem Derivat, über einen kurzen Zeitraum als

$$d\Omega = \left(n\alpha x - \frac{\partial o}{\partial x} \alpha x - \frac{\partial o}{\partial t} - \frac{1}{2} \frac{\partial^2 o}{\partial x^2} \sigma^2 x^2 + n\delta x \right) dt + \left(n\sigma x - \frac{\partial o}{\partial x} \sigma x \right) dz.$$

Wählt man nun $n = \frac{\partial o}{\partial x}$, so entfällt der stochastische Term in Abhängigkeit von dz und es bleibt

$$d\Omega = \left(- \frac{\partial o}{\partial t} - \frac{1}{2} \frac{\partial^2 o}{\partial x^2} \sigma^2 x^2 + \frac{\partial o}{\partial x} \delta x \right) dt.$$

Da diese Veränderung risikolos ist, muss sie unter Abwesenheit von Arbitragemöglichkeiten der risikolosen Verzinsung des Portfolios entsprechen. Folglich gilt

$$\left(- \frac{\partial o}{\partial t} - \frac{1}{2} \frac{\partial^2 o}{\partial x^2} \sigma^2 x^2 + \frac{\partial o}{\partial x} \delta x \right) dt = r \left(\frac{\partial o}{\partial x} x - o \right) dt$$

oder umgeformt

$$\frac{1}{2} \sigma^2 x^2 \frac{\partial^2 o}{\partial x^2} + (r - \delta)x \frac{\partial o}{\partial x} + \frac{\partial o}{\partial t} - ro = 0. \quad (2)$$

Diese Gleichung ist auch als Black-Scholes-Merton-Differentialgleichung bekannt. Die noch zu bestimmende Funktion des Derivats $o(x, t)$ muss diese Gleichung erfüllen.

Bisher ist es nicht notwendig gewesen, das Derivat näher zu spezifizieren. Erst an dieser Stelle wird es erforderlich zu definieren, um welche Form von Derivat es sich handelt. Aufgrund der Spezifikation lassen sich dann Randbedingungen formulieren, mit denen die Funktion des Derivats eindeutig bestimmt werden kann.

Als Beispiel soll eine europäische Call-Option betrachtet werden. Um dies zu verdeutlichen wird die bisher allgemein gehaltene Notation des Derivats $o(x, t)$ durch $c(x, t)$ als Bezeichnung für eine Call-Option ersetzt. Der Wert dieser Option bei Fälligkeit T ist das Maximum aus null und dem Kurs des Underlyings minus dem Strike-Preis K.

\footnote{In der ursprünglichen Form wurde noch keine kontinuierliche Dividende berücksichtigt, so dass der Ausdruck $-\delta$ im zweiten Term nicht enthalten war.}
oder
\[c(x, T) = \max(0, x - K). \]

Mit Hilfe der Randbedingung (2) lässt sich dann die Funktion \(c(x, t) \) bestimmen. In diesem Fall handelt es sich um die Black-Scholes-Optionspreisformel für eine europäische Call-Option, deren Underlying eine kontinuierliche Dividende zahlt. Sie lautet\(^{72}\)

\[c(x, t) = x_t e^{-\delta(T-t)} N(d_1) - Ke^{-r(T-t)} N(d_2) \] (3)

mit
\[d_1 = \frac{\ln(x_t / K) + (r - \delta + \sigma^2 / 2)(T - t)}{\sigma \sqrt{T - t}} \]

und
\[d_2 = \frac{\ln(x_T / K) + (r - \delta + \sigma^2 / 2)(T - t)}{\sigma \sqrt{T - t}} - \sigma \sqrt{T - t}. \]

Unendlicher Zeithorizont

Um die Berechnung der Optionswerte zu vereinfachen wird in vielen Arbeiten zum Thema Realoptionen eine zusätzliche Annahme getroffen: Man geht von einer unendlichen Laufzeit des Projektes aus\(^{73}\). Bedingt durch diese Annahme ist der Wert einer Option heute mit dem Wert der Option morgen identisch, sofern das Underlying innerhalb dieser Zeit unverändert bleibt. Aufgrund dieser Tatsache ist der Wert des Derivats nicht länger von der Zeit abhängig. Der Term \(\partial o / \partial t \) der partiellen Differentialgleichung (2) entfällt und die Gleichung reduziert sich auf eine einfache Differentialgleichung.

\[\frac{1}{2} \sigma^2 x^2 \frac{\partial^2 o}{\partial x^2} + (r - \delta)x \frac{\partial o}{\partial x} - ro = 0 \] (4)

Diese Gleichung lässt sich durch die Funktion \(Ax^\beta \) lösen, wobei \(A \) eine Konstante ist, die noch zu bestimmen ist, und \(\beta \) die quadratische Gleichung \(\Theta \) erfüllen muss\(^{74}\). Augrund der parableförmigen Struktur von \(\Theta \) besitzt die Gleichung zwei Lösungen \(\beta_1 \) und \(\beta_2 \).

\(^{72}\) Vgl. u.a. Chriss [Chr97] S. 180 Display 4.10.1.

\(^{73}\) Dies bezieht sich auf Modelle in kontinuierlicher Zeit. Bei Modellen in diskreter Zeit, wie dem Binomialmodell, wird in der Regel ein begrenzter Zeithorizont unterstellt.

\(^{74}\) Die quadratische Gleichung \(\Theta \) sowie die Lösungen \(\beta_1 \) und \(\beta_2 \) sind im Anhang dargestellt. Siehe auch Dixit/Pindyck [DP94] S. 142.
Die Funktion des Derivats lässt sich dann als Linearkombination der beiden Lösungen darstellen.

\[o(x) = A_1 x^{\beta_1} + A_2 x^{\beta_2} \]

(5)

Zur eindeutigen Bestimmung der Funktion werden wieder die Randbedingungen benötigt. Als Beispiel wird erneut eine Call-Option betrachtet und \(o(x) \) durch \(c(x) \) ersetzt. Neben dem Optionswert soll zusätzlich der optimale Schwellenwert \(x^* \) bestimmt werden, bei dem die Option ausgeübt werden sollte. Insgesamt werden drei Bedingungen benötigt, um die Unbekannten \(x^* \), \(A_1 \) und \(A_2 \) zu bestimmen.

Die erste Bedingung nutzt eine Eigenschaft der geometrisch Brownschen Bewegung aus. Für den Fall, dass \(x \) einmal auf null gefallen ist, kann der Wert nicht wieder ansteigen. Man spricht in diesem Zusammenhang auch von einer absorbierenden Grenze des Diffusionsprozesses. Für eine Call-Option bedeutet ein wertloses Underlying, dass die Option ebenfalls keinen Wert besitzt. D.h. wenn \(x = 0 \) ist, dann ist auch \(c(0) = 0 \). Somit sollte der Optionswert für \(x \to 0 \) auch gegen null konvergieren. Da \(\beta_2 \) aber kleiner als null ist, wird der Ausdruck \(A_2 x^{\beta_2} \) für \(x \to 0 \) unendlich groß oder unendlich klein, je nach dem ob \(A_2 \) positiv oder negativ ist. Um dies auszuschließen muss \(A_2 \) gleich null gesetzt werden.

Der zweite Term aus der Funktion \(c(x) \) verschwindet und es verbleibt die Lösung

\[c(x) = A_1 x^{\beta_1}. \]

Die Funktion des Derivats ist definiert für den Wertebereich von null bis \(x^* \). Bei diesem Wert des Underlyings wird die Option ausgeübt. Der Optionsinhaber zahlt den Strike-Preis \(K \) und erhält das Underlying. Die zustandsabhängige Funktion des Optionswertes lässt sich dann schreiben als

\[c(x) = \begin{cases} A_1 x^{\beta_1} & \text{für } x < x^* \\ x - K & \text{für } x \geq x^*. \end{cases} \]

Aus der Kombination der größer-gleich-/kleiner-gleich-Beziehung lässt sich die zweite, so genannte Value-Matching-Bedingung ableiten. An der Stelle \(x^* \) entspricht der Wert der Option gerade dem Wert des Underlyings minus dem Strike-Preis. Die Bezeichnung „value matching“ ergibt sich also aus der Verbindung der unbekannten Funktion
des Derivats mit der bekannten Auszahlungsfunktion. Damit gilt

$$A_1 x^{\beta_1} = x^* - K.$$

Neben der Value-Matching-Bedingung lässt sich aus dem Schwellenwert x^* eine weitere Bedingung ableiten. Dabei wird die Tatsache ausgenutzt, dass an eben dieser Stelle die Funktion der Option $c(x)$ in die Auszahlungsfunktion $x - K$ übergeht. Folglich muss die Steigung an der Stelle x^* für beide Funktionen identisch sein75. Die dritte Gleichung, auch „Smooth-Pasting-Bedingung“ oder „high-order contact“ genannt, ergibt sich dann als Ableitung der Value-Matching-Bedingung76.

$$\beta_1 A_1 x^{\beta_1 - 1} = 1$$

Durch Einsetzen der beiden Gleichungen und nach einigen Umformungen lassen sich die letzten zwei Unbekannten x^* und A_1 bestimmen. Es ergeben sich

$$x^* = \frac{\beta_1}{\beta_1 - 1} K \quad (6)$$

und

$$A_1 = \frac{x^{1-\beta_1}}{\beta_1}.$$

Anhand dieser Gleichungen lässt sich sehr gut der Unterschied zwischen dem NPV-Kriterium und dem Realoptionsansatz veranschaulichen. In diesem Fall steht x für den Present Value der erwarteten Zahlungsströme aus einem neuen Projekt und K für die Investitionsausgaben. Die NPV-Entscheidungsregel besagt, dass alle Projekte akzeptiert werden sollten, bei denen die erwarteten und diskontierten Zahlungsströme größer sind (wenn auch nur marginal) als die Investitionsausgaben.

Bei einer Betrachtung der Investitionsgelegenheit als Option ergibt sich hingegen eine optimale Investitionsschwelle von $x^* = \frac{\beta_1}{\beta_1 - 1} K$. Da β_1 definitionsgemäß größer eins ist, ist auch der Faktor $\frac{\beta_1}{\beta_1 - 1}$ größer eins. Folglich wird erst bei einem höheren

75 Unter der Voraussetzung, dass es sich bei $c(x)$ um eine stetige Funktion handelt, was hier der Fall ist.

76 Vgl. Dixit/Pindyck [DP94] S. 109.
erwarteten Barwert investiert. Je nach Ausprägung der Parameter r, δ und σ fällt die Differenz mehr oder minder groß aus77. Die Begründung hierfür liegt in der speziellen Berücksichtigung der Unsicherheit, die sich gerade im Flexibilitätswert bzw. dem Wert des Wartens ausdrückt. Dies wird besonders deutlich für den Fall, dass die Varinaz gegen null geht78.

2.2 Spieltheorie

Nach Holler und Illing79 ist der Gegenstand der Spieltheorie die Analyse strategischer Entscheidungssituationen, in denen

1. das Ergebnis von den Entscheidungen mehrerer Entscheidungsträger abhängt, so dass ein Einzelner das Ergebnis nicht unabhängig von der Wahl der anderen bestimmen kann;

2. jeder Entscheidungsträger sich dieser Interdependenz bewusst ist;

3. jeder Entscheidungsträger davon ausgeht, dass alle anderen sich ebenfalls der Interdependenz bewusst sind;

4. jeder bei seinen Entscheidungen (1), (2) und (3) berücksichtigt.

Ursprung für die Entwicklung der Spieltheorie80 war die Veröffentlichung der Arbeit „The Theory of Games and Economic Behaviour“ im Jahre 1944 von John von Neumann und Oskar Morgenstern81. Mit ihr wurde die Grundlage geschaffen, eine Spielsituation mathematisch zu beschreiben, um sie anschließend analysieren zu können. 1950 lieferte Nash durch die Formulierung einer Gleichgewichtsbedingung einen entscheidenden Beitrag zur Lösung nichtkooperativer Spiele82. In den darauf folgenden Jahren blieb die Spieltheorie zunächst ein relativ isoliertes Forschungsgebiet mit wenig Einfluss auf die Wirtschaftswissenschaften. Erst durch eine Fokussierung auf die Informationen der einzelnen Spieler wurde sie wieder in den Mittelpunkt auch wirtschaftswissenschaftlicher

77 Siehe hierzu auch Abschnitt 3.4 „Komparative Statik“.

78 Siehe dazu auch Abschnitt 3.3.2 Abbildung 7.

79 Vgl. [HI00] S. 1ff.

80 Vgl. Rasmusen [Ras89] S. 13ff.

81 Vgl. [vNM44].

82 Vgl. [Nas50].
Betrachtungen gerückt. Auslöser waren die Arbeiten von Selten83, Harsanyi84, Krebs und Wilson85 sowie Kreps, Milgrom, Roberts und Wilson86. Aufgrund ihrer Leistungen im Bereich der Spieltheorie wurden Nash, Selten und Harsanyi 1994 mit dem Nobelpreis für Wirtschaftswissenschaften ausgezeichnet.

Ausgangspunkt einer spieltheoretischen Betrachtung sind strategische Entscheidungssituationen (Spiele) zwischen rationalen Parteien (Spielern). Dabei können die Parteien z.B. Unternehmen, Personen oder die Natur sein. Wie eingangs beschrieben ist das charakteristische einer solchen Spielsituation, dass das Ergebnis durch die Entscheidungen der anderen Spieler beeinflusst wird und alle Spieler sich dieses Umstandes bewusst sind. D.h. jeder Spieler muss bei seiner Entscheidung auch die möglichen Entscheidungen seiner Mitspieler berücksichtigen.

Wie bei jedem Spiel steht am Anfang die Definition der Regeln. Diese lassen sich am einfachsten anhand eines Beispiels erläutern87. Das bekannteste Beispiel aus der Spieltheorie ist wohl das Gefangenendilemma (prisoners dilemma). Ausgangspunkt ist folgende Situation:

Zwei Kriminelle werden verdächtigt, gemeinsam ein schwere Straftat begangen zu haben. Sie wurden beide vorläufig festgenommen und befinden sich in Einzel-Untersuchungshaft. Die Beweise reichen allerdings nicht aus, um eine Verurteilung zu erreichen. Im Verhör werden den Verdächtigen ihre Alternativen aufgezeigt. Sie können entweder schweigen oder gestehen, dass sie die Tat gemeinschaftlich begangen haben. Sollten beide schweigen erwartet sie eine geringe Haftstrafe (1 Jahr) wegen kleinerer Vergehen. Gestehen beide, müssen sie mit eine hohen Haftstrafe (5 Jahre) rechnen, wobei der Staatsanwalt in diesem Fall nicht die Höchststrafe beantragen wird. Für den Fall, dass nur einer die Tat gesteht, greift eine Kronzeugenregelung. Der Geständige erhält eine Bewährungsstrafe (6 Monate), während der zweite zur Höchststrafe (10 Jahre) verurteilt wird.

83 Vgl. [Sel65].
84 Vgl. [Har67], [Har68a] und [Har68b].
85 Vgl. [KW82].
86 Vgl. [KMRW82].
87 Die folgende Einführung ist angelehnt an Holler/Illing [HI00] S. 2ff.
Formal wird das Spiel im Rahmen der Spieltheorie wie folgt beschrieben: Zunächst sind an dem Spiel zwei Spieler \(N = \{1, 2\} \) beteiligt. Sie treffen ihre Entscheidungen gleichzeitig und es ist keine Kooperation möglich. Ihre Handlungsalternativen (gestehen/ schweigen) bezeichnet man als Strategien \(s_i, i \in N \). Alle Strategien bilden zusammen den Strategieraum \(S_i = \{s_{i1}, s_{i2}\} \). Die beiden Strategien gestehen/schweigen sind reine Strategien. Im Gegensatz dazu bezeichnet man die Auswahl einer Strategie durch einen Zufallsmechanismus als gemischte Strategie. Kann sich der erste Verdächtige nicht entscheiden ob er gestehen soll oder nicht und überlässt die Entscheidung dem Wurf einer Münze, so spielt er ein Spiel mit gemischten Strategien. In diesem Fall spielt er beide Strategien mit der Wahrscheinlichkeit 0,5. Er randomisiert zwischen den reinen Strategien. Haben sich beide Spieler für eine Strategie entschieden, so folgt aus der Kombination ein Ereignis \(e \in E \). Die Gesamtheit aller möglichen Ereignisse wird als Ereignisraum \(E \) bezeichnet. Im Fall von zwei Spielern lässt sich der Ereignisraum gut in einer Ereignismatrix wie in Tabelle 1 darstellen.88

Um eine Aussage über die Präferenzen der Spieler treffen zu können, muss den Ereignissen zuvor noch ein Nutzenindex \(u_i(e) \) zugeordnet werden. Im Beispiel ist dies recht einfach, da jeder Spieler nur eine möglichst kurze Zeit im Gefängnis verbringen möchte. Da die Nutzen-Metrik in diesem Fall unerheblich ist, solange die Ordnungsrelation erhalten bleibt, können für den Nutzen die folgenden Werte gewählt werden: Es sei \(u_i(10 \text{ Jahre}) = 1, u_i(5 \text{ Jahre}) = 2, u_i(1 \text{ Jahr}) = 3 \) und \(u_i(6 \text{ Monate}) = 4 \). Damit lässt sich aus der Entscheidungsmatrix eine Auszahlungsmatrix ableiten, die in Tabelle 2 dargestellt ist.

88 Im Folgenden ist Spieler 1 jeweils der Zeilen- und Spieler 2 der Spalten-Spieler. Des Weiteren gibt der erste Eintrag der Ereignis- bzw. der Auszahlungsmatrix den Wert für Spieler 1 und der zweite den für Spieler 2 an.
Des Weiteren wird angenommen, dass den beiden Spielern die Auszahlungen ihres Mitspielers bekannt sind. Sie verfügen damit über vollständige Informationen. Da sie allerdings nicht beobachten können, für welche Strategie sich der andere entscheidet, liegt ein Spiel mit imperfekten Informationen vor.

Eine Lösung des Spiels besteht darin, jedem Mitspieler eine Handlungsanweisung zu geben, welche Strategie er wählen soll. Die Auszahlungsvektoren von Spieler 1 in Abhängigkeit seiner Strategie lauten $u(s_{11}) = \{2; 4\}$ und $u(s_{12}) = \{1; 3\}$. Unabhängig davon, welche Strategie der Mitspieler wählt, kann sich Spieler 1 besser stellen, in dem er Strategie 1 (gestehen) wählt. Sie dominiert die zweite Strategie. Da die Auszahlungen für Spieler 2 identisch sind, gelten für ihn die gleichen Überlegungen. Er wird ebenfalls gestehen und s_{21} wählen. Die Strategiekombination (s_{11}, s_{21}), in Tabelle 2 fett gekennzeichnet, ist damit eine Lösung des Spiels. Gleichzeitig ist die Lösung auch ein Gleichgewicht, da sich keiner der beiden Spieler durch die Wahl einer anderen Strategie verbessern kann. Man spricht in diesem Fall auch von einem Gleichgewicht in dominanten Strategien.

Ein weiteres Lösungskonzept ist das von Nash89 formalisierte und nach ihm benannte Gleichgewicht. Es ist wie folgt definiert: Ein Nash-Gleichgewicht ist eine Strategiekombination s^*, bei der jeder Spieler eine optimale Strategie s^*_i wählt, gegeben die optimalen Strategien aller anderen Spieler. Es gilt also

$$u_i(s^*_i, s^*_{-i}) \geq u_i(s_i, s^*_{-i}) \quad \forall i \land \forall s_i \in S_i.$$

Demnach kann ein Spieler in einem Nash-Gleichgewicht keinen höheren Nutzen erreichen, wenn er von der Gleichgewichtsstrategie abweicht, gegeben dem Fall, dass alle anderen Spieler ebenfalls ihre Nash-Gleichgewichtsstrategien spielen.

89 Vgl. [Nas50].

Ein frisch verliebtes Paar hat sich für den Abend verabredet, aber leider vergessen einen Treffpunkt auszumachen. Da sie auch vergessen haben ihre Telefonnummern auszutauschen, haben sie keine Möglichkeit mehr sich abzusprechen (Spiel ohne Kooperation). Lediglich die Uhrzeit wurde festgelegt. Von dem Mann (Spieler 2) ist bekannt, dass er Fußballfan ist. Da an diesem Abend ein Spiel stattfindet besteht eine Alternative darin, zur verabredeten Uhrzeit zum Stadion zu fahren (s_{11}). Die Frau (Spieler

\footnote{Da dieser Fall im nachfolgenden Modell nicht auftritt, wird an dieser Stelle nicht weiter auf diese Möglichkeit eingegangen. Es sei nur erwähnt, dass eine Lösungsmöglichkeit eines solchen Spiels darin besteht, gemischte Strategien zuzulassen. Können die Spieler zwischen den reinen Strategien randomisieren, existiert ein Gleichgewicht in gemischten Strategien. Vgl. u.a. Holler/Illing [HI00] S. 66ff.}
1) ist zwar kein großer Fußballfan, aber sie würde sich freuen ihren Freund wieder zu
sehen \(u_1(s_{11}|s_{21}) = 2 \). Noch besser würde es ihr allerdings gefallen mit ihm zusam-
mien in den neuen Film zu gehen \((s_{12}) \), über den sie am Nachmittag gesprochen hatten
\(u_1(s_{12}|s_{22}) = 3 \). Für den Mann verhält es sich umgekehrt. Zwar möchte er sie auch
auf jeden Fall wieder sehen, aber am liebsten beim Fußballspiel \(u_2(s_{21}|s_{11}) = 3 \). Oder
soll der doch zum Kino fahren \(u_2(s_{22}|s_{12}) = 2 \)? Die schlechteste mögliche Konstellati-
on für beide wäre jedoch, wenn sie sich verpassen würden. In diesem Fall könnte sich
weder der Mann besonders über das Fußballspiel freuen, noch die Frau über den Film
\(u_1(s_{12}|s_{21}) = u_2(s_{22}|s_{11}) = u_1(s_{11}|s_{22}) = u_2(s_{21}|s_{12}) = 1 \).

Es ist davon auszugehen, dass sich die Spieler der Präferenzen des Partners und den
einschließlich der Auszahlungen bewusst sind. Damit liegt wie beim Gefangenendilemma
ein Spiel mit vollständigen Informationen vor. Analog kann auch die Strategiewahl des
Mitspielers nicht beobachtet werden. Somit verfügen die Spieler über unvollständige Infor-
mationen. In Tabelle 3 ist die Auszahlungsmatrix für die vier möglichen Ereignisse
dargestellt.

<table>
<thead>
<tr>
<th></th>
<th>Fußball</th>
<th>Kino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fußball</td>
<td>2 / 3</td>
<td>1 / 1</td>
</tr>
<tr>
<td>Kino</td>
<td>1 / 1</td>
<td>3 / 2</td>
</tr>
</tbody>
</table>

Tabelle 3: Auszahlungsmatrix Kampf der Geschlechter

Es lassen sich sofort die beiden in der Tabelle fett gekennzeichneten Nash-Gleichge-
wichte erkennen, in denen das Paar entweder zusammen ins Kino oder zum Fußball
geht. Da sie sich jedoch vorher bezüglich ihrer Strategie nicht absprechen können, kann
es sein, dass keines der beiden Gleichgewichte realisiert wird. Es bleibt ihnen nichts
anderes übrig, als zufällig eine Strategie auszuwählen.

Das Randomisieren zwischen reinen Strategien bezeichnet man als gemischte Strate-
gie. Dabei wird jeder Strategie \(s_{ij} \) eine Wahrscheinlichkeit zugeordnet \((\sum_j s_{ij} = 1) \). Ein
Gleichgewicht in gemischten Strategien entsteht, wenn beide Spieler ihre Wahrschein-

\[u_1(s_{12}|s_{21}) < u_1(s_{11}|s_{21}) \]
\[u_2(s_{21}|s_{12}) < u_2(s_{22}|s_{12}) \].
lichkeiten so wählen, dass keiner einen Anreiz hat seine Strategie zu verändern. Der Unterschied zum Nash-Gleichgewicht besteht darin, dass dort jeweils die beste Antwort auf eine Strategie des Mitspielers ermittelt wurde. Im Fall von gemischten Strategien wird sich zeigen, dass es dem Spieler egal ist, welche Strategie er wählt, wenn sein Mitspieler die Gleichgewichtsstrategie spielt. Es existiert somit keine beste Antwort, sondern er ist indifferent zwischen allen reinen und gemischten Strategien.

Bevor das Gleichgewicht in gemischten Strategien berechnet wird sei noch ange-

Zur Berechnung des Gleichgewichts wird zunächst der erwartete Nutzen von Spieler 1 in gemischten Strategien betrachtet. q_1 bezeichnet dabei die Wahrscheinlichkeit mit der Spieler 1 die Strategie Fußball wählt und entsprechend $(1 - q_1)$ die Wahrscheinlichkeit für die Strategie Kino; analog q_2 und $(1 - q_2)$ für Spieler 2. Damit ergibt sich

$$\mathcal{E}(u_1) = 2q_1q_2 + q_1(1 - q_2) + (1 - q_1)q_2 + 3(1 - q_1)(1 - q_2).$$

Zusammengefasst lässt sich der Ausdruck schreiben als

$$\mathcal{E}(u_1) = 3q_1q_2 - 2q_1 - 2q_2 + 3.$$ (7)

Spieler 1 maximiert den Erwartungswert seines Nutzens über seine Strategie, was den Ausdruck

$$\frac{\partial \mathcal{E}(u_1)}{\partial q_1} = 3q_2 - 2 = 0$$

und damit

$$q_2 = \frac{2}{3}.$$
liefer. Eine analoge Berechnung für Spieler 2 führt zu $q_1 = \frac{1}{3}$. Auffällig ist hier, dass die Bedingung erster Ordnung für Spieler 1 nicht von ihm selbst erfüllt werden kann. Wie beschrieben führt diese gemischte Strategie des Mitspielers dazu, dass Spieler 1 gerade indifferent in seiner Strategiewahl ist. Dies lässt sich zeigen, indem der erwartete Nutzen der beiden reinen Strategien s_{11} und s_{12}, gegeben die gemischte Strategie von Spieler 2, berechnet wird:

$$E\left(u_{11} | q_2 = \frac{2}{3}\right) = \frac{2}{3} \cdot 2 + \frac{1}{3} \cdot 1 = \frac{2}{3}$$

$$E\left(u_{12} | q_2 = \frac{2}{3}\right) = \frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 3 = \frac{2}{3}.$$

Dadurch, dass der Erwartungswert der beiden reinen Strategien identisch ist, besitzt natürlich auch jede gemischte Strategie einen erwarteten Wert von $\frac{1}{3}$. Spieler 1 kann sich also nicht durch die Wahl einer bestimmten Strategie besser stellen. Spielt er selbst die gemischte Strategie $q_1 = \frac{1}{3}$, so trifft dies auch für seinen Mitspieler zu. Diese Strategiekombination beinhaltet damit beste Antworten und bildet somit ein Gleichgewicht in gemischten Strategien. Noch deutlicher wird dies, wenn die gemischten Strategien mit in die Auszahlungsmatrix von Tabelle 3 aufgenommen werden. Dabei kennzeichnet s_1^* die gemischte Strategie von Spieler 1 mit $s_{11} = \frac{1}{3}$ und entsprechend s_2^* die von Spieler 2 mit $s_{21} = \frac{2}{3}$, dargestellt in Tabelle 4.

<table>
<thead>
<tr>
<th></th>
<th>s_{21}</th>
<th>s_{22}</th>
<th>s_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_{11}</td>
<td>$2 / 3$</td>
<td>$1 / 1$</td>
<td>$1\frac{2}{3} / 2\frac{2}{3}$</td>
</tr>
<tr>
<td>s_{12}</td>
<td>$1 / 1$</td>
<td>$3 / 2$</td>
<td>$1\frac{2}{3} / 1\frac{1}{3}$</td>
</tr>
<tr>
<td>s_1^*</td>
<td>$1\frac{1}{3} / 1\frac{2}{3}$</td>
<td>$2\frac{1}{3} / 1\frac{2}{3}$</td>
<td>$1\frac{2}{3} / 1\frac{2}{3}$</td>
</tr>
</tbody>
</table>

Tabelle 4: Auszahlungsmatrix Kampf der Geschlechter einschl. gemischter Strategien

Hierbei erkennt man, dass sich kein Spieler im Gleichgewicht aus gemischten Strategien verbessern kann, indem er von diesem abweicht. Auf der anderen Seite kann er sich aber auch nicht verschlechtern. Seine Auszahlung ist also unabhängig von seiner Strategiewahl. Damit stellt sich die Frage, warum er gerade die Gleichgewichtsstrategie
spielen sollte. Der einzige Grund hierfür kann nach Holler und Illing nur darin bestehen, dass dem Mitspieler keine Möglichkeit geboten wird sich zu verbessern92. Weicht der Spieler von der Gleichgewichtsstrategie ab, so hat auch der Mitspieler einen Anreiz abzuweichen um sich zu verbessern. Da dies negative Auswirkungen auf die Auszahlung haben könnte, besteht für beide ein Anreiz die gemischte Gleichgewichtsstrategie zu wählen.

92 Vgl. [HI00] S. 69ff.
sich an eine Absprache zu halten. Selbst wenn die beiden verabreden sollten zu schweigen, so könnte sich jeder besser stellen indem er die Vereinbarung bricht. Es fehlt an Kontrolle über die Einhaltung der Strategie des Mitspielers. Befinden sich die Verdächtigen wieder alleine im Verhör, kann sich keiner der beiden Spieler mehr sicher sein, ob sich der andere auch an die abgesprochene Strategie hält.

Anders als bei den Gleichgewichten in dominanten Strategien oder nach Nash muss bei der Trigger-Strategie eine weitere entscheidende Voraussetzung erfüllt sein. Während erstgenannte Gleichgewichte auf einmalige Spiele anwendbar sind, erfordert die Trigger-Strategie eine ständige Wiederholung. Dies folgt aus dem Umstand, dass ein Abweichen von der Gleichgewichts-Strategie erst in der nächsten (und allen weiteren) Perioden
3 Das Modell

3.1 Der Modellrahmen

Als Grundlage dient das von Dixit/Pindyck eingeführte Modell, bei dem zwei Unternehmen in kontinuierlicher Zeit um den Markteintritt konkurrieren94. In Anlehnung an Huisman sollen die beiden Unternehmen hier jedoch bereits am Markt aktiv sein95. Statt des Markteintritts besteht für sie nun die Möglichkeit in eine neue Technologie zu investieren und damit ihre Produktion auszuweiten. Im weiteren Verlauf der Arbeit wird sich zeigen, dass, bedingt durch die Erweiterungsinvestition, eine optimale Strategie beobachtet werden kann, die bei einer einfachen Investitionsgelegenheit nicht zu beobachten wäre96. Um diese Unterschiede deutlich zu machen, wird am Ende des Abschnitts 3.2.2 und des Abschnitts 3.3.3 noch einmal kurz auf die optimale Investitionsstrategie bei einer direkten Investitionsgelegenheit eingegangen. Schwerpunkt der Betrachtung bleibt jedoch eine Erweiterungsinvestition, wie sie bei Huismann modelliert wurde.

Im Einzelnen lauten die Annahmen wie folgt:

$$dx = \alpha x dt + \sigma x dz$$

Der Driftkoeffizient α und der Diffusionskoeffizient σ bleiben im Zeitablauf konstant.

94 Vgl. [DP94] Kapitel 9.
96 Siehe dazu die Abschnitte 3.2.2 und 3.3.3 „Optimale Investitionsstrategie“.
Der Preis des Produktes, der den Markt räumt, ergibt sich als

\[p(t) = x(t)D(Y), \]

wobei \(D \) der nicht stochastische Teil der inversen Nachfragefunktion und \(Y \) der Gesamtausstoß ist. Die Funktion \(D \) sei monoton fallend und linear.

Beide Unternehmen besitzen die Möglichkeit in eine neue verbesserte Produktionstechnologie zu investieren. Durch den Einsatz der neuen Technologie sinken die variablen Kosten auf \(k_1 \) (\(k_0 > k_1 \)) und die Produktionskapazität verdoppelt sich. Für ein Unternehmen, welches in die neue Technologie investiert hat, sei es immer profitabel, die volle Kapazität zu produzieren. Für \(Y \) ergeben sich damit die möglichen Werte 2 (kein Unternehmen verwendet die neue Technologie), 3 (ein Unternehmen hat investiert) oder 4 (beide produzieren mit der neuen Technologie). Die Investitionsausgaben für die Technologieeinführung betragen \(I \) und bleiben im Zeitablauf ebenfalls konstant. Eine einmal getätigte Investition kann nicht wieder rückgängig gemacht werden und ist damit irreversibel.

Als weitere Größe bezeichne \(r \) den risikolosen Zinssatz. Um zu verhindern, dass der Barwert des Projektes unendlich groß wird, muss gelten \(r \geq \alpha \). Andernfalls würde sich keine ökonomisch sinnvolle Lösung ergeben. Die Differenz aus \(r \) und \(\alpha \) sei \(\delta \).

\[r = \alpha + \delta \quad (8) \]

Ein entscheidender Unterschied zwischen den beiden Modellen von Dixit/Pindyck und Huisman besteht, wie bereits angesprochen, in der Definition der Ausgangssituation. Im letztgenannten Modell sind beide Unternehmen bereits auf dem Markt aktiv. Investiert ein Unternehmen, so führt die Erweiterung der Kapazität und die damit verbundene Erhöhung des Angebots zu einem sinkenden Preis. Vom gesunkenen Preis ist auch das zweite Unternehmen betroffen, dessen Cashflows sich dadurch verringern.

Erzielt das zweite Unternehmen jedoch wie im Modell von Dixit/Pindyck noch keine Cashflows, so hat auch der Markteintritt des Konkurrenten keine direkten Auswirkungen. Die Investitionsgelegenheit hat zwar zwar an Wert verloren und muss neu bewertet

\[Y = y_1 + y_2. \] Zu Beginn gilt \(y_1 = y_2 = 1 \) und damit \(Y = 2 \).

\[\text{Die Möglichkeit, dass gar nicht produziert wird, da die Kosten den Preis übersteigen, wird in diesem Zusammenhang nicht berücksichtigt.} \]
werden, aber davon abgesehen bleibt die Ausgangssituation gleich. Anders bei Huisman: Der gesunkene Cashflow des zweiten Unternehmens lässt eine Investition attraktiver erscheinen und führt damit zu einer Verschärfung des Wettbewerbs.

Ein weiterer Unterschied des vorliegenden Modells zu dem von Huisman besteht in der Modellierung der inversen Nachfragesumme. Bei Huisman existiert an Stelle der Funktion $D(Y)$ lediglich ein Parameter D, welcher in Abhängigkeit der bereits getätigten Investitionen definiert ist99. Dabei handelt es sich um eine Aggregation der verschiedensten Faktoren, die nicht näher erläutert werden. Aus der Definition einer Ordnungsrelation100

\[D_{10} > D_{11} > D_{00} > D_{01} \]

lässt sich lediglich ableiten, dass eine Investition mit höheren Cashflows verbunden ist, und dass der Anreiz besteht als erster zu investieren (FMA).

Durch diese Form der Modellierung geht ein Großteil der Intuition in Bezug auf den Einfluss der Nachfrage verloren. Darüber hinaus lassen sich aufgrund der Aggregation einzelne Aspekte wie der Einfluss von Produktionskosten, die Ausprägung der Nachfragekurve (bzw. die Höhe des FMA) oder die Auswirkungen der neuen Technologie nicht untersuchen. Aus diesem Grund wird das vorliegende Modell wie beschrieben erweitert.

99 Im Modell von Huisman kann der Parameter D die folgenden Ausprägungen annehmen: D_{00} - keiner hat investiert, D_{10} - das betrachtete Unternehmen hat investiert, D_{01} - der Konkurrent hat investiert und D_{11} - beide haben investiert. Vgl. [Hui01] S. 163ff.

100 Vgl. [Hui01] S. 163 (7.5) und (7.6).
3.2 Net Present Value-Analyse

3.2.1 Barwertberechnung

Zu Beginn soll der NPV für die drei verschiedenen Szenarien berechnet werden, in denen entweder kein, ein oder beide Unternehmen in die neue Technologie investiert haben. Optionen spielen bei dieser Bewertung zunächst keine Rolle. Unter der Annahme, dass die beiden Unternehmen ausschließlich aus diesem einen Projekt bestehen, kann auch vom Unternehmenswert gesprochen werden.

1. Szenario:
 Keiner der beiden Konkurrenten hat sich bisher für die neue Technologie entschieden. Dieser Zustand wird als Status Quo bezeichnet und der Wert der Unternehmen, der in diesem Fall für beide gleich ist, sei $W(x)$.
 Der Gesamtoutput ist $Y = 2$ und die Produktion verursacht variable Kosten in Höhe von k_0. Das erwartete Wachstum der Nachfrage beträgt α. Der Diskontierungsfaktor ist r. Damit ergibt sich bei unendlicher Laufzeit ein erwarteter Cashflow aus dem Verkauf der Produkte von
 \[
 \mathcal{E} \left[\int_0^\infty x(t)D(2)e^{-rt}dt \right] = \frac{xD(2)}{\delta}.
 \]
 Da die variablen Kosten deterministisch sind, werden sie mit dem risikolosen Zinssatz abdiskontiert und es ergibt sich
 \[
 \int_0^\infty k_0 e^{-rt}dt = \frac{k_0}{r}.
 \]
 Zusammengefasst beträgt der Unternehmenswert
 \[
 W(x) = \frac{xD(2)}{\delta} - \frac{k_0}{r}. \tag{9}
 \]

2. Szenario:
 Eines der beiden Unternehmen hat die neue Technologie eingeführt. Abgeleitet aus dem technologischen Vorsprung wird es als Innovator oder Leader bezeichnet, während das zweite Unternehmen noch mit der alten Technologie produziert. Der Unternehmenswert des Innovators sei $L_b(x)$. Neben dem Cashflow aus den
verkauften Produkten und den variablen Kosten müssen beim NPV noch zusätzlich die Investitionsausgaben berücksichtigt werden. Im Vergleich zum Status Quo können aufgrund der erweiterten Kapazität zwar zwei Produkte pro Zeiteinheit produziert und abgesetzt werden, aber das gestiegene Angebot hat zur Folge, dass der Preis sinkt \(D(3) < D(2) \). Des Weiteren sind die variablen Kosten zwar gefallen, müssen aber jetzt für die doppelte Produktionsmenge berücksichtigt werden. Insgesamt ergibt sich

\[
L_b(x) = \frac{2xD(3)}{\delta} - I - \frac{2k_1}{r}.
\]

Das zweite Unternehmen, das noch mit der alten Technologie produziert, erhält in diesem Szenario die Bezeichnung Nachfolger oder Follower. Der Nachfolger muss nicht zwangsläufig auch in die Technologie investieren. Der Name soll lediglich verdeutlichen, dass der Konkurrent bereits investiert hat. Unter welchen Bedingungen sich der Nachfolger ebenfalls zur Investition entschließt, wird sich im Folgenden zeigen. An seinem Unternehmenswert \(F_b(x) \) ändert sich im Vergleich zum Status Quo lediglich der Preis, der für das Produkt erzielt wird und es gilt

\[
F_b(x) = \frac{xD(3)}{\delta} - \frac{k_0}{r}.
\]

3. Szenario:

Der Nachfolger hat nachgezogen und ebenfalls die neue Produktionstechnologie eingeführt. Weil jetzt beide Unternehmen die neue Technologie verwenden, wird diese Situation auch als simultane Investition bezeichnet. Der Unternehmenswert \(S(x) \) ist, aufgrund der Annahme homogener Unternehmen, wieder für beide identisch. Im Vergleich zur Leader/Follower Kombination fällt der Preis bei der simultanen Investition erneut auf \(xD(4) \). Beide Unternehmen produzieren jetzt mit der maximalen Kapazität \(Y = 4 \) und es gilt

\[
S(x) = \frac{2xD(4)}{\delta} - I - \frac{2k_1}{r}.
\]

\(^{101}\) Der Index \(b \), wie auch bei \(L_b(x) \), zeigt an, dass es sich hier um den Barwert im NPV-Fall handelt, bei dem jeglicher Wert durch eine mögliche Option unberücksichtigt bleibt. Bei der Berechnung der Unternehmenswerte mittels des Realoptionsansatzes entfällt dieser Index.
Bei genauerer Betrachtung der vier Barwerte fällt auf, dass es sich um einfache lineare Funktionen mit zwei unterschiedlichen Achsenabschnitten handelt. Es gilt speziell

\[0 > W(0) = F_b(0) > L_b(0) = S(0). \]

Damit das Modell seinen Zweck erfüllt, muss für die Unternehmen ein Anreiz bestehen bei einer bestimmten Nachfrage zu investieren. D.h. der Unternehmenswert des Leaders muss mit steigender Nachfrage größer werden als der im Status Quo. Auf die Funktionen der Barwerte bezogen folgt daraus, dass die Steigung \(\frac{2D(3)}{\delta} \) größer sein muss als \(\frac{D(2)}{\delta} \). Für eine lineare inverse Nachfragefunktion der Form

\[D(Y) = a - bY \]

ergibt sich daraus die Bedingung

\[a - 4b > 0. \]

(14)

Ist diese Bedingung nicht erfüllt, würde keines der beiden Unternehmen zu keiner Zeit die Investition in Erwägung ziehen. Dies lässt sich auch auf eine andere, intuitivere Art zeigen. Durch einfaches Umformen der Ausgangsbedingung

\[\frac{2D(3)}{\delta} > \frac{D(2)}{\delta} \]

erhält man

\[xD(3) > 0,5xD(2). \]

Ökonomisch interpretiert bedeutet dies: Eine Investition in die doppelte Ausbringungsmenge erscheint sinnlos, falls der Preis durch das zusätzliche Angebot um mehr als 50\% sinkt. Ist die Bedingung nicht erfüllt, wird folglich niemals investiert.

Soll auch für den Nachfolger bei ausreichend hoher Nachfrage eine Investition profitabel werden, so kann hierfür ebenfalls eine Bedingung formuliert werden. In diesem Fall muss die Steigung der Barwertfunktion bei simultaner Investition \(\frac{2D(4)}{\delta} \) größer sein als die des Nachfolgers \(\frac{D(3)}{\delta} \). Einsetzen der allgemeinen Gleichung für die Funktion der
inversen Nachfrage (13) liefert die Bedingung

\[a - 5b > 0. \] (15)

Im weiteren Verlauf der Arbeit wird sich zeigen, dass es wünschenswert wäre, wenn der Unternehmenswert im Fall einer simultanen Investition bei entsprechend hoher Nachfrage größer werden würde als der im Status Quo. Analog zu den obigen Fällen liefert das Einsetzen der inversen Nachfrage die noch strengere Bedingung

\[a - 6b > 0. \] (16)

Erfüllt die inverse Nachfragefunktion diese letzte Bedingung, so weisen die Unternehmensbarwerte die in Abbildung 1 dargestellte Struktur auf.

Abbildung 1: NPV-Struktur
3.2.2 Optimale Investitionsstrategie

Nachdem die Unternehmenswerte in Abhängigkeit der Nachfrage berechnet wurden, kann nun die optimale gleichgewichtige Investitionsstrategie für beide Unternehmen bestimmt werden. Da die erwarteten Cashflows neben der eigenen Investitionsentscheidung auch von dem Verhalten des Konkurrenten abhängen, lässt sich die Situation durch ein Bimatrixspiel beschreiben. Wie im Gefangenendilemma und beim Kampf der Geschlechter verfügen die Unternehmen über vollständige Informationen, da die Auszahlungen des Konkurrenten jeweils bekannt sind. Aber anders als in diesen beiden Spielen ist die Strategiewahl des Mitspielers beobachtbar. Investiert ein Unternehmen, steigt die angebotene Menge und der Preis sinkt. Der Nachfolger registriert aufgrund des gesunkenen Preises, dass sein Konkurrent investiert hat. Es handelt sich folglich um ein Spiel mit perfekten Informationen.

Die Spieler $i = \{1, 2\}$ wählen gleichzeitig aus dem Strategieraum S zwischen den Alternativen „investieren“ s_{i1} und „nicht investieren“ s_{i2}. Der Ereignisraum E besteht aus den drei oben beschriebenen Szenarien. Daraus wiederum resultieren die erwarteten Auszahlungen $W(x)$, $L_b(x)$, $F_b(x)$ und $S(x)$. Die strategische Form des Spiels ist in Tabelle 5 abgebildet.

<table>
<thead>
<tr>
<th>investieren</th>
<th>nicht investieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(x) / S(x)$</td>
<td>$L_b(x) / F_b(x)$</td>
</tr>
<tr>
<td>$F_b(x) / L_b(x)$</td>
<td>$W(x) / W(x)$</td>
</tr>
</tbody>
</table>

Tabelle 5: Investitionsspiel in strategischer Form

Ähnlich wie beim erweiterten Gefangenendilemma kann es zu einer Wiederholung des Spiels kommen. Dies ist der Fall, wenn sich beide Spieler für die Alternative „nicht investieren“ entscheiden. Die Unternehmen behalten sich damit die Möglichkeit vor, zu einem späteren Zeitpunkt zu investieren und das Spiel wird wiederholt. Im Extremfall, wenn sich eine Investition auch in Zukunft nicht lohnt, kann das Spiel unendlich oft wiederholt werden, ohne dass eines der beiden Unternehmen investiert. Anders als beim erweiterten Gefangenendilemma endet das Spiel jedoch, wenn beide Spieler investiert haben. Eine Investitionsentscheidung ist in diesem Zusammenhang irreversibel. Hat nur ein Spieler investiert, so endet das Spiel für ihn und nur noch der zweite Spieler hat

Ist die oben beschriebene Bedingung (16) erfüllt, existieren genau vier unterschiedliche Bereiche der Nachfrage, für die jeweils eine eigene Investitionsstrategie formuliert werden kann. Der Bereich der Nachfrage, in dem die Produktionskosten bereits im Status Quo den Preis übersteigen, wird hier nicht berücksichtigt. Dargestellt sind die Bereiche in Abbildung 1. Im Einzelnen lauten die Grenzen der Bereiche wie folgt:

- Kennzeichnend für Bereich I ist, dass im Status Quo der Wert der Unternehmen am höchsten ist. Es gilt $W(x) > L_b(x)$.

- Der Beginn von Bereich II ist dadurch charakterisiert, dass der Wert des Leaders dem des Status Quo entspricht $W(x) = L_b(x)$. Mit steigender Nachfrage wird der Wert des Leaders dann größer als der im Status Quo $W(x) < L_b(x)$. Als zweite Bedingung ist in diesem Bereich der Wert der simultanen Investition kleiner als der Wert des Nachfolgers $S(x) < F_b(x)$.

- Im Bereich III ist der Wert der simultanen Investition zwar größer bzw. gleich dem Wert des Nachfolgers, jedoch kleiner als im Status Quo $F_b \leq S(x) < W(x)$.

- Bereich IV beginnt bei der Nachfrage, die zu einem Wert der simultanen Investition führt, der mindestens so hoch ist wie der im Status Quo $S(x) \geq W(x)$, und ist nach oben nicht begrenzt.

Nach der Einteilung der Nachfrage in vier Bereiche kann jetzt damit begonnen werden, für jeden einzelnen Abschnitt die optimale und gleichgewichtige Investitionsstrategie zu formulieren.
Bereich I
Da hier der Preis, der für das Produkt erzielt werden kann, eine Investition nicht recht-
fertigt, verzichten beide Unternehmen auf die Durchführung und der Status Quo bleibt
erhalten. Charakteristisch für diesen Bereich ist die Bedingung
\[W(x) > L_b(x). \]

Das Einsetzen der Gleichungen (9) und (10) für die Unternehmenswerte liefert nach
einigen Umformungen die Bedingung
\[x < \left(I + \frac{2k_1-k_0}{r} \right) \delta \frac{\delta}{2D(3) - D(2)}. \] (17)

Im Bereich I ist die Nachfrage demnach kleiner als der berechnete Schwellenwert.

Die Strategie der Unternehmen, nicht zu investieren, wird durch die Spieltheorie
bestätigt. Im Bereich I gelten folgende Größenrelationen102:
\[S(x) < L_b(x) < F_b(x) < W(x). \]

Das Einsetzen beliebiger Werte, die lediglich die Relationen erfüllen müssen, z.B. \(S(x) = 1, L_b(x) = 2, F_b(x) = 3 \) und \(W(x) = 4 \), liefert das Spiel
\[
\begin{array}{c|cc}
\text{investieren} & 1 / & 1 & 2 / 3 \\
\text{nicht investieren} & 3 / & 2 & 4 / 4 \\
\end{array}
\]

Tabelle 6: Auszahlungsmatrix Investitionsspiel, Bereich I

Die Strategie „nicht investieren“ \(u_i(s_{i1}) = \{3; 4\} \) dominiert offensichtlich die Alternative
„investieren“ \(u_i(s_{i2}) = \{1; 2\} \). Das Gleichgewicht in dominanten Strategien \((s_{12}, s_{22}) \), in
Tabelle 6 fett gekennzeichnet, ist gleichzeitig auch ein Nash-Gleichgewicht103. Für beide

102Mit steigender Nachfrage findet ein Relationenwechsel zwischen \(L_b(x) \) und \(F_b(x) \) statt \([L_b(x) > F_b(x)]\). Bezogen auf die optimale Investitionsstrategie ergeben sich daraus jedoch keinerlei Ver-
änderungen. Obwohl eine Investition mit steigender Nachfrage attraktiver erscheint, so bleibt der
erwartete Barwert im Status Quo zunächst noch am höchsten. Erst wenn sich dieses Verhältnis
umkehrt endet der erste Bereich.

103Ein Gleichgewicht in dominanten Strategien ist immer auch ein Nash-Gleichgewicht. Vgl. hierzu
Unternehmen gilt in diesem Fall: „Nicht investieren“.

Bereich II
Erreicht die Nachfrage den in (17) bestimmten Schwellenwert, entspricht der Unternehmenswert des Leaders gerade dem im Staus Quo $L_b(x) = W(x)$. An dieser Stelle beginnt der zweite Bereich. Der Eintrittsschwellenwert soll mit x_L bezeichnet werden und es gilt

$$x_L = \frac{\left(I + \frac{2k_1-k_2}{r}\right)}{2D(3) - D(2)}.$$

(18)

Steigt die Nachfrage weiter an, so dass $L_b(x) > W(x)$ ist, besteht ein Anreiz die Investition durchzuführen und die Rolle des Innovators zu übernehmen.

Die Größenrelationen der Unternehmenswerte weisen dann folgende Struktur auf:

$$S(x) < F_b(x) < W(x) \leq L_b(x).$$

Mit den Werten $S(x) = 1$, $F_b(x) = 2$, $W(x) = 3$ und $L_b(x) = 4$ ergibt sich das Spiel in strategischer Form wie in Tabelle 7 dargestellt.

<table>
<thead>
<tr>
<th></th>
<th>investieren</th>
<th>nicht investieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>investieren</td>
<td>1 / 1</td>
<td>4 / 2</td>
</tr>
<tr>
<td>nicht investieren</td>
<td>2 / 4</td>
<td>3 / 3</td>
</tr>
</tbody>
</table>

Tabelle 7: Auszahlungsmatrix Investitionsspiel, Bereich II

Man erkennt sofort die beiden Nash-Gleichgewichte in reinen Strategien. Diese sind in der Auszahlungsmatrix fett gekennzeichnet. Im Gleichgewicht investiert eines der beiden Unternehmen, während das andere abwartet.

Lässt man zusätzlich gemischte Strategien zu, so existiert wie in Abschnitt 2.2 gezeigt ein drittes Gleichgewicht. Welches dieser Gleichgewichte letztendlich realisiert wird ist dabei nicht eindeutig und hängt von weiteren Annahmen ab104.104

104 In den beiden im Folgenden genannten Arbeiten wird diese Spielsituation (mit zwei Nash-Gleichgewichten) nicht auf Grundlage einer NPV-Betrachtung, sondern bereits für den Fall von Realoptionen untersucht. Da die Art der Berechnung aber keinen Einfluss auf das spieltheoretische Ergebnis hat, ist es auch auf den vorliegenden Fall anwendbar.

u.a. [HI00] S. 10ff.
Dixit und Pindyck gehen davon aus, dass als Ergebnis jeweils eines der beiden Nash-Gleichgewichte erreicht wird\(^{105}\). In ihrem Modell entscheidet sich ein Unternehmen einen Bruchteil eher die Investition durchzuführen. Welches Unternehmen die Rolle des Innovators übernimmt, ist rein zufällig und kann dabei durch einen Münzwurf entschieden werden. Das zweite Unternehmen registriert die Kapazitätserweiterung des Leaders und wartet zunächst ab, da die simultane Investition mit der schlechtesten möglichen Auszahlung für beide verbunden ist \(u_i(s_{11}, s_{21}) = 1 \). Dixit und Pindyck begründen ihre Annahmen mit dem Hinweis auf eine Arbeit von Fudenberg und Tirole\(^{106}\). Darin wird gezeigt, wie beim Übergang eines Spiels von diskreter in kontinuierliche Zeit die Wahrscheinlichkeit, dass beide Unternehmen zum selben Zeitpunkt investieren gegen null geht. Basierend auf dieser Annahme kommt es im zweiten Bereich niemals zu einer simultanen Investition. Stattdessen wird in jedem Fall eines der beiden Nash-Gleichgewichte realisiert, indem ein Unternehmen investiert, während das zweite zunächst abwartet.

Huisman dagegen beschreibt diese Lösung als unbefriedigend\(^{107}\) und präferiert ein Gleichgewicht in gemischten Strategien. Seine Kritik an der Lösung von Dixit/Pindyck lässt sich anhand von zwei Punkten festmachen. 1. Das Modell geht von identischen Unternehmen aus. Dabei erscheint es nicht plausibel warum das eine eher investieren sollte als das andere. 2. Im Modell von Dixit/Pindyck wird eine simultane Investition sehr wohl zugelassen, wenn dies für beide optimal ist. Aus diesen Gründen hält er ein Gleichgewicht in gemischten Strategien für realistischer.

Bei der Berechnung des Gleichgewichts in gemischten Strategien geht Huisman jedoch davon aus, dass das Spiel solange wiederholt wird bis sich mindestens ein Unternehmen zur Investition entschließt. Damit weist das Spiel folgende in Tabelle 8 dargestellte Struktur auf\(^{108}\):

\[
q_1 \text{ steht dabei für die Wahrscheinlichkeit, dass Spieler 1 Strategie 1 wählt. Analog ist (1-q_1) die Gegenwahrscheinlichkeit und } q_2 \text{ steht für Spieler 2. Der Erwartungswert für}
\]

\(^{105}\) Vgl. [DP94] S. 313ff.
\(^{107}\) Vgl. [Hui01] S. 179ff.
Das Modell

\[q_2 \frac{S(x)}{S(x)} \quad (1 - q_2) \frac{L_b(x)}{L_b(x)} \quad \text{Spiel wiederholen} \]

\begin{tabular}{c|c|c}
 \hline
 q_1 & q_2 &
 \hline
 $(1-q_1)$ & $F_b(x)$ & $L_b(x)$ & $F_b(x)$ & $W(x)$ \hline

tabelle 9: Investitionsspiel, gemischte Strategien

\[\mathcal{E}(u_1) = q_1 q_2 S(x) + q_1 (1 - q_2) L_b(x) + (1 - q_1) q_2 F_b(x) + (1 - q_1)(1 - q_2) W(x). \]
oder
\[q_1 q_2 S(x) + q_1 (1 - q_2) L_b(x) + (1 - q_1) q_2 F_b(x) \]
\[\frac{1}{1 - (1 - q_1)(1 - q_2)} \]

Es maximiert seinen erwarteten Nutzen über die Wahrscheinlichkeit \(q_1 \), mit der es die Investition durchführt.

\[\frac{\partial E(u_1)}{\partial q_1} = q_2 [S(x) + W(x) - L_b(x) - F_b(x)] + L_b(x) - W(x) = 0 \]

Da die Unternehmen identisch sind, ist die Wahrscheinlichkeit, mit der sie sich für die Investition entscheiden, identisch. Aus diesem Grund kann der Index entfallen und es ergibt sich

\[q^* = \frac{L_b(x) - W(x)}{L_b(x) + F_b(x) - W(x) - S(x)} \]
(19)

Das dritte Gleichgewicht in gemischten Strategien, neben den beiden Nash-Gleichgewichten, besteht darin, dass beide Unternehmen mit der Wahrscheinlichkeit \(q^* \) die Investition durchführen und sie mit der Wahrscheinlichkeit \((1 - q^*) \) unterlassen.

Steigt die Nachfrage aber weiter an, so wird die Investition profitabel und die Wahrscheinlichkeit, dass die Investition durchgeführt wird, nimmt einen positiven Wert an. Je größer dieser Anreiz ausfällt, desto wahrscheinlicher wird auch das Auftreten einer simultanen Investition. Der Bereich II endet, sobald beide Unternehmen mit Sicherheit investieren wollen. In diesem Fall ergibt sich ein eindeutiges Gleichgewicht, wie der nächste Abschnitt zeigen wird. Die Wahrscheinlichkeit für eine Investition ist in diesem Fall \(q^* = 1 \). Aus Gleichung (19)

\[\frac{L_b(x) - W(x)}{L_b(x) + F_b(x) - W(x) - S(x)} = 1 \]
Das Modell folgt nach einfachen Umformungen die Bedingung

\[F_b(x) = S(x), \]

wie sie bereits eingangs bei der Definition des dritten Bereichs aufgestellt wurde.

Bereich III

Wie beschrieben beginnt an der Stelle \(F_b(x) = S(x) \) der dritte Bereich, in dem es für den Nachfolger profitabel wird ebenfalls zu investieren. Analog zu (18) lässt sich aus obiger Gleichung ein Schwellenwert herleiten, der mit \(x_F \) bezeichnet werden soll und den Beginn des dritten Bereichs kennzeichnet.

\[
x_F = \left(I + \frac{2k_1 - k_0}{r} \right) \frac{1}{2D(4) - D(3)} \]

(20)

Des Weiteren gelten in diesem Bereich die folgenden Unternehmenswertrelationen:

\[
F_b(x) \leq S(x) < W(x) < L_b(x)
\]

Mit den Werten \(F_b(x) = 1 \), \(S(x) = 2 \), \(W(x) = 3 \) und \(L_b(x) = 4 \) lässt sich das Spiel wieder in strategischer Form wie in Tabelle 10 schreiben:

<table>
<thead>
<tr>
<th></th>
<th>investieren</th>
<th>nicht investieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>investieren</td>
<td>2 / 2</td>
<td>4 / 1</td>
</tr>
<tr>
<td>nicht investieren</td>
<td>1 / 4</td>
<td>3 / 3</td>
</tr>
</tbody>
</table>

Tabelle 10: Auszahlungsmatrix Investitionsspiel, Bereich III

Analog zum ersten Bereich existiert hier wieder ein einziges eindeutiges Nash Gleichgewicht in dominanten Strategien. Wie sich bereits im zweiten Bereich abzeichneten werden demnach beide Unternehmen sofort investieren.

Attraktiver wäre jedoch die Strategiekombination \((s_{12}, s_{22})\), in der beide zunächst abwarten. In diesem Fall könnten sie ihre Auszahlung von 2 auf 3 erhöhen. Diese Kombination stellt allerdings kein Nash-Gleichgewicht dar. Beide hätten einen Anreiz von
der gewählten Strategie abzuweichen, um ihre Auszahlung weiter zu verbessern.

Erst durch die Formulierung der Trigger-Strategie, wie sie in Abschnitt 2.2 beschrieben wurde, ist es möglich, dass die Strategiekombination \((s_{12}, s_{22})\) zu einem Gleichgewicht wird. Die Handlungsempfehlung für die Unternehmen lautet in diesem Fall wie folgt:

- Spiele die kooperative Strategie „nicht investieren“. Weicht der Konkurrent von dieser Strategie ab, dann investiere ebenfalls sofort.

Da der Konkurrent die Möglichkeit hat auf ein Abweichen von dieser Strategie sofort zu reagieren und alle Teilnehmer dies antizipieren, hat keiner einen Anreiz seine Strategie zu ändern. Die Kombination \((s_{12}/s_{22})\) stellt damit ein Gleichgewicht dar.\(^{109}\)

Bereich IV

Der letzte Abschnitt ist dadurch gekennzeichnet, dass der Wert der simultanen Investition den des Status Quo übersteigt \(W(x) \leq S(x)\). Wie zuvor lässt sich ein Schwellenwert, der mit \(x_S\) bezeichnet werden soll, berechnen. Es gilt

\[
x_S = \frac{(I + \frac{2k_1-k_0}{r}) \delta}{2D(4) - D(2)}.\]

Darüber hinaus gelten in dem Bereich die folgenden Relationen:

\[F_b(x) < W(x) \leq S(x) < L_b(x).\]

Mit den Werten \(F_b(x) = 1\), \(W(x) = 2\), \(S(x) = 3\) und \(L_b(x) = 4\) lässt sich das Spiel in strategischer Form wie in Tabelle 11 beschreiben.

Analog zum ersten Bereich existiert auch hier wieder eine dominante Strategie. In diesem Fall lautet sie jedoch „investieren“ statt „abwarten“. Unabhängig davon, welche Strategie der Konkurrent wählt, sichern sich beide Unternehmen eine höhere Auszahlung, wenn sie sich für die Investition entscheiden. Die optimale Investitionsstrategie lautet demnach für beide Unternehmen: Sofort investieren.

\(^{109}\) Eine Voraussetzung für die Existenz eines Gleichgewichts in Trigger-Strategien war der unendliche Zeithorizont. Dieser ist hier aufgrund der Annahmen gegeben. Inwieweit eine begrenzte Laufzeit ein solches Gleichgewicht zerstört wird im Abschnitt 4.3.1 diskutiert.
Zusammengefasst kann die optimale gleichgewichtige Investitionsstrategie in Abhängigkeit der Nachfrage wie folgt formuliert werden:

- für \(x < x_L \) nicht investieren.
- für \(x_L \leq x < x_F \) sofort investieren, falls der Konkurrent bereits investiert hat, nicht investieren.
 \((Alternativ: Investieren mit der Wahrscheinlichkeit \(q^* \))\)
- für \(x_F \leq x < x_S \) nicht investieren, hat der Konkurrent aber bereits investiert, dann ebenfalls investieren.
- für \(x \geq x_S \) sofort investieren.

Diese Investitionsstrategie soll nun anhand eines Zahlenbeispiels veranschaulicht werden. Dazu wird von folgenden Werten ausgegangen:

Bei der Produktion mit der alten Technologie fallen variable Kosten in Höhe von \(k_0 = 1 \) an. Nach Einführung der neuen Technologie, deren Investitionsausgaben \(I = 100 \) betragen, sinken die variablen Kosten auf \(k_1 = 0,6 \). Die inverse Nachfragekurve besitzt die Form \(D(Y) = 4 - 0,5Y \). Weitere Größen sind \(r = 0, 05, \delta = 0, 05 \) und \(\sigma = 0, 2 \).

In Abbildung 2 sind die Unternehmenswerte \(W(x) \), \(L_0(x) \) und \(F_0(x) \) sowie \(S(x) \) in Abhängigkeit der Nachfrage grafisch dargestellt. Der erste Bereich, in dem für die Unternehmen der Wert des Status Quo am höchsten ist, endet sobald der Schwellenwert des Innovators \(x_L^{111} \) erreicht ist. Im Beispiel ist \(x_L = 2, 6 \) und als roter Punkt in der Grafik gekennzeichnet.

\(^{110}\) Man beachte, dass die gewählte Funktion die Bedingung (16) erfüllt, so dass die Existenz der Bereiche I-IV gewährleistet ist.

\(^{111}\) \(x_L \) ist laut Definition (18) gerade der Schnittpunkt zwischen den Geraden \(W(x) \) und \(L_0(x) \). Analog entspricht \(x_F \) dem Schnittpunkt der Geraden \(S(x) \) und \(L_0(x) \) und \(x_S \) dem Schnittpunkt von \(S(x) \) und \(W(x) \).
Abbildung 2: Unternehmenswerte NPV

Ab dieser Nachfrage haben beide Unternehmen einen Anreiz die Rolle des Leaders zu übernehmen. Wie oben beschrieben sind hier zwei Gleichgewichte denkbar. Entweder kann sich ein Unternehmen durchsetzen und investiert zuerst in die neue Technologie, während das zweite abwartet, oder beide investieren mit der Wahrscheinlichkeit q^*. In diesem Fall sind alle vier möglichen Konstellationen als Ergebnis denkbar. Für eine Nachfrage von $x = 3$ liefern die erwarteten Unternehmenswerte $L_b(3) = 176$, $W(3) = 160$, $F_b(3) = 130$ und $S(3) = 116$ eingesetzt in Gleichung (19) die optimale Investitionswahrscheinlichkeit $q^* = 0,53$. Demnach werden beide Unternehmen mit einer Wahrscheinlichkeit von 28,4% gleichzeitig investieren und die schlechteste mögliche Auszahlung von 116 erhalten. Auf der anderen Seite werden sie mit einer Wahrscheinlichkeit von 21,8% auf die Investition verzichten und zunächst abwarten. Lediglich in rund jedem zweiten Fall (49,8%) wird ein Unternehmen investieren während das zweite abwartet.

Erreicht die Nachfrage den Schwellenwert des Nachfolgers x_F, endet der zweite Bereich. Im Beispiel ist $x_F = 3,5$ und als blauer Punkt dargestellt. Im dritten Abschnitt würde ein Nachfolger sofort investieren, da er so seine Auszahlung erhöhen könnte. Für den Innovator würde dies aber ein Absinken seines Wertes unter den Staus Quo bedeu-
ten. Aus diesem Grund stellt die Trigger-Strategie, in der die Konkurrenten zunächst auf eine Investition verzichten, ein plausibles Gleichgewicht dar.

Diese Situation ändert sich erst, wenn eine simultane Investition profitabel erscheint. Ab dem Schwellenwert x_S, in der Grafik als grüner Punkt dargestellt, ist der Wert bei einer simultanen Investition größer (gleich) als im Status Quo. Aus diesem Grund werden beide Unternehmen hier sofort investieren.

Optimale Investitionsstrategie bei einer direkten Investitionsgelegenheit

Im Gegensatz zu dem zuvor diskutierten Modell steht bei einer einfachen Investitionsentscheidung beiden Unternehmen der Markteintritt noch bevor. Sie verfügen über eine identische Investitionsgelegenheit, sind aber auf dem Markt noch nicht aktiv, sondern konkurrieren um den Markteintritt. Diese Ausgangssituation entspricht dem Modell von Dixit/Pindyck\(^{112}\) und impliziert eine vereinfachte optimale Investitionsstrategie.

Dadurch, dass die Unternehmen zu Beginn noch inaktiv sind, erzielen sie auch noch keine Cashflows. Entsprechend ist der Unternehmenswert\(^{113}\) im Status Quo gleich null.

$$W(x) = 0$$

Nachdem ein Unternehmen als erstes investiert hat und in den Markt eingetreten ist, kommt es wieder zu der bekannten Leader/Follower Konstellation. Aber anders als im Fall der Erweiterungsinvestition generiert auch der Nachfolger weiterhin noch keine Cashflows. Sein Unternehmenswert ist damit auch ebenfalls gleich null.

$$F_b(x) = 0$$

Der Innovator wird sich in diesem Fall für eine Investition entscheiden, wenn er einen positiven Cashflow aus dem Projekt erzielen kann, d.h. wenn die Bedingung

$$L_b(x) > 0 \quad (22)$$

erfüllt ist. Aus Gleichung (54) im Anhang lässt sich dann wie in (18) der Schwellenwert

\(^{113}\) Gleichungen der Unternehmenswerte für eine direkte Investitionsgelegenheit finden sich im Anhang.
\[x_L = \frac{(I + \frac{k_0}{r}) \delta}{D(1)} \]

Nach der Investition des Innovators wird der Nachfolger zunächst abwarten, bis sich eine Investition für beide Unternehmen lohnt und die Bedingung

\[S(x) > 0 \quad \text{(23)} \]

erfüllt ist. Würde er schon früher (bei einer geringeren Nachfrage) investieren, würde dies negative Cashflows für beide Unternehmen zur Folge haben. Wie in (21) lässt sich aus Gleichung (55) der Schwellenwert \(x_S \) berechnen. Es gilt

\[x_S = \frac{(I + \frac{k_0}{r}) \delta}{D(2)} \]

Unter Berücksichtigung des Konkurrenzverhaltens lässt sich dann die optimale Investitionsstrategie in Abhängigkeit der Nachfrage wie folgt formulieren:

- für \(x < \frac{(I + \frac{k_0}{r}) \delta}{D(1)} \) nicht investieren.
- für \(x \geq \frac{(I + \frac{k_0}{r}) \delta}{D(1)} \) sofort investieren, falls der Konkurrent bereits investiert hat, nicht investieren.
 (Alternativ: Investieren mit der Wahrscheinlichkeit \(q^* \))
- für \(x \geq \frac{(I + \frac{k_0}{r}) \delta}{D(2)} \) sofort investieren.

Im Vergleich zur optimalen Investitionsstrategie bei einer Erweiterungsinvestition fällt sofort auf, dass der dritte Bereich der Trigger-Strategie, in dem beide Unternehmen zunächst auf eine Investition verzichten, wegfällt. Die Ausgangssituation für das Aufreten der Trigger-Strategie war folgende: Nachdem der Innovator die neue Technologie eingeführt hatte, konnte sich der Nachfolger verbessern, indem er ebenfalls investierte. Gleichzeitig war die simultane Investition aber weniger profitabel als der Status Quo. Die entscheidenden Unternehmenswertrelationen waren in diesem Zusammenhang

\[F_b(x) < S(x) < W(x). \]
Im Wissen, dass der Nachfolger ebenfalls investieren würde, um die höhere Auszahlung zu erhalten, verzichteten beide Unternehmen zunächst auf die Investition. Im Modell der einfachen Investitionsgelegenheit dagegen sind die Unternehmenswerte im Staus Quo und für den Nachfolger identisch. In beiden Fällen sind die Konkurrenten noch inaktiv und ihr Unternehmenswert ist gleich null. Aus diesem Grund kann es niemals zu dem oben skizzierten Szenario kommen und die optimale Investitionsstrategie vereinfacht sich in der beschriebenen Art und Weise.

3.3 Realoptionsbetrachtung

3.3.1 Im Monopol

Zunächst aber sieht sich das betrachtete Unternehmen einer exklusiven Investitionsgelegenheit gegenüber, die als Realoption bewertet werden soll. Zur Bestimmung des Optionswertes und der optimalen Investitionsstrategie werden die in Abschnitt 2.1 dargestellten Schritte durchgeführt\(^\text{114}\). Der Wert der Investitionsoption sei \(o(x) \). Dem Realoptionsansatz folgend sollte das Unternehmen erst dann in die neue Technologie investieren, wenn der Wert im Status Quo plus dem Wert der Option dem des Innovators entspricht. Der Wert der Nachfrage, der diese Bedingung erfüllt sei der Monopolschwel-

\(^{114}\) Siehe die Bewertung einer Call Option mit unendlicher Laufzeit.
Das Modell 60

lenwert x^*_M und es gilt\footnote{Das Sternchen bei den Schwellenwerten ist jeweils ein Kennzeichen dafür, dass es sich um einen Schwellenwert im Rahmen einer Realoptionsbetrachtung handelt.}

$$W(x^*_M) + o(x^*_M) = L_b(x^*_M).$$

Durch Einsetzen der Gleichungen für $W(x)$ aus (9), $L_b(x)$ aus (10) und der allgemeinen Optionsformel aus (5) ergibt sich\footnote{Der zweite Term $A_2 x^2$ in der Optionsformel (5) entfällt aufgrund der „absorbierenden Grenze“ $x = 0$. Dadurch ist sowohl A_1 als auch β_1 eindeutig und aus Gründen der Vereinfachung wird im Folgenden der Index jeweils weggelassen. β ist damit die positive Nullstelle der quadratischen Gleichung Θ, definiert in (52).}

$$\frac{x^*_M D(2)}{\delta} - \frac{k_0}{r} + A x^*_M \beta = \frac{2 x^*_M D(3)}{\delta} - I - \frac{2 k_1}{r}.$$

Dies entspricht der Value-Matching-Bedingung. Umgeformt nach dem Optionswert ergibt sich

$$A x^*_M \beta = \frac{x^*_M [2D(3) - D(2)]}{\delta} - \frac{2k_1 - k_0}{r} - I.$$

Anhand dieser Gleichung lassen sich sehr gut die einzelnen Wertkomponenten der Option an der Stelle des optimalen Schwellenwertes erkennen. Der erste Term auf der rechten Seite entspricht der Barwertänderung der verkauften Produkte nachdem die neue Technologie eingeführt wurde. Von diesem Wert werden die Änderung in den variablen Kosten sowie die Investitionsausgaben abgezogen.

Die Gleichung enthält zwei Unbekannte: zum einen den Faktor A und zum anderen den optimalen Schwellenwert x^*_M. Um beide bestimmen zu können wird zusätzlich die Smooth Pasting Bedingung benötigt. Diese ergibt sich als Ableitung der Value-Matching-Bedingung nach der Nachfrage. Sie lautet

$$\beta A x^*_M = \frac{2D(3) - D(2)}{\delta}.$$

Mit diesen beiden Gleichungen lassen sich dann x^*_M und A berechnen und man erhält

$$x^*_M = \frac{(I + \frac{2k_1 - k_0}{r}) \delta}{2D(3) - D(2)} \frac{\beta}{\beta - 1}$$ (24)
Das Modell

\[A = \frac{2D(3) - D(2)}{\beta \delta} x_M^{*1-\beta}. \]

Der abschnittsweise definierte Unternehmenswert des Monopolisten ergibt sich damit als:

\[M(x) = \begin{cases}
\frac{xD(2)}{\delta} - \frac{k_0}{r} + Ax^\beta & \text{für } x \leq x^* \\
\frac{2xD(3)}{\delta} - I - \frac{2k_1}{r} & \text{für } x \geq x^*
\end{cases} \]

Der erste Term des Schwellenwertes \(x_M^* \) aus Gleichung (24)

\[\frac{(I + \frac{2k_1 - k_0}{r}) \delta}{2D(3) - D(2)} \] (25)

ist bereits bekannt. Er ist identisch mit dem Schwellenwert \(x_L \) aus Gleichung (18). Dieser beschreibt die Höhe der Nachfrage, bei welcher der Wert des Leaders dem im Status Quo entspricht. Mit anderen Worten kennzeichnet dieser Ausdruck den Investitions- schwellenwert im NPV Fall. Multipliziert mit dem Faktor \(\frac{\beta}{\beta - 1} \), der definitionsgemäß größer eins ist, ergibt sich dann der Schwellenwert basierend auf einer Optionsbewertung. Analog wurde auch die optimale Ausübung einer einfachen Call-Option in Abschnitt 2.1 bestimmt. Entspricht der Kurswert dem Basispreis bzw. den Investitionsausgaben \((x = K) \), so ist der NPV gerade null. Der optimale Kurswert, bei dem die Option ausgeübt werden sollte, wurde dann in (6) als

\[x^* = \frac{\beta}{\beta - 1} K \]

berechnet. Der optimale Ausübungsschwellenwert ergibt sich demnach in beiden Fällen, indem das NPV-Kriterium um den Faktor \(\frac{\beta}{\beta - 1} \) erweitert wird. Dieser Ausdruck erfasst damit gerade den Wert des Wartens\(^\text{117}\).

Es stellt sich die Frage, unter welchen Bedingungen ein solcher optimaler Schwellenwert in den beiden Modellen existiert. Im Fall der Call-Option ist dies recht einfach zu beantworten. Ein optimaler Ausübungsschwellenwert lässt sich immer bestimmen, solange die Bedingung \(r > \alpha \) erfüllt ist.

\(^{117}\) Vgl. Dixit/Pindyck [DP94] S. 142 ff.
Im Modell der Investitionsoption müssen zwei zusätzliche Bedingungen erfüllt sein. Diese leiten sich von den beiden Termen \(I + \frac{2k_1-k_0}{r}\) und \(2D(3) - D(2)\) aus (24) ab, die beide positiv sein müssen. Im Einzelnen lauten die Bedingungen:

1. Bedingung: Das relative Einsparpotential der variablen Kosten muss zwischen 0 und 50% liegen

 \[
 0 < \frac{k_0 - k_1}{k_0} = z < 0.5
 \]

 oder es muß gelten

 \[
 rI > k_0.
 \]

 Sind beide Forderungen nicht erfüllt, existiert also ein sehr hohes Einsparpotential in den variablen Kosten und die Investitionsausgaben sind relativ gering, dann existiert auch kein optimaler Schwellenwert, da das Unternehmen sofort die Investition durchführen wird.

2. Bedingung: Das Einsetzen der allgemeinen Gleichung für die inverse Nachfragefunktion (13)

 \[
 D(Y) = a - bY
 \]

 in die Bedingung \(2D(3) - D(2) > 0\) liefert

 \[
 a - 4b > 0.
 \]

Diese Ungleichung wurde bereits in Abschnitt 3.2.1 (14) diskutiert. Ist sie erfüllt, so weist die Barwertfunktion \(L_b(x)\) eine größere Steigung auf, als die Funktion \(W(x)\). Mit ihr wird die Grundvoraussetzung dafür beschrieben, dass im NPV-Fall bei einer entsprechend hohen Nachfrage der Anreiz besteht die Investition durchzuführen. Ist sie nicht erfüllt, so ist eine Investitionsoption wertlos, da der Unternehmenswert im Status Quo immer höher sein wird als der des Innovators. Anders als bei der ersten Bedingung würde in diesem Fall das Unternehmen bei keiner Nachfrage investieren. Aus diesem Grund existiert dann auch kein optimaler

\[\text{[118] Die Ausprägung dieser Bedingungen ist natürlich auf die Annahmen zurückzuführen (z.B. Outputverdopplung bei Investition). Eine Änderung der Annahmen führt damit auch zu Änderungen in den Bedingungen.}\]

\[\text{[119] Da definitionsgemäß } k_0 > k_1 \text{ gilt, kann } z \text{ nicht kleiner null sein.}\]
Nachdem erläutert wurde, unter welchen Bedingungen der optimale Investitionsschwellenwert x^*_M existiert, soll dieser nun mit dem ermittelten Investitionsschwellenwert im NPV-Fall verglichen werden. Das Einsetzen der Daten aus dem NPV-Beispiel in (24) liefert den Schwellenwert $x^*_M = 4,84$. Abbildung 3 zeigt die zuvor berechneten Barwerte $W(x)$ und $L_b(x)$ aus der NPV-Betrachtung in Abhängigkeit der Nachfrage, sowie die neu bestimmte Funktion $M(x)$. Eingezeichnet ist ebenfalls der für einen Monopolisten optimale Nachfragewert x^*_M (roter Punkt), bei dem die neue Technologie eingeführt werden sollte. Wie bereits aus der Realoptionstheorie bekannt, verzögert sich die Investition im Vergleich zum Net Present Value-Kriterium ($x_L = 2,6$ blauer Punkt). Der Faktor $\frac{\beta}{\beta-1}$ besitzt in diesem Fall einen Wert von 1,86, so dass die Nachfrage bei einer Realoptionsbetrachtung fast doppelt so hoch sein muss wie bei einer NPV-Bewertung, damit sich ein Unternehmen zur Durchführung der Investition entschließt. Grund hierfür ist gerade der zusätzliche Wert der Option, der bei der Entscheidung mit berücksichtigt wird.
3.3.2 Unter Konkurrenz

In einem zweiten Schritt sollen nun zusätzlich die möglichen Reaktionen eines Konkurrenten berücksichtigt werden. Dazu müssen zunächst wieder die vier Unternehmenswerte für den Innovator, den Nachfolger, im Status Quo und bei simultaner Investition berechnet werden. Der Unternehmenswert im Status Quo kann unverändert aus der NPV-Betrachtung (9) übernommen werden.

\[W(x) = \frac{xD(2)}{\delta} - \frac{k_0}{r} \]

Ebenfalls identisch ist der Wert bei einer simultanen Investition (12)

\[S(x) = \frac{2xD(4)}{\delta} - I - \frac{2k_1}{r}. \]

Der im NPV-Fall berechnete Unternehmenswert des Innovators war \(L_b(x) \). Entscheidet sich der Nachfolger jedoch ebenfalls zu investieren, sinkt der Preis, was wiederum mit einem Verlust für den Innovator verbunden ist. Dieser drohende Verlust wird im Rahmen der Realoptionsbetrachtung mit berücksichtigt. Für die Berechnung des Unternehmenswertes können die Cashflows, die der Innovator durch den Verkauf des Produktes erzielt, in zwei Perioden unterteilt werden. Zum einen erzielt er bis zum (stochastischen) Zeitpunkt der Investition des Konkurrenten einen Preis von \(x(t)D(3) \). Zum anderen sinkt der Preis für den Zeitraum nach der Investition auf \(x(t)D(4) \).

In einem zweiten Bewertungsverfahren wird aufgezeigt wie sich der drohende Verlust ebenfalls als Option modellieren lässt. Ausgangspunkt für die Value-Matching-

120 Vgl. Dixit/Pindyck [DP94] S. 310ff.
Bedingung ist die Erkenntnis, dass zum Zeitpunkt der Investition des Nachfolgers der Wert für den Innovator mit dem bei einer simultanen Investition übereinstimmen muss.

Zunächst aber zum Wert des Nachfolgers: Sein Unternehmenswert sei $F(x)$ und der optimale Schwellenwert x^\ast. Der Wegfall des Index b an dieser Stelle macht deutlich, dass jetzt nicht nur der reine Barwert sondern zusätzlich der Wert des Wartens berücksichtigt wird. Der Wert setzt sich aus zwei Komponenten zusammen, zum einen aus dem Barwert der laufenden Produktion $F_b(x)$, wie er in (11) bestimmt wurde, und zum anderen aus dem Wert der Investitionsoption. $F(x)$ ist analog zu $M(x)$ abschnittsweise definiert. Erreicht die Nachfrage den Schwellenwert x^\ast, dann entspricht der Wert des Nachfolgers dem der simultanen Investition. Um die Funktion der Investitionsoption zu bestimmen, sind analog die gleichen Schritte wie im vorangegangenen Abschnitt notwendig. Ausgangspunkt ist der Schwellenwert x^\ast. An diesem Punkt der Nachfrage ist es optimal für den Nachfolger zu investieren und es muss gelten

$$F(x^\ast) = S(x^\ast)$$

oder

$$F_b(x^\ast) + o(x^\ast) = S(x^\ast).$$

Durch Einsetzen erhält man die Value-Matching-Bedingung

$$\frac{x^\ast D(3)}{\delta} - \frac{k_0}{r} + Ax^\ast \beta = \frac{2x^\ast D(4)}{\delta} - I - \frac{2k_1}{r}.$$

Die Ableitung dieser Gleichung liefert die zweite, die Smooth-Pasting-Bedingung

$$\frac{D(3)}{\delta} + \beta Ax^\ast \beta - 1 = \frac{2D(4)}{\delta}. $$

Damit lassen sich die beiden Unbekannten A und x^\ast wie folgt bestimmen:

$$x^\ast = \left(I + \frac{2k_1 - k_0}{r} \right) \delta \frac{\beta}{2D(4) - D(3)} \frac{1}{\beta - 1} \quad (27)$$

$$A = \frac{2D(4) - D(3)}{\beta \delta} x^{\ast 1 - \beta} \quad (28)$$
Zusammengefasst lässt sich der zustandsabhängige Unternehmenswert des Nachfolgers schreiben als

\[
F(x) = \begin{cases}
\frac{x D(3)}{\delta} - \frac{k_0}{r} + A x^\beta & \text{für } x \leq x^* \\
\frac{2 x D(4)}{\delta} - I - \frac{k_1}{r} & \text{für } x \geq x^*.
\end{cases}
\]

(29)

Auch hier wird wieder das Prinzip deutlich, das hinter der optimalen Ausübung der Option steckt. Im NPV-Fall würde der Nachfolger investieren, sobald der Wert bei einer simultanen Investition dem des Nachfolgers entspricht. Entsprechend wurde in (20) der Schwellenwert des Nachfolgers definiert.

\[
x_F = \left(I + \frac{2k_1 - k_0}{r} \right) \delta
\]

\[
\frac{2 D(4) - D(3)}{\beta - 1}
\]

Multipliziert mit dem Faktor \(\frac{\beta}{\beta - 1}\), durch den der zusätzliche Wert des Wartens erfasst wird, ergibt sich dann der Schwellenwert \(x^*\) im Realoptionsfall, wie er in (27) bestimmt wurde.

Abbildung 4: RO Nachfolger

Abbildung 4 zeigt den Barwert des Nachfolgers \(F_b(x)\), den neu berechneten Unter-
nehmenswert des Nachfolgers $F(x)$ inklusive der Investitionsoption sowie den Barwert bei simultaner Investition $S(x)$. Mit den Daten aus dem Beispiel ergibt sich für den Schwellenwert des Nachfolgers x^* ein Wert von 6,45 (als roter Punkt in der Grafik gekennzeichnet). Im Vergleich dazu würde der Nachfolger basierend auf einer NPV-Analyse bereits ab einer Nachfrage von $x_F = 3,5$ (blauer Punkt) investieren.

Neben dem optimalen Schwellenwert der Nachfrage, bei dem der Nachfolger investiert, lässt sich auch eine Gleichung für den (stochastischen) Zeitpunkt des Eintritts t^* angeben. Dieser ist erreicht, wenn der Prozess x zum ersten Mal dem Schwellenwert x^* entspricht. Es gilt\(^\text{121}\)

\[t^* = \inf \{ t \mid x(t) \geq x^* \}. \]

Nachdem der Wert des Nachfolgers berechnet wurde und damit sein Investitionsverhalten bekannt ist, kann nun der Wert des Innovators bestimmt werden. Dessen erwarteter Unternehmenswert besteht zum einen aus seinem "Monopolwert", den er bis zu dem Zeitpunkt realisieren kann an dem der Nachfolger seinerseits investiert (t^*), und zum anderen aus dem Wert der simultanen Investition für den Zeitraum danach. Zusätzlich fallen noch die Investitionsausgaben I an. Zusammengefasst ergibt sich der Wert als\(^\text{122}\)

\[
L(x) = \mathcal{E} \left[\int_0^{t^*} e^{-rt}[2x(t)D(3) - 2k_1]dt \right] + \mathcal{E} \left[\int_{t^*}^{\infty} e^{-rt}[2x(t)D(4) - 2k_1]dt \right] - I. \tag{30}
\]

Im einfachsten Fall, in dem die Nachfrage bereits in der Ausgangsperiode so hoch ist, dass der Nachfolger ebenfalls sofort investiert ($x > x^*$ und $t^* = 0$), entspricht $L(x)$ dem Wert der simultanen Investition, wie er bereits in (12) berechnet wurde. Für $t^* = 0$ ist das erste Integral in (30) gleich null. Das zweite Integral liefert den erwarteten Barwert der Cashflows $\frac{2x D(4)}{\delta}$ sowie die deterministischen variablen Kosten $\frac{2k_1}{r}$. Zusammen mit den Investitionsausgaben I ergibt sich gerade der Wert bei simultaner Investition aus (12).

Ist dagegen in $t = 0$ die Nachfrage nicht hoch genug, dass auch der Nachfolger so-

\(^\text{121}\) Vgl. Huisman [Hui01] S. 164 (7.13).
\(^\text{122}\) Vgl. Dixit/Pindyck [DP94] S. 312ff.
Das Modell 68

fort investiert \((x < x^*)\), lässt sich der Wert des Innovators nicht derart vereinfachen. In diesem Fall beschreibt der zweite Term auf der rechten Seite von Gleichung (30) den erwarteten Barwert der Cashflows für den Zeitraum nach dem Eintritt des Konkurrenten \((t \geq t^*)\). Zwar ist der Eintrittszeitpunkt unbekannt, nicht aber der Schwellenwert. Der Nachfolger wird seine Investition durchführen, sobald die Nachfrage den Wert \(x^*\) erreicht hat. Der Barwert bei einer simultanen Investition für eine Nachfrage von \(x^*\) zum Zeitpunkt \(t = 0\) beträgt\(^{123}\)

\[
\frac{2 x^* D(4)}{\delta} - \frac{2 k_1}{r}.
\]

Da der Nachfolger aber erst zum Zeitpunkt \(t^*\) investiert und nicht bereits in \(t = 0\), muss der Barwert mit dem stochastischen Diskontierungsfaktor \(E[e^{-rt^*}]\) abgezinst werden. Eingesetzt ergibt sich\(^{124}\)

\[
L(x, t) = E \left[\int_{t^*}^{t} e^{-rt} [2x(t)D(3) - 2k_1]dt \right] + E \left[e^{-rt^*} \right] \left(\frac{2x^* D(4)}{\delta} - \frac{2k_1}{r} \right) - I.
\]

Nach einigen weiteren Umformungen erhält man die Gleichung

\[
L(x) = 2D(3)E \left[\int_{0}^{t^*} e^{-rt} x(t)dt \right] + \frac{2k_1}{r} \left(E \left[e^{-rt^*} \right] - 1 \right) + E \left[e^{-rt^*} \right] \left(\frac{2x^* D(4)}{\delta} - \frac{2k_1}{r} \right) - I.
\]

Die Erwartungswerte in Abhängigkeit des stochastischen Eintrittzeitpunktes \(t^*\) lassen sich berechnen als\(^{125}\)

\[
E \left[e^{-rt^*} \right] = \left(\frac{x}{x^*} \right)^{\beta} \quad \text{(31)}
\]

und

\[
E \left[\int_{0}^{t^*} e^{-rt} x(t)dt \right] = \frac{x}{\delta} \left[1 - \left(\frac{x}{x^*} \right)^{\beta - 1} \right]. \quad \text{(32)}
\]

Einsetzen der Ausdrücke und einige Umformungen liefern schließlich den abschnittswei-

\(^{123}\) Aus (12) ohne die Investitionsausgaben.

\(^{124}\) Vgl. Dixit/Pindyck [DP94] S. 312ff mit einigen Anpassungen an das vorliegende Modell.

\(^{125}\) Die Herleitungen der beiden Erwartungswerte sind im Anhang aufgeführt.
Das Modell 69

se definierten Unternehmenswert des Innovators

\[L(x) = \begin{cases}
\frac{2D(3)x}{\delta} - I - \frac{2k_1}{r} + \frac{2x^{1-\beta}}{\delta} \left[D(4) - D(3)\right]x^{\beta} & \text{für } x \leq x^{*} \\
\frac{2xD(4)}{\delta} - I - \frac{2k_1}{r} & \text{für } x \geq x^{*}.
\end{cases} \] \hspace{1cm} (33)

Die Gleichung für den Unternehmenswert des Innovators im Bereich \(x \leq x^{*} \) lässt sich noch auf eine andere, intuitivere Art herleiten\(^{126}\). Dazu wird der Wert zunächst wieder in zwei Komponenten aufgesplittet. Der erste Teil beinhaltet den Barwert der laufenden Produktion \(L_{b}(x) \), wie er bereits in (10) berechnet wurde. Im zweiten Teil wird der Present Value des drohenden Verlustes, der durch den Eintritt des Konkurrenten ausgelöst wird, erfasst. Diese ausstehende Wertminderung kann analog wie eine Option im Fall des Nachfolgers berechnet werden. Der Innovator ist in diesem Zusammenhang jedoch nicht Inhaber, sondern Stillhalter der Option. Für den Fall, dass die Option ausgeübt wird, d.h. der Nachfolger investiert, verpflichtet er sich, auf die Differenz zwischen seinem „Monopolwert“ \(L_{b}(x) \) und dem Wert der simultanen Investition \(S(x) \) zu verzichten. Dies wird auch anhand der nachstehenden Gleichungen deutlich.

Analog zu der Vorgehensweise beim Nachfolger lässt sich für den Innovator an der Stelle der Nachfrage, an der sein Konkurrent investiert, eine Value-Matching-Bedingung formulieren. In diesem Fall besagt sie, dass der Unternehmenswert des Innovators dem Wert der simultanen Investition entsprechen muss:

\[L(x^{*}) = S(x^{*}) \]

oder

\[L_{b}(x^{*}) + o(x^{*}) = S(x^{*}). \]

Eingesetzt mit \(Bx^{\beta} \) als Wert der Stillhalterposition ergibt sich dann\(^{127}\)

\[\frac{2x^{*}D(3)}{\delta} - I - \frac{2k_1}{r} + Bx^{*\beta} = \frac{2x^{*}D(4)}{\delta} - I - \frac{2k_1}{r}. \]

\(^{127}\) Zur Abgrenzung von der Investitionsoption des Nachfolgers wird der Wert der Stillhalterposition des Innovators nicht mit \(Ax^{\beta} \), sondern durch \(Bx^{\beta} \) beschrieben.
Umgeformt nach dem Optionswert bleibt

\[Bx^\ast \beta = \frac{2x^\ast[D(4)-D(3)]}{\delta}. \]

Aufgrund der monoton fallenden Nachfragekurve gilt \(D(3) > D(4) \). Folglich ist der sonst positive Optionswert hier negativ, was sich durch die beschriebene Stillhalterposition interpretieren lässt. Der Wert an der Stelle \(x^\ast \) entspricht genau dem Verlust, der durch die Investition des Nachfolgers entsteht. Die variablen Kosten sowie die Investitionsausgaben sind für den Innovator und bei simultaner Investition identisch. Sie spielen damit keine Rolle und lassen sich aus der Gleichung herauskürzen.

Da \(x^\ast \), der Schwellenwert des Nachfolgers, bereits aus (27) bekannt ist, reicht die aufgestellte Value-Matching-Bedingung aus, um die Unbekannte \(B \) und damit den Wert der Stillhalterposition zu bestimmen

\[B = \frac{2x^\ast 1-\beta}{\delta} [D(4) - D(3)]. \quad (34) \]

Der Unternehmenswert des Leaders entspricht dann

\[L(x) = \begin{cases} \frac{2xD(3)}{\delta} - I - \frac{2k_1}{r} + Bx^\beta & \text{für } x \leq x^\ast \\ \frac{2xD(4)}{\delta} - I - \frac{2k_1}{r} & \text{für } x \geq x^\ast. \end{cases} \quad (35) \]

Grafisch darstellt ist der Unternehmenswert des Leaders \(L(x) \) auf Grundlage der Daten aus dem Beispiel in Abbildung 5. Zusätzlich sind in der Grafik der Barwert des Leaders \(L_b(x) \) ohne die Stillhalterposition sowie der Wert bei simultaner Investition \(S(x) \) eingezeichnet. Der rote Punkt kennzeichnet wieder den Schwellenwert \(x^\ast = 6,45 \), bei dem der Nachfolger investieren würde.

Im Gegensatz zum konvexen Wertverlauf des Nachfolgers, der sich aufgrund der

In Abbildung 6 sind der Wert der Investitionsoption ($A x^{\beta}$) und der Wert der Stillhalterposition ($B x^{\beta}$) in Abhängigkeit der Nachfrage abgebildet. Auch wenn der Wertverlauf der beiden Positionen entgegengesetzt ist, so addieren sich beide Werte jedoch nicht zu null. D.h. die Stillhalterposition entspricht wertmäßig nicht der Investitionsoption. Dies ergibt sich allein aus der Tatsache, dass die beiden Value-Matching-Bedingungen unterschiedliche Werte aufweisen. Im Beispiel gilt

$$F(x) - F_b(x) < L_b(x) - L(x).$$
Eine weitere Besonderheit ergibt sich, falls der Optionswert sehr klein ist, z.B. aufgrund einer geringen Varianz. In diesem Fall kann der Unternehmenswert des Innovators links von \(x^* \) ein Maximum ausbilden, um dann mit negativer Steigung den Schwellewert zu erreichen. Ökonomisch bedeutet dies, dass der Leader von einem weiteren Anstieg der Nachfrage im Bereich zwischen dem beschriebenen Maximum und \(x^* \) nicht profitieren kann. Im Gegenteil reduziert sich hier sein Unternehmenswert aufgrund der Tatsache, dass die Nachfrage einen Bereich erreicht, in dem die Wahrscheinlichkeit für den Eintritt des Nachfolgers sehr schnell ansteigt. Dargestellt ist dieser Sachverhalt in Abbildung 7 für eine Standardabweichung von 0,03. Gleichzeitig führt die geringe Volatilität zu einem Absinken des Schwellenwertes \(x^* \). Dieser wird hier bereits bei einer Nachfrage von 3,81 erreicht. Wie man deutlich in der Grafik erkennt, ist die Unternehmenswertfunktion des Leaders an der Stelle \(x^* \) nicht stetig, im Gegensatz zu der des Nachfolgers. Während zur Berechnung des Nachfolgerwertes neben der Value-Matching-auch die Smooth-Pasting-Bedingung verwendet wurde, die eine Stetigkeit in dem Punkt \(x^* \) impliziert, wurde diese Bedingung im Fall des Innovators nicht benötigt. Damit ist diese Unstetigkeit nicht weiter problematisch.
3.3.3 Optimale Investitionsstrategie

Analog zum NPV-Fall werden die beiden Unternehmen von einer Investition absehen, sofern der Wert als Innovator geringer ist als der im Status Quo. Der erste Bereich der Nachfrage, in dem die optimale Investitionsstrategie „nicht investieren“ lautet, wird durch die Bedingung $L(x) < W(x)$ begrenzt.

ren" mit der Wahrscheinlichkeit\(^{128}\) \(q^*\).

\[
F(x) \geq S(x) \quad \forall x \leq x^*
\]

gilt\(^{129}\). Damit braucht der Innovator nicht zu befürchten, dass sein Konkurrent vorzeitig investiert um seinen Wert zu erhöhen. Stattdessen wird er abwarten, bis die Nachfrage den Schwellenwert \(x^*\) erreicht hat.

Der letzte Bereich der Nachfrage, in dem beide Unternehmen sofort investieren,

\(^{128}\) Zum Gleichgewicht in gemischten Strategien \((q^*)\) siehe Abschnitt 3.2.2 „Bereich II“.

\(^{129}\) Siehe hierzu auch Abbildung 4.
Das Modell wurde im Rahmen der NPV-Betrachtung durch die Bedingung \(S(x) \geq W(x) \) und den Schwellenwert \(x_S \) gekennzeichnet. Im Realoptionskontext ist die Investitionsoption für den Nachfolger wieder exklusiv. Dadurch kann der Wert des Wartens voll ausgenutzt werden. Wie gezeigt\(^\text{130}\) ergibt sich der Schwellenwert \(x^* \) durch Multiplikation von \(x_F \) mit dem Faktor \(\frac{\beta}{\beta - 1} \).

\[x^* = x_F \frac{\beta}{\beta - 1} \]

Ab diesem Schwellenwert kommt es folglich zur simultanen Investition. Wie auch zuvor ist dieser Bereich bei steigender Nachfrage nicht begrenzt.

Zusammengefasst ergibt sich dann folgende gleichgewichtige Investitionsstrategie, die aufgrund der Symmetrie natürlich für beide Unternehmen gilt:

- für \(L(x) < W(x) \) nicht investieren\(^\text{131}\).
- für \(L(x) > W(x) \) sofort investieren, falls der Konkurrent bereits investiert hat, nicht investieren.
 - (Alternativ: Investieren mit der Wahrscheinlichkeit \(q^* \))
- für \(S(x) > W(x) \) und \(x \geq x^* \) sofort investieren.

Mit den Daten aus dem Beispiel lassen sich die Unternehmenswerte berechnen, die in Abbildung 8 dargestellt sind. Ab einer Nachfrage von 3,45 wird es für die Unternehmen zum ersten Mal interessant in die neue Technologie zu investieren (roter Punkt). Dies bedeutet zwar eine Verzögerung gegenüber dem NPV-Kriterium \((x_L = 2, 6) \), aber der volle Wert des Wartens kann wie im Monopolfall \((x_M^* = 4, 85) \) nicht ausgenutzt werden. Da die Investitionsoption für den Nachfolger wieder exklusiv ist, kann dieser den optimalen Schwellenwert \(x^* = 6, 46 \) abwarten, der in der Abbildung als blauer Punkt eingezeichnet ist. Auch hier würde bereits eine Nachfrage von \(x_S = 5, 2 \) ausreichen, um aufgrund des NPV-Kriteriums die Investition durchzuführen.

\(^{130}\) Siehe (20) und (27).
\(^{131}\) Diese Bedingung kann wie oben beschrieben in zwei Bereichen gelten, je nach Verlauf von \(L(x) \).
Innovator geringer ist als der im Status Quo132. Der letzte, grüne Bereich kennzeichnet die Nachfrage, bei der beide Unternehmen sofort investieren. Wie man deutlich erkennt, wird bei einem entsprechend hohen Optionswert auch der Nachfolger erst bei einer höheren Nachfrage investieren (im Vergleich zum NPV). Für den Fall einer geringen Varianz nähern sich die optimalen Investitionsentscheidungen dagegen stark an. So lassen sich zwischen den Strategien I und III nur geringe Unterschiede feststellen. Dies ist auch nicht weiter verwunderlich, da mit $\sigma \rightarrow 0$ auch der Optionswert gegen null geht. In diesem Fall sind die optimalen Investitionsstrategien wieder identisch.

Optimale Investitionsstrategie bei einer direkten Investitionsgelegenheit

Sind die beiden Unternehmen in der Ausgangssituation noch nicht in den Markt eingetreten, sondern verfügen über eine direkte Investitionsgelegenheit, so bleibt die optimale Investitionsstrategie im Realoptionsfall unverändert und die zuvor bestimmte Strategie behält auch weiterhin ihre Gültigkeit. Bei der NPV-Bewertung konnte beobachtet werden, dass der Bereich der Trigger-Strategie wegfiel. Im Realoptionsfall hat dies jedoch keine Auswirkungen, da die Trigger-Strategie hier kein Gleichgewicht darstellt.

132 Siehe auch Abbildung 7.
In der Modellierung ergeben sich zwei nennenswerte Unterschiede zur Erweiterungsinvestition. Wie auch im NPV Fall ist der Unternehmenswert im Status Quo gleich null.

\[W(x) = 0 \]

Nachdem der Innovator investiert hat, kann der Nachfolger wieder den optimalen Schwellenwert seiner Investitionsoption abwarten. Da er aber wie im Status Quo noch keine Cashflows erzielt, besteht sein Unternehmenswert ausschließlich aus der Investitionsoption und es gilt

\[F(x) = Ax^\beta. \]

3.4 Komparative Statik

Zunächst zur Investitionsoption: Aus der Optionspreistheorie ist bekannt, dass eine Erhöhung der Volatilität oder des risikolosen Zinssatzes zu einem höheren Optionswert führt. Auf der anderen Seite wirken sich ein steigender Basispreis oder höhere Dividenden negativ auf den Optionswert aus\(^\text{134}\). Darüber hinaus lässt eine Erhöhung dieser vier Faktoren \((\sigma, r, I, \delta)\) den Schwellenwert \(x^*\), bei dem der Nachfolger investiert, ebenfalls ansteigen\(^\text{135}\). Da die Faktoren \(r\) und \(\delta\) in Beziehung miteinander stehen\(^\text{136}\), wird davon ausgegangen, dass eine Veränderung jeweils durch den Faktor \(\alpha\) ausgeglichen wird. Dadurch ist es möglich bei einer Veränderung des risikolosen Zinssatzes die Opportunitätskosten der Option konstant zu halten und umgekehrt.

\(^{133}\)Herleitungen der Unternehmens- und Optionswerte für eine direkte Investitionsgelegenheit finden sich im Anhang.

\(^{135}\)Vgl. Dixit/Pindyck [DP94] S. 144ff.

\(^{136}\)Siehe Gleichung (8).

Nicht eindeutig sind dagegen die Auswirkungen, die durch eine Veränderung der Varianz und des risikolosen Zinssatzes verursacht werden. In diesen beiden Fällen hängt es zusätzlich von der Höhe der Nachfrage ab, ob sich der Wert der Stillhalterposition erhöht oder verringert. Dargestellt ist dieser Sachverhalt am Beispiel der Varianz in Abbildung 10 anhand der Daten aus dem Beispiel. Abgebildet sind jeweils der Wert der Stillhalterposition für eine Standardabweichung von 0,1 und 0,2 sowie der Barwertverlust $[S(x) - L_b(x)]$, den der Innovator erleidet, wenn der Nachfolger tatsächlich investiert. Wie man deutlich erkennt, ist bei einer geringen Nachfrage ($x < 3,75$) der Wert der Stillhalterposition für eine höhere Varianz kleiner. Gleichzeitig folgt, wie oben beschrieben, aus einer höheren Varianz ein höherer Schwellenwert. Für $\sigma = 0,1$ ist $x^* = 4,75$ und für $\sigma = 0,2$ ist $x^* = 6,45$. Beide Werte sind als Punkte in Abbildung 10 dargestellt. Ab einer Nachfrage von $x = 3,75$ kehrt sich dieses Verhältnis um und der Wert der Stillhalterposition für eine Standardabweichung von $\sigma = 0,1$ sinkt unter den Wert bei einer hohen Varianz. Der Grund hierfür liegt in dem unmittelbar bevorstehenden Eintritt des Konkurrenten. Dadurch sinkt der Wert der Stillhalterposition in diesem Bereich deutlich schneller als bei einer hohen Varianz. Für $\sigma = 0,2$ muss die Nachfrage noch erheblich weiter ansteigen, bevor der Konkurrent investiert. Aus diesem Grund ist der drohende Wertverlust entsprechend geringer.

\(^{137}\) Definitionsgemäß ist $\beta > 1$, siehe (52).

In einem weiteren Schritt sollen die Auswirkungen einer Veränderung der variablen Kosten \(k_0 \) bzw. \(k_1 \) analysiert werden. Im Vordergrund stehen dabei nicht die einzelnen Kosten der beiden Produktionsverfahren, sondern das relative Einsparpotential, welches sich durch die Einführung der neuen Technologie ergibt. Um die Existenz eines optimalen Schwellewertes zur Ausübung der Option zu gewährleisten, wurden in Abschnitt 3.3.1 zwei Bedingungen formuliert. Im Folgenden wird angenommen, dass die unter Punkt 1 geforderte Bedingung \(rI > k_0 \) erfüllt ist, so dass für das Einsparpotential keine weiteren Einschränkungen gelten. Sei \(z \) die relative Ersparnis in den variablen Kosten\(^{138} \), die durch die neue Technologie erreicht wird. Eingesetzt in Gleichung (27)

\[^{138}\text{ Es gilt } z = \frac{k_0 - k_1}{k_0} \text{ und damit } k_1 = k_0(1 - z). \]
ergibt sich für den optimalen Schwellenwert

\[x^* = \left(I + \frac{k_0(1-2z)}{r} \right) \delta \frac{\beta}{\beta - 1}. \]

Wie sich leicht aus der Gleichung ablesen lässt, führt eine Erhöhung des Einsparpotentials zu einem fallenden Schwellenwert. Gleichzeitig steigt der Wert der Investitionsoption \(Ax^\beta \) an. \(A \) wurde in Gleichung (28) definiert. Potenziert mit dem negativen Faktor \((1 - \beta) \) lässt der gesunkene Schwellenwert \(x^* \) den Faktor \(A \) ansteigen. Ein höheres Einsparpotential führt also dazu, dass der Nachfolger früher investiert und sein Unternehmenswert steigt. Das Ergebnis erscheint plausibel, da die neue Technologie durch ein höheres Einsparpotential an Attraktivität gewinnt.

Für den Innovator dagegen ist ein Anstieg des Einsparpotentials \((z)\) mit einem Verlust verbunden. Der Wert seiner Stillhalterposition \(Bx^\beta \) sinkt, wie sich an Gleichung (34) für \(B \) ablesen lässt. Analog zum Fall niedrigerer Investitionsausgaben (s.o.) führt auch hier ein geringerer Schwellenwert zu einem kleineren \(B \) und damit zu einem fallenden Wert der Stillhalterposition.

Ein weiterer interessanter Aspekt ist der Einfluss der Nachfragekurve. In Abschnitt 3.3.1 wurde bereits eine Bedingung an die Steigung der inversen Nachfragekurve geknüpft, um die Existenz eines optimalen Schwellenwertes sicherzustellen. In diesem Abschnitt soll darüber hinaus untersucht werden, welche Auswirkung eine Veränderung der Steigung auf den Wert der Unternehmen und ihre optimale Investitionsstrategie hat.

Zunächst einmal profitieren die Unternehmen von einer relativ inelastischen inversen Nachfragefunktion. Eine flache Steigung wirkt sich positiv auf alle Barwerte \(W(x), \ F_b(x), \ L_b(x) \) und \(S(x) \) aus, wie sich an den Gleichungen (9), (10), (11) und (12) in Verbindung mit (13) ablesen lässt. Umgekehrt hat eine sehr elastische Nachfrage mit einer steilen Steigung negative Auswirkungen auf die Unternehmenswerte. Beide Unternehmen sind umso mehr von diesen Effekten betroffen, je höher das Gesamtangebot ist. Das heißt, bei einer simultanen Investition tritt der Effekt am deutlichsten auf, während im Status Quo der geringste Einfluss zu beobachten ist.

Bei einer Realoptionsbetrachtung sind die zusätzlichen Effekte auf die beiden Op-
ionen nur teilweise derart eindeutig. Der einfachere Fall ist die Investitionsoption des Nachfolgers. Sein Schwellenwert \(x^* \) sinkt mit einer flacheren Steigung und umgekehrt. Setzt man in (27) die allgemeine Gleichung für die inverse Nachfragefunktion (13) ein, so ergibt sich

\[
x^* = \left(I + \frac{2k_1-k_2}{r} \right) \delta \frac{\beta}{\beta - 1}.
\]

Eine flachere Steigung, d.h. ein kleineres \(b \), führt damit zu einem sinkenden Schwellenwert \(x^* \). Ist der durch den Eintritt ausgelöste Preisabfall geringer, kann der Nachfolger bereits bei einer niedrigeren Nachfrage investieren. Gleichzeitig erhöht sich der Wert seiner Investitionsoption. Aus (28) lassen sich diesbezüglich zwei Effekte ablesen. Zum einen steigt die Differenz \(|D(4) - D(3)| \) im Zähler und zum anderen wird der gesunkene Schwellenwert \(x^* \) mit dem negativen Faktor \(1 - \beta \) potenziert, was beides zu einer Erhöhung des Optionswertes führt.

Beim Innovator treten dagegen zwei unterschiedliche Effekte auf, die durch den Parameter \(B \) in (34) erfasst werden. Im Fall einer flacheren Steigung wird der Konkurrent bereits bei einer niedrigeren Nachfrage investieren. Der gesunkene Schwellenwert \(x^* \) lässt, wie bereits oben beschrieben, \(B \) ebenfalls sinken. Auf der anderen Seite führt die flachere Steigung aber zu einem höheren Wert der Differenz \(|D(4) - D(3)| \), so dass zwei gegenläufige Effekte auftreten. Ökonomisch haben diese folgende Bedeutung: Da der Nachfolger früher investiert verliert der Innovator auch eher seinen Monopolstatus. Dies drückt sich in einem niedrigeren Wert seiner Stillhalterposition aus. Auf der anderen Seite sorgt die flachere Steigung der inversen Nachfragefunktion dafür, dass der Wertverlust des Innovators, nachdem sein Konkurrent investiert hat, nicht so hoch ausfällt. Der Wert der Stillhalterposition nimmt wieder zu. Umgekehrt kann der Innovator zunächst von einer steileren Steigung der Nachfrage profitieren. Sein Konkurrent wird in diesem Fall erst bei einer höheren Nachfrage investieren. Tritt er jedoch in den Markt ein, fällt der Preisrückgang aufgrund des zusätzlichen Angebots deutlich höher aus. Welcher der beiden Effekte letztlich einen größeren Einfluss hat, lässt sich nicht eindeutig beantworten und hängt von den weiteren Parametern ab.

Im Modell wird aus Gründen der Vereinfachung eine lineare Nachfragekurve unterstellt. Aus den bisherigen Beobachtungen lässt sich recht einfach schlussfolgern, welchen Einfluss eine konvexe Nachfragefunktion auf das Modell hätte. Ein entscheidender Unterschied zur linearen Nachfrage besteht zunächst darin, dass der Innovator bei Ein-

In Tabelle 12 sind noch einmal die Auswirkungen einer Erhöhung der Parameter auf den NPV, den Wert der Investitionsoption $A x^{\beta}$, den optimalen Schwellenwert x^* sowie die Stillhalterposition $B x^{\beta}$ dargestellt\(^{139}\).

\[\begin{array}{c|cccc} & \text{NPV} & \text{Optionswert} & \text{Schwellenwert} & \text{Stillhalterposition} \\ \hline I & -/\text{k.A.} & - & + & + \\ \delta & - & - & + & + \\ \sigma & \text{k.A.} & + & + & +/- \\ r & + & + & + & +/- \\ z & \text{k.A.} & + & - & - \\ b & - & - & + & +/- \\ \end{array} \]

Tabelle 12: Komparative Statik

3.5 Interpretation

\(^{139}\) Eine Erhöhung der Investitionsausgaben wirkt sich lediglich auf den NPV des Innovators oder bei einer simultanen Investition negativ aus. Auf $W(x)$ und $F_b(x)$ hat eine Erhöhung keine Auswirkungen (k.A.).

Nachdem der Innovator investiert hat, sieht sich der Nachfolger wieder einer klassischen, exklusiven Investitionsoption gegenüber. Da sein Konkurrent keinen Einfluss mehr auf den Wert der Investition hat, kann er den Wert des Wartens voll ausschöpfen. Die Ausübung der Option erfolgt dann im Sinne des klassischen Realoptionsansatzes bei dem für ihn optimalen Wert der Nachfrage x^\ast.

In beiden Situationen werden sowohl der Innovator als auch der Nachfolger erst bei einer höheren Nachfrage investieren als im Fall einer NPV-Analyse. Für den Nachfolger ist dies eine Folge des Wertes der Investitionsoption. Beim Innovator verzögert sich die Investition aufgrund des antizipierten Wertverlustes, der durch den späteren Eintritt des Nachfolgers entsteht. Je nach Ausprägung der Parameter wird dieser Effekt entweder verstärkt oder abgeschwächt. Besonders deutlich wird dies in Abbildung 9 für unterschiedliche Varianzen. Während bei einer hohen Standardabweichung ($\sigma = 0,2$) die Eintrittsschwellenwerte noch stark voneinander abweichen, nähern sie sich bei einer geringeren Unsicherheit über die zukünftige Entwicklung der Nachfrage immer weiter an. Für eine Standardabweichung von ($\sigma = 0,05$) lässt sich in der Grafik kaum noch ein Unterschied zwischen den optimalen Investitionsentscheidungen im NPV-Fall und bei einer Realoptionsbewertung erkennen.

Abgeleitet aus den Ergebnissen des Abschnitts „Komparative Statik“ lässt sich bestimmen, wie sich Veränderungen der übrigen Parameter auf die Unterschiede zwischen den optimalen Investitionsentscheidungen auswirken. Dabei muss beachtet werden, dass Veränderungen der übrigen Parameter sich auch auf den NPV auswirken, was eine Interpretation der Ergebnisse etwas erschwert. Grafisch sind die Auswirkungen einer Veränderung der Parameter $I, \delta, r,$ des Einsparpotentials z sowie der Steigung der inversen Nachfragekurve b im Anhang dargestellt.
4 Erweiterungen

4.1 Vom Duopol zum perfekten Wettbewerb

In der ersten Erweiterung soll die Anzahl der Unternehmen erhöht werden, um den Einfluss des steigenden Wettbewerbs auf die optimale Investitionsentscheidung der Konkurrenten zu untersuchen. Dazu wird zunächst das Ausgangsmodell um ein Unternehmen ergänzt. In einem zweiten Schritt wird dann der Übergang zum perfekten Wettbewerb aufgezeigt.

In der Ausgangssituation sind bereits alle drei Unternehmen auf dem Markt aktiv. Bleiben die übrigen Annahmen des Modells unverändert, beträgt das gesamte Angebot zu Beginn $Y = 3$. Durch die Investitionen der einzelnen Unternehmen erhöht sich das Angebot schrittweise um eine Einheit bis auf maximal $Y = 6$. Die Berechnung der NPV-Werte kann analog zum Duopol durchgeführt werden. Lediglich der Preis muss der veränderten Angebotsmenge angepasst werden. Im Status Quo $W(x)$ beträgt dieser $p = xD(3)$. Nachdem ein Unternehmen investiert hat, sinkt der Preis für den Innovator $L_b(x)$ und die beiden Nachfolger $F_{2b}(x)$ auf $xD(4)$. Entscheidet sich ein zweites Unternehmen zu investieren, existieren zwei Leader $L_{2b}(x)$ und nur noch ein Nachfolger $F_b(x)$. Der Preis beträgt dann $xD(5)$. Hat schließlich auch das letzte Unternehmen investiert, ist der niedrigste mögliche Preis $p = xD(6)$ bei der simultanen Investition $S(x)$ erreicht.

Die optimale Investitionsstrategie entspricht im Wesentlichen der im Duopol und lässt sich in sechs Bereiche unterteilen. Im ersten Bereich, in dem die Nachfrage sehr niedrig ist, warten alle Unternehmen zunächst ab. Sobald die Nachfrage hoch genug ist, d.h. der Wert als Leader dem des Status Quo entspricht $L_b(x) \geq W(x)$, werden die Unternehmen versuchen zu investieren. Der Schwellenwert an dieser Stelle sei x_{L1}. Auch hier besteht die Möglichkeit, dass entweder eines der Unternehmen zufällig ausgewählt wird, während die anderen abwarten, oder alle drei mit der Wahrscheinlichkeit q^*_i investieren (Spiel mit gemischten Strategien). Wie schon im Duopol folgt auf diesen zweiten Bereich der dritte, in dem kein Unternehmen investiert. Auch hier wäre es für eines der Nachfolger-Unternehmen profitabler ebenfalls zu investieren $L_{2b}(x) \geq F_{2b}(x)$. Dadurch würde aber der Wert des ersten Leaders unter den Staus Quo absinken $W(x) > L_{2b}(x) \geq F_{2b}(x)$. Da dieser das Verhalten der Nachfolger anti-

\[140\] Die Gleichungen der Unternehmenswerte sowie der Schwellenwerte sind im Anhang aufgeführt.
zipiert, verzichtet er vorerst auf die Investition. Die Trigger-Strategie stellt damit ab dem Schwellenwert x_{F_2} ein Gleichgewicht in diesem dritten Bereich dar. Weicht eines der Unternehmen von dieser Strategie ab und investiert, wird sofort einer der beiden Nachfolger ebenfalls investieren.

Der dritte Bereich ist beendet, sobald die Investition für zwei Unternehmen profitable wird $L_{2b}(x) \geq W(x)$. Dies ist ab dem Schwellenwert x_{L_2} der Fall. Im Anschluss wiederholt sich das Investitionsverhalten der Bereiche zwei und drei mit zwei Unternehmen als Leader. Zunächst investieren im vierten Bereich zwei Unternehmen, während das dritte abwartet\footnote{Auch hier ist es wieder beliebig, welche beiden der drei Unternehmen investieren. Alternativ ist bei einem Spiel mit gemischten Strategien auch eine Investition aller Unternehmen mit der Wahrscheinlichkeit q_2^* möglich.}. Ist die Nachfrage jedoch hoch genug, dass auch für den letzten Nachfolger ein Anreiz besteht zu investieren $S(x) \geq F_b(x)$, so verzichten zunächst wieder alle drei Unternehmen auf die Investition. Dies ist der fünfte Bereich, der ab dem Schwellenwert x_{F_1} beginnt. Wie auch zuvor würde die Investition des Nachfolgers den Wert der beiden Leader unter den Status Quo absinken lassen $W(x) > S(x)$, so dass die Trigger-Strategie ein Gleichgewicht in diesem Bereich darstellt.

Erst im sechsten und letzten Bereich ist die Nachfrage hoch genug, dass es für alle drei Unternehmen profitabel ist gleichzeitig zu investieren $S(x) > W(x)$. Der Schwellenwert dieses Bereichs ist wie im Duopol x_S.

In der Zusammenfassung der optimalen Investitionsstrategie wird die Analogie zum Duopol noch einmal deutlich.

- für $x < x_{L_1}$ nicht investieren.
- für $x_{L_1} \leq x < x_{F_2}$ sofort investieren; falls einer der Konkurrenten bereits investiert hat, nicht investieren.
 (Alternativ: Investieren mit der Wahrscheinlichkeit q_1^)*
- für $x_{F_2} \leq x < x_{L_2}$ nicht investieren; hat ein Konkurrent aber bereits investiert, dann ebenfalls investieren; haben beide bereits investiert, nicht investieren.
- für $x_{L_2} \leq x < x_{F_1}$ sofort investieren; falls beide Konkurrenten bereits investiert haben, nicht investieren.
 (Alternativ: Investieren mit der Wahrscheinlichkeit q_2^)*
• für $x_{F1} \leq x < x_S$ nicht investieren; hat aber einer oder beide Konkurrenten bereits investiert, dann ebenfalls investieren.

• für $x \geq x_S$ sofort investieren.

Soll eine Investitionsentscheidung auf Basis des Realoptionsansatzes getroffen werden, bietet sich zur Berechnung der Unternehmenswerte wieder eine rekursive Vorgehensweise an. In einem ersten Schritt wird davon ausgegangen, dass zwei Unternehmen bereits investiert haben $L_2(x)$. Der letzte Nachfolger $F(x)$ ist dann in der Lage, analog zum Nachfolger im Duopol, seine Investitionsentscheidung wie ein Monopolist zu treffen. Sein Unternehmenswert sowie der optimale Schwellenwert für die Investition x_1^* lassen sich entsprechend der Gleichungen (27), (28) und (29) berechnen. Lediglich die Preise müssen der veränderten Situation angepasst werden. Ist der Eintrittsschwellenwert x_1^* des dritten Unternehmens bekannt, kann der Wert der Stillhalterposition für die zwei Leader B_2x^β und damit ihr Unternehmenswert $L_2(x)$ bestimmt werden.

Im nächsten Schritt hat erst ein Unternehmen investiert und es existieren zwei Nachfolger $F_2b(x)$. Beide konkurrieren um die zweite Position als Innovator. Das Unternehmen welches die Investition durchführt erhält den Wert $L_2(x)$, während das andere als letzter Nachfolger mit dem Wert $F(x)$ übrig bleibt. Anders als in der vorangegangenen Situation können es sich die Unternehmen nicht erlauben, den optimalen Investitionsschwellenwert abzuwarten. In diesem Fall würde ihnen der Konkurrent zuvorkommen und die Investition durchführen. Diese Situation ist vergleichbar mit der des Status Quo im Duopol. Folglich haben beide einen Anreiz zu investieren, sobald der Wert für zwei Leader dem Barwert der zwei Nachfolger $L_2(x) = F_2b(x)$ entspricht. Dieser Punkt der Nachfrage sei der Schwellenwert x_2^*.

Aufbauend auf dem zweiten Schwellenwert lässt sich die Stillhalterposition B_1x^β und damit der Unternehmenswert des ersten Innovators $L(x)$ bestimmen. In diesem Fall setzt sich der abschnittsweise definierte Unternehmenswert des ersten Innovators aus drei Teilen zusammen und ist wie folgt definiert:

$$L(x) = \begin{cases} \frac{2xD(4)}{\delta} - I - \frac{2k_1}{r} + B_1x^\beta & \text{für } x \leq x_2^* \\
\frac{2xD(5)}{\delta} - I - \frac{2k_1}{r} + B_2x^\beta & \text{für } x_2^* \leq x \leq x_1^* \\
\frac{2xD(6)}{\delta} - I - \frac{2k_1}{r} & \text{für } x \geq x_1^*. \end{cases}$$
Zusammengefasst lässt sich die optimale Investitionsstrategie wie folgt formulieren:

- für \(L(x) < W(x) \) nicht investieren.
- für \(L(x) \geq W(x) \) sofort investieren; falls einer der Koncurrenten bereits investiert hat, nicht investieren.
 \((Alternativ: Investieren mit der Wahrscheinlichkeit \(q^* \))\)
- für \(L_2(x) \geq F_{2b}(x) \) und \(x \geq x_2^* \) sofort investieren; haben die Koncurrenten bereits beide investiert, nicht investieren.
 \((Alternativ: Investieren mit der Wahrscheinlichkeit \(q^* \))\)
- für \(S(x) \geq F(x) \) und \(x \geq x_1^* \) sofort investieren.

Bei der optimalen Investitionsentscheidung auf Basis des Realoptionsansatzes wird deutlich, dass immer nur das Unternehmen, welches als letztes die Möglichkeit zur Investition hat, den Wert des Wartens ausnutzen kann. In allen anderen Fällen, in denen Konkurrenz um die Investitionsgelegenheit besteht, ist dies nicht möglich. Die Unternehmen sind vielmehr bestrebt den Koncurrenten zuvorzukommen.

Gleichzeitig antizipiert bereits der erste Innovator den Eintritt aller weiteren Konkurrenten. Der dadurch entstehende Wertverlust wird durch seine Stillhalterposition erfasst und in die Berechnung des Unternehmenswertes integriert. Dadurch erfolgt eine Investition immer erst bei einer höheren Nachfrage als im NPV-Fall.

In dieser Form ließe sich das Modell um beliebig viele Unternehmen erweitern. Aber anstatt in einzelnen Schritten fortzufahren, soll im Folgenden ein großer Sprung hin zu einem Markt mit perfektem Wettbewerb vollzogen werden. Zu diesem Zweck wird eine zusätzliche Annahme getroffen: Die Anzahl der Marktteilnehmer sei so groß, dass bei steigender Nachfrage sofort ein Konkurrent in den Markt eintritt, der diese zusätzliche Nachfrage bedient.

Ist dies der Fall, besteht für den Preis kein Aufwärtspotential mehr. Es entsteht eine Preisobergrenze, die nicht mehr überschritten wird. Ohne die Möglichkeit in Zukunft von einer positiven Entwicklung des Preises zu profitieren, verliert eine Investitionsoption ihren Wert. Damit existiert auch für den Optionsinhaber kein Wert des
Es zeigt sich somit, dass die Form des Wettbewerbs einen entscheidenden Einfluss auf die Optionsbewertung einer Investitionsgelegenheit hat. Während in einem Monopol eine Realoptionsbewertung durchaus angebracht ist, erfährt diese bei einfacher Konkurrenz im Duopol bereits deutliche Einschränkungen. Erhöht sich der Grad der Konkurrenz durch eine wachsende Anzahl von Marktteilnehmern, reduziert sich auch die Möglichkeit einen Optionswert der Investition auszuschöpfen. Im Extremfall, bei vollständiger Konkurrenz, erlischt ein Optionswert völlig und eine Rückkehr zum NPV-Kriterium ist angezeigt.

4.2 Inhomogene Unternehmen

In der Ausgangsform des Modells wurde die Annahme getroffen, dass die beiden betrachteten Unternehmen vollkommen identisch sind. Bedingt durch diese Gleichheit stimmen auch die optimalen Investitionsstrategien für beide Firmen überein. Es existieren ausschließlich Situationen, in denen entweder beide Unternehmen einen Anreiz haben zu investieren, oder aber beide verzichten auf die Investition. Ein Gleichgewicht, in dem ein Unternehmen investiert und das zweite abwartet, kann nur durch weitere Annahmen zustande kommen. Besteht für beide Konkurrenten ein Anreiz zu investieren, so wird bei Dixit/Pindyck durch einen Münzwurf entschieden, welches Unternehmen schneller reagiert und als erstes investiert142. Huisman beschreibt eine solche Situation als Spiel mit gemischten Strategien143. Mit der Wahrscheinlichkeit $2q^*(1 - q^*)$ wird ebenfalls ein asymmetrisches Gleichgewicht erreicht, in dem ein Unternehmen investiert, während das andere abwartet.

In diesem Abschnitt soll untersucht werden, welche Veränderungen die Einführung inhomogener Unternehmen implizieren und welche Auswirkungen dies auf die optimalen Investitionsstrategien der beiden Firmen hat. Die Inhomogenität wird in diesem Zusammenhang auf unterschiedliche Arten modelliert.

142 Vgl. [DP94] S. 313ff.
143 Vgl. [Hui01] S. 168ff.
Zum einen werden für die beiden Firmen unterschiedliche Produktionskosten unterstellt. Ein Unternehmen besitzt einen Vorteil gegenüber seinem Konkurrenten, da es mit niedrigeren variablen Kosten produzieren kann. Unabhängig von der Höhe der Kosten soll in diesem Fall das relative Einsparpotential der neuen Technologie für beide Unternehmen identisch sein und es gilt

\[\frac{k_0 - k_1}{k_0} = z = \text{konst.} \]

(36)

Dabei stellt sich die Frage, inwieweit das Unternehmen mit dem Wettbewerbsvorteil von dieser Konstellation profitieren kann und wie sich dies in der optimalen Investitionsstrategie ausdrückt.

Eine weitere Differenzierungsmöglichkeit besteht in der Höhe der Investitionsausgaben. Wird in diesem Zusammenhang wie bei Huisman bereits ex ante festgelegt, welches Unternehmen die höheren bzw. niedrigeren Ausgaben trägt, so ist das Ergebnis im Hinblick auf die optimale Investitionsstrategie identisch zum Fall mit unterschiedlichen variablen Kosten. Eine Alternative zu dieser Annahme besteht in der Definition eines Second Mover Advantage (SMA) bzw. Disadvantage (SMD). Je nach Definition muss der Nachfolger für die Einführung der Technologie entweder niedrigere oder höhere Investitionsausgaben als sein Konkurrent aufbringen. Im Unterschied zum vor beschriebenen Fall ist damit zunächst noch offen, welches der beiden Unternehmen die höheren Ausgaben tragen muss. Als Folge existieren zwei unterschiedliche Unternehmenswertfunktionen für die simultane Investition. Je nachdem, ob das Unternehmen als Innovator oder als Nachfolger investiert, ist der Wert bei einer simultanen Investition entweder höher oder niedriger.

Am Ende des Abschnitts wird anhand eines Beispiels noch eine dritte Möglichkeit zur Modellierung inhomogener Unternehmen vorgestellt. Dabei wird angenommen, dass ein Unternehmen eine nahezu marktbeherrschende Stellung innehat. Es kann einen Großteil der Nachfrage auf sich ziehen und verfügt über eine deutlich höhere Produktionskapazität. Damit bleibt für den Konkurrenten nur eine relativ geringe Restnachfrage, die durch eine entsprechend kleinere Kapazität bedient wird. Wie auch im zweiten Fall

\[\text{144} \] Diese Annahme dient lediglich der Vereinfachung. Eine allgemeine Bedingung unter der das Unternehmen mit den niedrigeren Kosten einen Wettbewerbsvorteil besitzt wird im Anhang hergeleitet.

bleiben die Investitionsausgaben hier nicht konstant. Da das dominante Unternehmen über weit mehr Kapazitäten verfügt, fallen die Ausgaben für die Umstellung auf eine neue Technologie auch entsprechend höher aus als beim kleineren Unternehmen. Die variablen Stückkosten sollen jedoch für beide Unternehmen gleich bleiben. In diesem Zusammenhang werden für das große Unternehmen keinerlei Skalenerträge berücksichtigt. Der Einfluss sinkender Stückkosten aufgrund einer größeren Produktionsmenge kann aus der ersten Betrachtung (Unternehmen mit unterschiedlichen variablen Kosten) abgeleitet werden.

4.2.1 Variable Kosten

Zu Beginn werden für die zwei Unternehmen des Ausgangsmodells unterschiedliche variable Kosten unterstellt. Ein Unternehmen ist damit in der Lage, das Produkt günstiger zu produzieren als sein Konkurrent. Auch nach der Investition in die neue Technologie soll dieser Kostenvorteil erhalten bleiben. Wie oben beschrieben sei das relative Einsparpotential der variablen Kosten für beide Firmen identisch146 Nachdem die Auswirkungen der Veränderungen auf die einzelnen Investitionsschwellenwerte beschrieben wurden, soll untersucht werden, welchen Einfluss der Kostenunterschied auf die optimale Investitionsstrategie bei einer NPV Betrachtung bzw. bei einer Realoptionsbewertung hat.

Es sei angenommen, dass die Parameter des ersten Unternehmens \mathcal{A} unverändert bleiben. Für das zweite Unternehmen \mathcal{B} werden höhere variable Kosten unterstellt. Aus den Gleichungen der Unternehmenswerte (9), (10), (11) und (12) ist sofort ersichtlich, dass für \mathcal{B} die höheren Kosten zu einem Absinken aller vier Funktionen $W(x)$, $S(x)$, $L_b(x)$ und $F_b(x)$ führen. Gleichzeitig steigt der Investitionsschwellenwert des Innovators x_L, der durch die Bedingung

$$L_b(x) = W(x)$$

formuliert wurde147. Unternehmen \mathcal{A} ist dadurch in der Lage bereits bei einer Nachfrage zu investieren, bei der es für \mathcal{B} noch nicht profitabel wäre. Es entsteht somit ein Monopolbereich, in dem nur für Unternehmen \mathcal{A} eine Investition in Frage kommt.

146 Siehe Bedingung (36).

147 Dies lässt sich aus Gleichung (18) in Kombination mit Bedingung (36) ablesen. Siehe hierzu auch im Anhang den Abschnitt „Inhomogene Unternehmen in Bezug auf die variablen Kosten“.
Ebenso wie A zuerst den Investitionsschwellenwert des Leaders erreicht, beginnt für das Unternehmen auch der Bereich der Trigger-Strategie früher. Der Schwellenwert x_F an dieser Stelle wurde in (20) definiert. Im Folgenden wird sich zeigen, dass durch diesen Umstand ein zweiter Monopolbereich für A entsteht. Konkret handelt es sich um den Bereich der Nachfrage, in dem

$$F_b(x) \leq S(x)$$

für A, nicht jedoch für B gilt. Während in diesem Bereich für A die Relationen

$$F_b(x) \leq S(x) < W(x) < L_b(x)$$

mit den beliebigen Werten $F_b(x) = 1$, $S(x) = 2$, $W(x) = 3$, $L_b(x) = 4$ gelten, weisen sie für B die Struktur

$$S(x) < F_b(x) < W(x) \leq L_b(x)$$

mit den Werten $S(x) = 1$, $F_b(x) = 2$, $W(x) = 3$, $L_b(x) = 4$ auf. Das resultierende Spiel148 in strategischer Form ergibt sich dann als

\begin{center}
\begin{tabular}{c|cc}
investieren & 2 / 1 & 4 / 2 \\
nicht investieren & 1 / 4 & 3 / 3
\end{tabular}
\end{center}

Tabelle 13: Auszahlungsmatrix Investitionsspiel, inhomogene Unternehmen

148In diesem Fall ist Unternehmen A der Zeilenspieler und B der Spaltenspieler.
Punkt der Nachfrage an kommt es zur simultanen Investition.

Insgesamt sind die Veränderungen der optimalen Investitionsstrategie bei unterschiedlichen variablen Kosten im NPV-Fall eher gering. Die in Abschnitt 3.2.2 bestimmte Strategie kann für beide Unternehmen nahezu unverändert übernommen werden. Einzig zur Erfassung des zweiten Monopolbereichs muss sie um einen Punkt erweitert werden. Die angepasste Formulierung der optimalen Investitionsstrategie lautet:

- für $x < x_L$ nicht investieren.
- ist $x_L \leq x < x_F$ und der Konkurrent hat x_F noch nicht erreicht: sofort investieren; falls der Konkurrent bereits investiert hat, nicht investieren.
 (Alternativ: Investieren mit der Wahrscheinlichkeit q^*)
- ist $x_F \leq x < x_S$ und für den Konkurrenten gilt ebenfalls $x \geq x_F$: nicht investieren; hat der Konkurrent jedoch schon investiert, dann ebenfalls investieren.
- für $x \geq x_S$ sofort investieren.

Bei einer Bewertung auf Basis des Realoptionsansatzes ergeben sich darüber hinaus weiterreichende Veränderungen. Wie zuvor trägt Unternehmen B die höheren variablen Kosten, während die Kosten von A unverändert bleiben. Neben den geringeren Barwerten von B, analog zum vorangegangenen Abschnitt, erhöht sich dessen Schwellenwert
x^* als Nachfolger149. Der gestiegene Schwellenwert führt dazu, dass der Wert der Investitionsoption ebenfalls sinkt, wie sich aus (28) ablesen lässt. Insgesamt wirken sich die höheren Kosten demnach stärker auf den Unternehmenswert aus als im NPV-Fall.

Auf die Unternehmenswerte von A hatten die höheren Kosten des Konkurrenten bisher keinen Einfluss. Dies ändert sich nun im Realoptionskontext. B’s Schwellenwert x^* geht in die Bewertung der Stillhalterposition des Innovators ein. Investiert der Wettbewerber später, wie im vorliegenden Fall, verlängert sich das Monopol des Innovators. Als Folge steigt der Wert seiner Stillhalterposition, was durch die Gleichung (34) bestätigt wird.

$$B = \frac{2x_w^{*1-\beta}}{\delta} \left[D(4) - D(3) \right] \quad (37)$$

Eine Folge der Einführung inhomogener Unternehmen ist damit das Auseinanderfallen der beiden Punkte x^* und x_w^*. Aus Sicht von A gilt in diesem Fall $x^* < x_w^*$ und für B umgekehrt $x^* > x_w^*$. In Abbildung 11 ist die Situation aus Sicht von Unternehmen A grafisch dargestellt. Dabei wurden ausgehend von den Daten aus dem Beispiel für B variable Kosten in Höhe von $k_0 = 4$ und $k_1 = 2,4$ unterstellt, während die Kosten von A unverändert geblieben sind. Wie man deutlich erkennt würde A als Nachfolger bereits bei einer Nachfrage von 6,46 (x^* blauer Punkt) investieren, während B bis 7,2 (x_w^* roter Punkt) warten würde.

149 Siehe Gleichung (27) im Verbindung mit Annahme (36).
liegt, wird die Investition durchgeführt, um den Wert als Innovator zu sichern und dem Konkurrenten selbst zuvorzukommen\footnote{Für ein ähnliches Ergebnis im Hinblick auf die Investitionsausgaben siehe Huisman \cite{Hui01} S. 204ff.}. In diesem Verhalten zeigt sich erneut die Tendenz des Realoptionsansatzes eine Investition zu verzögern um neue Informationen abzuwarten. Ermöglicht wird diese Verzögerung jedoch erst durch die spieltheoretischen Überlegungen, mit denen das Verhalten von B antizipiert werden kann.

Im Extremfall ist es für B bei keiner Nachfrage sinnvoll als Innovator in den Markt einzutreten. Eine solche Situation ist gegeben, wenn aus Sicht von B die Ungleichung

\[L(x) < F(x) \quad \forall x < x^*_w \]

oder

\[I + \frac{2k_1 - k_0}{\theta} - \frac{xD(3)}{\delta} + (A - B)x^\beta < 0 \quad \forall x < x^*_w \]

erfüllt ist. A muss dann zu keinem Zeitpunkt fürchten, dass B ihm zuvorkommt und kann so den im Monopol ermittelten optimalen Investitionsschwellenwert x^*_M\footnote{Siehe (24).} abwarten. Der Wert des Wartens kann in einer solchen Situation wieder vollständig ausge schöpft werden. Bei relativ geringen Unterschieden in der Kostenstruktur wird dies aber in Regel nicht möglich sein. A wird in diesem Fall die Investition so lange verzögern, wie sichergestellt ist, dass B nicht investiert. Kurz bevor es auch für B profitabel wird zu investieren, führt A seine Investition durch um sich den Wert als Innovator zu sichern.

Im Bereich der Nachfrage $x^* \leq x < x^*_w$ aus Sicht von A entsteht, wie auch im NPV-Fall, ein zweiter Monopolbereich. Nach Erreichen des eigenen Schwellenwertes wird „investieren“ für A zur dominanten Strategie. Da dies aber für B nicht der Fall ist, wird A investieren, während B abwartet bis sein Schwellenwert erreicht ist.

Die Struktur der optimalen Investitionsstrategie bleibt, wie in Abschnitt 3.3.3 bestimmt, erhalten. Die Punkte 1 und 3 können dabei unverändert übernommen werden. Allein Punkt 2 muss zur Erfassung inhomogener Unternehmen umformuliert werden. Die erweiterte optimale Investitionsstrategie für eine Realoptionsbetrachtung lautet:

- Ist der Wert des Leaders kleiner als der des Status Quo $L(x) < W(x)$, nicht investieren.

- Übersteigt der Wert des Leaders den des Status Quo $L(x) \geq W(x)$ muss zunächst
geprüft werden, ob es für den Konkurrenten ebenfalls optimal ist bei dieser Nachfrage zu investieren. Ist dies der Fall, sofort investieren. (Alternativ: Investieren mit der Wahrscheinlichkeit q^*) Falls nicht, abwarten bis die Nachfrage marginal unter dem Schwellenwert des Konkurrenten liegt, spätestens jedoch bei erreichen des Monopolschwellenwertes x^*_M investieren.

Hat der Wettbewerber bereits investiert, abwarten bis die Nachfrage den Wert x^* erreicht hat und dann investieren.

- Ist $S(x) \geq W(x)$ und $x \geq x^*$ sofort investieren.

Die optimale Investitionsstrategie bei einer Bewertung mittels des NPV-Kriteriums im Vergleich zur Realoptionsbetrachtung ist in Abbildung 12 dargestellt. Im NPV-Fall wird

Abbildung 12: Optimale Investitionsstrategie, inhomogene UN

teilweise ausgenutzt werden. Die Verzögerung der Investition von B als Nachfolger ist auf den gestiegenen Schwellenwert x^* zurückzuführen, der sich aufgrund der höheren Kosten ergibt.

4.2.2 Investitionsausgaben

Eine zweite Möglichkeit zwischen den Firmen zu differenzieren besteht darin, unterschiedliche Investitionsausgaben zu unterstellen. In einer ersten Betrachtung seien die Investitionsausgaben der beiden Unternehmen ex ante festgelegt. Erst in einem zweiten Schritt wird die Höhe der Investitionsausgaben durch die Reihenfolge, in der die Unternehmen investieren, determiniert. Je nach Definition trägt der Nachfolger dann entweder höhere oder niedrige Investitionsausgaben. Zunächst aber fallen für Unter-
nehmen A bei Einführung der neuen Technologie Ausgaben in Höhe von I_A und für Unternehmen B in Höhe von I_B an. Wie auch im vorangegangenen Abschnitt soll A einen Wettbewerbsvorteil besitzen, indem die Ausgaben I_A geringer sind als die seines Konkurrenten ($I_A < I_B$).

Im Rahmen einer NPV-Analyse hat die Veränderung der Investitionsausgaben zunächst lediglich Auswirkungen auf die Unternehmenswerte, bei denen die Investition bereits durchgeführt wurde. Dies ist für den Innovator und bei der simultanen Investition der Fall. Im Status Quo und für den Nachfolger ergeben sich keine direkten wertmäßigen Veränderungen. Durch das Absinken der Funktion $L_b(x)$ bei höheren Investitionsausgaben steigt auch der Schwellenwert x_L, bei dem der Innovator investieren würde. Wie auch im vorangegangenen Abschnitt entstehen durch den Kostenvorteil von Unternehmen A zwei Bereiche der Nachfrage, in denen es praktisch ein Monopol auf die Durchführung der Investition besitzt. Die optimale Investitionsentscheidung, wie sie zuvor formüliert wurde, behält auch bei unterschiedlichen Investitionsausgaben ihre Gültigkeit.

Die Analogien setzen sich bei einer Realoptionsbewertung weiter fort. Aufgrund der unterschiedlichen Investitionsausgaben sind die beiden Schwellenwerte, bei denen die Unternehmen als Nachfolger die Investition durchführen, nicht länger identisch. Aus Sicht von A gilt auch hier aufgrund des Kostenvorteils $x^* < x^*_w$. Dies führt erneut zu zwei Monopolbereichen, wobei der erste dazu genutzt wird, die Investition zu verzögern, um die weitere Entwicklung der Nachfrage abzuwarten. Zusammengefasst gilt die in Abschnitt 4.2.1 bestimmte optimale Investitionsstrategie. Bezogen auf die Investitionsschwellenwerte und die optimalen Investitionsentscheidungen sind die Auswirkungen höherer variabler Kosten und höherer Investitionsausgaben equivalent.

Investitionsausgaben in Abhängigkeit des Investitionszeitpunktes

Im Ausgangsmodell existiert für den Innovator ein First Mover Advantage (FMA) bzw. für den Nachfolger ein Second Mover Disadvantage (SMD). Ursache hierfür ist jeweils die inverse Nachfragefunktion. Das Unternehmen, welches sich als erstes zur Investition entschließt, profitiert zunächst von einem höheren Preis. Führt auch das zweite die neue Technologie ein, sinkt der Preis aufgrund des gestiegenen Angebots und damit auch der zu erzielende Cashflow. Bedingt durch diese Ausgangssituation entsteht

Im Unterschied zu der ex ante Definition der Investitionsausgaben besitzt unter diesen Bedingungen keines der beiden Unternehmen von vorne herein ein Wettbewerbsvorteil. Erst nachdem einer der Konkurrenten die Investition durchgeführt hat, sind die Rollen eindeutig verteilte und damit auch die jeweilige Höhe der Investitionsausgaben. Wie sich zeigen wird existiert in diesem Zusammenhang kein Monopolbereich mehr, da beide Unternehmen zu Beginn identisch sind. Aus diesem Grund ist auch die optimale Investitionsstrategie wie im Ausgangsmodell für beide identisch.

Im Modell werden diese beiden Möglichkeiten dadurch berücksichtigt, dass zwischen den Investitionsausgaben differenziert wird. An Stelle der einheitlichen Kosten I wird nun zwischen den Investitionsausgaben des Innovators I_L und denen des Nachfolgers I_F
unterscheiden. Je nach Relation \((I_L > I_F)\) oder \((I_L < I_F)\) ergibt sich daraus ein SMA bzw. ein SMD \(^{152}\).

Für den Barwert des Innovators gilt damit

\[
L_b(x) = \frac{2x D(3)}{\delta} - I_L - \frac{2k_1}{r}.
\]

Darüber hinaus muss die simultane Investition neu definiert werden. Aufgrund der unterschiedlichen Investitionsausgaben ist es erforderlich zu berücksichtigen, welches der beiden Unternehmen als erstes investiert hat. Der Wert wird dann als simultane Investition des Leaders bzw. des Nachfolgers bezeichnet. Analog zu den Kosten seien diese dann \(S_L(x)\) für den Innovator und \(S_F(x)\) für den Nachfolger. Es gilt

\[
S_F(x) = \frac{2x D(4)}{\delta} - I_F - \frac{2k_1}{r}
\]

und

\[
S_L(x) = \frac{2x D(4)}{\delta} - I_L - \frac{2k_1}{r}.
\]

Wie man sofort erkennt, verlaufen die beiden Funktionen parallel und unterscheiden sich lediglich in der Differenz zwischen \(I_L\) und \(I_F\).

Im Hinblick auf die optimale Investitionsentscheidung ergeben sich im NPV-Fall kaum Veränderungen. Die in Abschnitt 3.2.2 formulierte Investitionsstrategie kann nahezu unverändert übernommen werden. Lediglich der Schwellenwert \(x_F\) aus (20) muss neu definiert werden. Dieser kennzeichnet die Höhe der Nachfrage, bei der der Wert der simultanen Investition dem des Nachfolgers entspricht. Gleichzeitig markiert der Schwellenwert den Beginn des Bereichs, in dem beide Unternehmen zunächst auf eine Investition verzichten und die Trigger-Strategie ein Gleichgewicht darstellt. Entscheidend ist in diesem Zusammenhang, dass für den Nachfolger die Bedingung

\[
S(x) = F_b(x)
\]

erfüllt ist. Bei der Berechnung des Schwellenwertes wird aus diesem Grund für \(S(x)\)

\(^{152}\)\(I_L = I_F\) bildet gerade das Ausgangsmodell ab.
$S_F(x)$ (s.o.) eingesetzt, so dass sich

$$x_F = \frac{(I_F + \frac{2k_1 - k_0}{r}) \delta}{2D(4) - D(3)}$$

ergibt. Unter dieser Voraussetzung kann die optimale gleichgewichtige Investitionsstrategie aus Abschnitt 3.2.2 unverändert übernommen werden.

Abbildung 13: Unternehmenswerte NPV, inhomogene UN

für bilden die Daten aus dem Beispiel, wobei die Investitionsausgaben des Nachfolgers $I_F = 85$ betragen. Bei einer weiteren Erhöhung des SMA wird der Bereich, in dem ein Unternehmen investiert, während das zweite abwartet (Leader-Follower Gleichgewicht), immer kleiner. Im Extremfall führt dies dazu, dass zunächst kein Unternehmen mehr
investiert. Diese Situation lässt sich durch die Bedingung

\[S_F(x) \geq F_b(x) \quad \text{für} \quad x \geq x_L^{153} \]

Im entgegengesetzten Fall eines SMD verschiebt sich \(S_F(x) \), erneut ausgehend von Abbildung 2, nach rechts. Der Bereich der Trigger-Strategie wird dadurch erst bei einer höheren Nachfrage erreicht. Gleichzeitig verzögert sich auch die simultane Investition. Damit der Nachfolger ebenfalls investiert, benötigt er eine höhere Nachfrage, um die zusätzlichen Kosten seiner Investition kompensieren zu können.

Bei einer Bewertung als Realoptionen ergeben sich darüber hinaus weitere Veränderungen durch die Einführung eines SMA bzw. eines SMD. Die Auswirkungen einer Verringerung der Investitionsausgaben auf die Investitionsoption des Nachfolgers wurden bereits im Abschnitt 3.3.4 beschrieben. Während der Optionswert steigt, sinkt der optimale Investitionsschwellenwert, der in diesem Fall als

\[x^* = \left(I_F + \frac{2k_1 - k_0}{r} \right) \frac{\delta}{2D(4) - D(3)} \frac{\beta}{\beta - 1} \]

definiert ist. Umgekehrt sinkt der Optionswert und \(x^* \) steigt, falls die Investitionsausgaben steigen.

Anders als im vorangegangenen Fall, in dem die unterschiedlichen Investitionsausgaben ex ante festgelegt wurden, ist hier der Schwellenwert des Nachfolgers wieder eindeutig, unabhängig davon, welches Unternehmen die Rolle des Innovators übernimmt. Dies hat zur Folge, dass eine Unterteilung der Schwellenwerte in \(x^* \) und \(x_{w}^* \) nicht länger notwendig ist. Es gilt erneut \(x^* = x_{w}^* \), so dass der Index \(w \) entfallen kann. An Stelle der zwei Schwellenwerte existieren nun zwei Funktionen im Zustand der simultanen Investition.

\(^{153}\) Siehe Gleichung (18).

Die Aufspaltung der simultanen Investition in zwei parallele Geraden bleibt im Vergleich zum NPV-Fall unverändert. Dargestellt ist die Situation eines SMD in Abbildung 14. Dabei wurden neben den Zahlen aus dem Beispiel Investitionsausgaben für den Nachfolger in Höhe von $I_F = 130$ unterstellt. Deutlich ist zu erkennen wie der Nachfolger bei einer Nachfrage von 8,32 investiert, unabhängig davon, um welches Unternehmen es sich handelt. Abweichend zu den Betrachtungen homogener Unternehmen existieren an dieser Stelle jedoch unterschiedliche Werte für den Nachfolger und den Leader, die in der Grafik als farbige Punkte gekennzeichnet sind. Wie auch im NPV-Fall kann die optimale Investitionsentscheidung fast unverändert aus Abschnitt 3.3.3 übernommen werden. Lediglich die Bezeichnung der simultanen Investition $S(x)$ muss durch $S_F(x)$ ersetzt werden. Es gilt dann:

- für $L(x) < W(x)$ nicht investieren.
- für $L(x) > W(x)$ sofort investieren, falls der Konkurrent bereits investiert hat, nicht investieren.
 (Alternativ: Investieren mit der Wahrscheinlichkeit p^)*
- für $S_F(x) > W(x)$ und $x \geq x^*$ sofort investieren.
Zusammenfassend lässt sich sagen, dass höhere Investitionsausgaben für ein Unternehmen identische Auswirkungen auf die optimale Investitionsstrategie haben wie höhere variable Kosten. In beiden Fällen verzögert sich die Investition aufgrund der höheren Kosten bzw. der höheren Ausgaben im Vergleich zum Wettbewerber. Dadurch entstehen zwei Bereiche der Nachfrage, in denen es allein für das Unternehmen mit dem Wettbewerbsvorteil profitabel ist zu investieren. Im NPV-Fall werden beide Bereiche genutzt um die Investition früher durchzuführen. Allein im ersten Bereich bei einer Realoptionsbewertung kann die Investition verzögert werden, um weitere Informationen über die unsichere Marktentwicklung abzuwarten.

Abbildung 14: Unternehmenswerte RO, inhomogene UN

\[F(x) \quad L(x) \quad S_L(x) \quad S_F(x) \]
optimal früher zu investieren. Sein Schwellenwert x^* sinkt. Bedingt durch den früheren Eintritt sinkt für den Innovator der Wert seiner Stillhalterposition, so dass sich sein Eintritt verzögert.

4.2.3 Marktanteil

In einer letzten Erweiterung für inhomogene Unternehmen sollen zwei Firmen mit unterschiedlichem Marktanteil betrachtet werden. Während das erste Unternehmen (A) den Großteil der Nachfrage auf sich ziehen kann und damit eine dominante Stellung innehat, handelt es sich beim zweiten (B) um ein relativ kleines Unternehmen. Es sei angenommen, dass sich die Konkurrenten den Markt im Verhältnis fünf Achtel zu drei Achtel untereinander aufteilen. Die beiden Firmen verfügen jeweils über entsprechend große Produktionskapazitäten.

Darüber hinaus seien die variablen Kosten für beide Unternehmen identisch. Die Investitionsausgaben für die neue Technologie richten sich dagegen nach der Kapazität und es gilt $I_B = \frac{3}{5} I_A$. Durch die Einführung der neuen Technologie lässt sich wie schon im Ausgangsmodell die Höhe des Outputs verdoppeln und die variablen Kosten sinken von k_0 auf k_1.

Ebenfalls analog zum Ausgangsmodell sei der Gesamtoutput im Status Quo $Y = 2$. Damit entfällt auf Unternehmen A ein Anteil von $y_1 = 1,25$ und auf Unternehmen B $y_2 = 0,75$. Der resultierende Preis für das Produkt beträgt demnach unverändert $x D(2)$. Das Gleiche gilt für die simultane Investition. Nachdem beide Unternehmen ihre Investition durchgeführt und sich der Gesamtoutput verdoppelt hat, bleibt der Preis mit $x D(4)$ im Vergleich zum Ausgangsmodell konstant. Lediglich wenn nur ein Unternehmen investiert, kommt es zu Preiskonstellationen, die in dieser Form bisher

\footnote{Auswirkungen geringerer variabler Kosten z.B. aufgrund von Skalenerträgen für Unternehmen A wurden in Abschnitt 4.2.1 besprochen.}
nicht aufgetreten sind. Sollte das kleine Unternehmen B zuerst investieren erhöht sich das Gesamtangebot nur gering auf \(Y = 2,75 \). Entsprechend moderater fällt der Preisrückgang im Vergleich zum Ausgangsmodell aus. Investiert dagegen der Marktführer A als Erstes, so kommt es zu einem deutlichen Anstieg des Angebotes auf \(Y = 3,25 \). Der resultierende Preisrückgang fällt damit höher aus als durch eine Investition im Ausgangsmodell.

Bedingt durch die Änderungen müssen die Gleichungen der Unternehmenswerte entsprechend angepasst werden. Für \(I = I_A \) beträgt der Wert des Marktführer A im Falle einer simultanen Investition

\[
S_A(x) = \frac{2,5x D(4)}{\delta} - I - \frac{2,5k_1}{r}
\]

und für Unternehmen B entsprechend

\[
S_B(x) = \frac{1,5x D(4)}{\delta} - \frac{3}{5} I - \frac{1,5k_1}{r}.
\]

Die weiteren Unternehmenswerte für den Status Quo und die Leader-Follower-Kombinationen sind im Anhang aufgeführt.

Der Schwellenwert \(x_L \), ab dem eine Investition im NPV-Fall in Frage kommt, wurde in Gleichung (18) bestimmt. Übertragen auf die Erweiterung ergibt sich für Unternehmen A

\[
x^A_L = \frac{(I + \frac{2,5k_1-1,25k_0}{r}) \delta}{2,5D(3,25) - 1,25D(2)}
\]

und entsprechend für Unternehmen B

\[
x^B_L = \frac{\left(\frac{3}{5} I + \frac{1,5k_1-0,75k_0}{r}\right) \delta}{1,5D(2,75) - 0,75D(2)}.
\]
Für die beiden Schwellenwerte lässt sich zeigen155, dass

$$x^B_L < x^A_L$$

155Siehe dazu im Anhang Abschnitt A.7.
Abbildung 15: Optimale Investitionsstrategie, inhomogene UN II, NPV

...
dass der Schwellenwert des kleinen Unternehmens, wie bei der NPV-Bewertung, kleiner ist als der des Marktführers \((x^*_A > x^*_B)\). An dieser Stelle wird es wieder erforderlich, zwischen den beiden Schwellenwerten zu differenzieren. Dies gilt insbesondere im Hinblick auf die Stillhalterposition des Nachfolgers, die in Abhängigkeit des Schwellenwertes des Konkurrenten definiert ist. Im Abschnitt 3.3.4 „Komparative Statik“ wurden die Auswirkungen eines höheren bzw. niedrigeren Schwellenwertes bereits erläutert. Aus Sicht von \(A\) führt der niedrigere Schwellenwert seines Konkurrenten zum Absinken des Wertes seiner Stillhalterposition\(^{156}\), wodurch sich seine Investition als Innovator verzögert. Umgekehrt profitiert \(B\) von dem höheren Schwellenwert des Wettbewerbers. Es kann dadurch länger vom Monopolstatus profitieren, was zu einem Anstieg seiner Stillhalterposition führt und die Investition als Leader positiv beeinflusst.

In Abbildung 16 ist die optimale gleichgewichtige Investitionsstrategie basierend auf einer Realoptionsbewertung dargestellt. Die drei Zeilen stehen wie im NPV-Fall für 1. das Ausgangsmodell, 2. die Marktanteile von \(A = 62,5\%\), \(B = 37,5\%\) und 3. die Marktanteile von \(A = 75\%\), \(B = 25\%\). Wie in Abbildung 15 führt ein geringerer Marktanteil dazu, dass Unternehmen \(B\) früher investieren könnte. Anstatt aber sofort

Abbildung 16: Optimale Investitionsstrategie, inhomogene UN II, RO

\(^{156}\) Die Gleichungen für die Parameter \(B_A\) und \(B_B\) der Stillhalterpositionen sind ebenfalls im Anhang aufgeführt.
zu investieren, wartet es zunächst ab, wie sich die Nachfrage weiter entwickelt. Erst kurz bevor der Eintrittsschwellenwert des Konkurrenten erreicht ist, wird B die Investition durchführen, um sich so die Position des Innovators zu sichern und dem Konkurrenten zuvorzukommen. Nachdem der Wert bei einer simultanen Investition größer ist als der im Status Quo wird B auf jeden Fall investieren. In diesem zweiten Monopolbereich kann A keine bessere Wahl treffen als abzuwarten bis sein Schwellenwert x^*_A erreicht wird um dann ebenfalls zu investieren. Wie schon bei den Berechnungen für die Schwellenwerte gezeigt, verzögert sich die Investition mit steigendem Marktanteil immer weiter.

4.3 Begrenzter Zeithorizont / Produktlebenszyklus

Ein weiteres Beispiel für eine begrenzte Laufzeit im Zusammenhang mit einer Real-
optionsbetrachtung findet sich bei Hilzenbecher159. In seinem Modell, das ebenfalls eine Investitionsgelegenheit in ein neues Produkt als Realoption bewertet, werden die Nettoeinzahlungen aus dem Verkauf des Produktes durch den idealisierten Verlauf eines stochastischen Produktlebenszyklusses abgebildet. Bedingt durch die erwartete Entwicklung des Absatzes ist die Produktion zeitlich begrenzt. Der Produktlebenszyklus wird in diesem Fall durch einen zeitvarianten Ito-Prozess modelliert. Eine Bewertung der Optionen erfolgt allerdings auch hier nicht auf analytischem Wege. Stattdessen werden neben den unsicheren Nettoeinzahlungen weitere stochastische Größen zu einem System zusammengefasst und durch Simulation bewertet. Auf die Anwendung spieltheoretischer Methoden im Oligopol wird hier bewusst verzichtet.

Im Fall des vorliegenden Modells existieren eine Reihe von Gründen dafür, statt eines unendlichen Zeithorizonts eine begrenzte Laufzeit für die Produktion zu unterstellen. Neben der Lebensdauer der durch die Investition erworbenen Maschinen lässt sich auch für das Produkt selbst eine begrenzte Laufzeit im Sinne eines Produktlebenszyklusses annehmen. Um diesen Aspekt in das Modell mit einzubeziehen, soll im Folgenden gezeigt werden, wie sich ein alternativer Diffusionsprozess in das Modell integrieren lässt. Als Grundlage hierfür dient der von Hilzenbecher beschriebene zeitvariante Ito-Prozess zur Abbildung eines idealisierten Produktlebenszyklusses160. Anders als in seinem Simulationsmodell soll die Bewertung jedoch auf analytischem Wege erfolgen. Dazu ist es erforderlich die Optionsbewertung an den neuen Prozess und die begrenzte Laufzeit anzupassen.

4.3.1 Net Present Value-Analyse

Abgesehen von der Entwicklung (Studien, Konzepte und Produktentwicklung) wird ein Produktlebenszyklus allgemein in fünf verschiedene Phasen eingeteilt, die sich durch die Höhe und das Wachstum des Umsatzes unterscheiden161. Dargestellt sind diese Phasen in Abbildung 17. Nach der Einführung folgt eine Phase des Wachstums. Verlangsamt sich das Wachstum des Umsatzes wieder, so spricht man von der Reifephase. Sie dauert bin zum Umsatzmaximum an. Ab diesem Punkt ist das Umsatzwachstum negativ und

159 Vgl. [Hil02] S. 355ff Kapitel 4.
160 Vgl. [Hil02] S. 159ff.
die Sättigungsphase beginnt. Beschleunigt sich dieser Rückgang, so ist die Degenerationsphase erreicht. Je nach Produkt und Branche können die einzelnen Phasen mehr oder weniger stark variieren.

Um einen solchen Zyklus in idealisierter Form abzubilden, wird die geometrisch Brownsche Bewegung im Modell durch einen zeitvarianten Ito-Prozess der Form \[dx = -\alpha x(t - t_M)dt + \sigma xdz \] (41) ersetzt. Der Parameter \(t_M \) beschreibt den Zeitpunkt des erwarteten Maximums. Zusammen mit dem Wachstumsparameter \(\alpha \) lässt sich der Prozess beliebig anpassen. Je nach Ausprägung beginnt der Prozess z.B. bereits mit einem geringen Wachstum in der Einführungsphase oder erst mit einem höheren Wachstum in der Wachstumsphase. Der

\begin{itemize}
\item \[dx = -\alpha x(t - t_M)dt + \sigma xdz \]
\item \[\text{Abbildung 17: Phasen eines Produktlebenszyklus} \]
\end{itemize}

\footnotesize

\[^{162} \text{Vgl. Hilzenbecher [Hil02] S. 159ff.} \]
\[^{163} \text{Es wird angenommen, dass der beschriebene Zyklus des Umsatzes equivalent ist zur Entwicklung der Nachfrage im vorliegenden Modell.} \]
Erwartungswert des Prozesses ergibt sich dann als

\[\mathcal{E}(x_t) = x_0 \exp \left(-\alpha \left(\frac{t^2}{2} - t M t \right) \right). \]

In Abbildung 18 ist der Prozess für die Größen \(x_0 = 5, t_M = 18, \alpha = 0,03 \) und \(\sigma = 0,15 \) und die weiteren Daten aus dem Beispiel dargestellt. Abgetragen sind zum einen der Erwartungswert und zum anderen eine mögliche Realisation. Der erwartete Preis, der für das Produkt zum Zeitpunkt \(t \) erzielt werden kann, ergibt sich dann als

\[\mathcal{E}[p(x, t)] = D(Q)x_0 \exp \left(-\alpha \left(\frac{t^2}{2} - t M t \right) \right). \]

Der Zeitraum, in dem das Produkt produziert und verkauft wird, sei durch die Zeitpunkte \(t_a \) und \(t_e \) begrenzt. Der noch zu bestimmende Zeitpunkt \(t_e \), der das Ende der Produktion kennzeichnet, ist dadurch charakterisiert, dass der Preis den variablen Kosten \(k_0 \) bzw. \(k_1 \) entspricht. Sinkt der Preis unter diesen Wert ist eine Produktion

\[\text{Abbildung 18: Produktlebenszyklus, Erwartungswert und Realisation} \]

\[\text{Erwartungswert und zum anderen eine mögliche Realisation.} \]

\[\text{Der erwartete Preis, der für das Produkt zum Zeitpunkt} \] \(t \) \text{erzielt werden kann, ergibt sich dann als} \]

\[\text{Der Zeitraum, in dem das Produkt produziert und verkauft wird, sei durch die Zeitpunkte} \] \(t_a \) \text{und} \(t_e \) \text{begrenzt. Der noch zu bestimmende Zeitpunkt} \(t_e \), \text{der das Ende der Produktion kennzeichnet, ist dadurch charakterisiert, dass der Preis den variablen Kosten} \] \(k_0 \) \text{bzw.} \(k_1 \) \text{entspricht. Sinkt der Preis unter diesen Wert ist eine Produktion} \]

\[\text{Die standardnormalverteilten Zufallsvariablen wurden auf Monatsbasis mittels des Programms Excel generiert. Für das Beispiel sind diese hinreichend genau.} \]
4 Erweiterungen

nicht mehr profitabel und wird deshalb eingestellt. Dies entspricht im Grunde einer Maximierung des Deckungsbeitrags, der durch den Verkauf des Produktes erzielt werden kann.

Gesucht wird also ein \(t (t = t_e) \), das die Bedingung

\[
\mathcal{E}[p(x, t)] = D(Q)x_0 \exp \left(-\alpha \left(\frac{t^2}{2} - t Mt \right) \right) = k
\]

erfüllt165. Umgeformt ergibt sich die Gleichung

\[
t_{1,2} = t_M \pm \sqrt{t_M^2 - \frac{2}{\alpha} \left[\ln(k) - \ln(D(Q)) - \ln(x_0) \right].}
\]

Aufgrund der parabelförmigen Struktur des Produktlebenszyklusses ergeben sich zwei Lösungen, von denen hier nur der spätere Zeitpunkt gesucht ist. Damit gilt

\[
t_e = t_M + \sqrt{t_M^2 - \frac{2}{\alpha} \left[\ln(k) - \ln(D(Q)) - \ln(x_0) \right].}
\]

(42)

In Bezug auf den Einfluss der einzelnen Faktoren auf die Produktionsdauer bestätigt die Gleichung, was intuitiv plausibel erscheint. Je später das erwartete Maximum der Nachfrage (\(t_M \)) erreicht wird, desto länger kann produziert werden. Darüber hinaus verlängern niedrige variable Kosten (\(k \)) und eine hohe Ausgangsnachfrage (\(x_0 \)) die Produktionsdauer. Eine Investition in die neue Technologie führt demnach nicht nur zu einem Absinken der variablen Kosten von \(k_0 \) auf \(k_1 \), sondern gleichzeitig auch zu einer längeren Produktionsdauer.

Nachdem der Zeitpunkt des erwarteten Produktionsendes in Abhängigkeit der Ausgangsnachfrage \(x_0 \) bekannt ist, lässt sich auch der Erwartungswert der Umsatzerlöse berechnen. Ausgangspunkt ist zunächst der Status Quo, in dem beide Unternehmen je ein Produkt pro Periode produzieren. Die daraus resultierenden Umsatzerlöse werden mit \(U \) bezeichnet. Dann ist

\[
\mathcal{E}(U) = \int_{t_a}^{t_e} D(Q)x \exp \left(-\alpha \left(\frac{t^2}{2} - t Mt \right) \right) e^{-rt} dt
\]

165 k \in [k_0, k_1].
oder

\[= D(Q)x \int_{t_a}^{t_e} \exp \left[-\frac{\alpha}{2} t^2 + (\alpha t_M - r) t \right] dt. \] (43)

Ein Integral der Form

\[\int_a^b \exp(-c_2 x^2 + c_1 x) \, dx \]

besitzt die Lösung\(^{166}\)

\[- \frac{\sqrt{\Pi} \exp \left(\frac{c_1^2}{4c_2} \right)}{2 \sqrt{c_2}} \left[\text{erf} \left(\frac{2c_2 a - c_1}{2 \sqrt{c_2}} \right) - \text{erf} \left(\frac{2c_2 b - c_1}{2 \sqrt{c_2}} \right) \right], \] (44)

wobei \text{erf}(x) die Error-Function\(^{167}\) oder „Gaussian Probability Integral“ bezeichnet. \(c_1\) und \(c_2\) sind zwei Konstanten und es gilt \(c_1 = \alpha t_M - r\) und \(c_2 = \frac{\alpha}{2}\).

Einsetzen der Lösung aus dem Anhang für die Error-Function in (44) liefert

\[- \frac{\sqrt{\Pi} \exp \left(\frac{c_1^2}{4c_2} \right)}{2 \sqrt{c_2}} \left[2\Phi \left(\sqrt{2} \frac{2c_2 a - c_1}{2 \sqrt{c_2}} \right) - 1 - \left(2\Phi \left(\sqrt{2} \frac{2c_2 b - c_1}{2 \sqrt{c_2}} \right) - 1 \right) \right]. \]

Wiederum eingesetzt für das Integral in (43) bleibt nach einigen Umformungen für den Barwert der erwarteten Umsatzerlöse bis zum Zeitpunkt \(b\)

\[\mathcal{E}(U) = D(Q) xv \left[\Phi \left(\frac{2c_2 t_a - c_1}{\sqrt{2c_2}} \right) - \Phi \left(\frac{2c_2 t_e - c_1}{\sqrt{2c_2}} \right) \right] \]

mit

\[v = \left(-\sqrt{\Pi} \exp \left(\frac{c_1^2}{4c_2} \right) \right), \]

\(c_1 = \alpha t_M - r\), \(c_2 = \frac{\alpha}{2}\) und \(t_e = (42)\).

Neben den Erlösen fallen für die Produktion variable Kosten an. Diese lassen sich auf einfache Weise berechnen. Erneut ausgehend vom Status Quo gilt für den Barwert

\(^{166}\) Die Lösung lässt sich zum einen über Integrationstafeln bestimmen (Vgl. z.B. Zwillinger [Zwi96] S. 552 ff.) oder zum anderen über mathematische Software wie Maple.

der variablen Kosten
\[\int_{t_a}^{t_e} k_0 e^{-rt} \, dt = \frac{k_0}{r} \left(e^{-rt_a} - e^{-rt_e} \right). \]
Sei \(t \) der Beginn der Produktion (\(t = t_a \)), dann ergibt sich der erwartete Unternehmenswert für den Status Quo zusammengefasst als
\[
W(x, t) = D(2)xv \left[\Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) - \Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) \right] - \frac{k_0}{r} (e^{-rt} - e^{-rt_e}) \tag{45}
\]
Die Gleichungen für die Barwerte des Innovators, des Nachfolgers und bei simultaner Investition lauten entsprechend:
\[
L_b(x, t) = 2D(3)xv \left[\Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) - \Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) \right] - \frac{2k_1}{r} (e^{-rt} - e^{-rt_e}) - Ie^{-rt} \tag{46}
\]
\[
F_b(x, t) = D(3)xv \left[\Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) - \Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) \right] - \frac{k_0}{r} (e^{-rt} - e^{-rt_e}) \tag{47}
\]
und
\[
S(x, t) = 2D(4)xv \left[\Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) - \Phi \left(\frac{\sqrt{2}(2c_2t - c_1)}{2\sqrt{c_2}} \right) \right] - \frac{2k_1}{r} (e^{-rt} - e^{-rt_e}) - Ie^{-rt} \tag{48}
\]
Die lineare Struktur der Unternehmenswerte in Abhängigkeit der Nachfrage bleibt im Vergleich zum Modell mit unendlicher Laufzeit unverändert. Neu dagegen ist die Entwicklung der Unternehmenswerte im Zeitablauf. In Abbildung 19 ist unter anderem der Barwert des Nachfolgers \(F_b(x, t) \) bei einer Nachfrage von \(x = 2 \) in Abhängigkeit der

von der jeweiligen Phase des Produktlebenszyklusses. Während in der Einführungsphase die Opportunitätskosten noch relativ gering sind, steigen sie in der Wachstumsphase stark an. In Bezug auf das Black-Scholes-Modell lassen sich die Opportunitätskosten als eine zeitabhängige kontinuierliche Dividende verstehen.

Damit bleibt, ebenso wie in den vorangegangenen Erweiterungen, die optimale Investitionsstrategie unverändert. Auch im Rahmen einer begrenzten Laufzeit behält da-
mit die in Abschnitt 3.2.2 bestimmte Investitionsstrategie ihre Gültigkeit. Was sich

ejedoch ändert, sind die Grenzen der einzelnen Bereiche im Zeitablauf. Dargestellt ist
die optimale gleichgewichtige Strategie für die Daten aus dem Beispiel in Abbildung
20. Wie man deutlich erkennt, bleibt die Struktur der vier Bereiche über den gesamten
betrachteten Zeitraum erhalten. In den ersten Perioden kommt es zu einem minimalen
Absinken der Grenzen. Dies resultiert aus dem beschriebenen Anstieg der Barwerte.
Im weiteren Verlauf steigen dann die Grenzen der Bereiche immer weiter an. Mit ab-
nehmender Restlaufzeit muss die Nachfrage und der daraus resultierende Preis immer
weiter ansteigen, damit eine Investition noch profitabel ist.

4.3.2 Realoptionsberechnung

Aufgrund der begrenzten Laufzeit und des veränderten stochastischen Prozesses lässt
sich der Wert der Investitionsoption nicht wie in den vorangegangenen Abschnitten
bestimmen. An dieser Stelle ist es erforderlich, das Bewertungsverfahren den veränder-
ten Rahmenbedingungen anzupassen. Ausgangspunkt ist zunächst wieder ein Derivat o
dessen Underlying x dem allgemeinen stetigen stochastischen Prozess

$$dx = \alpha(x,t)dt + b(x,t)dz$$

folgt. Analog zur Vorgehensweise in Abschnitt 2.1 liefert die Contingent Claim Analyse die partielle Differentialgleichung

$$\frac{1}{2}b^2(x,t)\partial_{xx}(x,t) + r\partial_x(x,t) + \partial_t(x,t) - r\partial_o(x,t) = 0,$$

welche die Funktion des Derivats $o(x,t)$ erfüllen muss. Der Index x bzw. t steht hier jeweils für die partiellen Ableitungen. Ist $b = \sigma x$ entsprechend einer geometrisch Brownschen Bewegung (1) oder dem zeitvarianten Ito-Prozess (41) so ergibt sich die Black-Scholes-Merton-Differentialgleichung aus (2)

$$\frac{1}{2}\sigma^2 x^2 \partial_{xx}(x,t) + r\partial_x(x,t) + \partial_t(x,t) - r\partial_o(x,t) = 0,$$

jedo ß ohne die kontinuierliche Dividende $-\delta x \frac{\partial_o}{\partial x}$. Da es sich bei dem Derivat im vorliegenden Modell um eine Investitionsoption im Sinne einer Call-Option handelt, kann dieses folglich auch mit der Black-Scholes-Optionspreisformel bewertet werden. Sie lautet168

$$c(x,t) = xN(d_1) - e^{-r(T-t)}N(d_2)K$$

mit

$$d_1 = \frac{\ln(x/K) + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}},$$
$$d_2 = \frac{\ln(x/K) + (r - \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}},$$

und T dem Fälligkeitszeitpunkt sowie t dem Betrachtungszeitpunkt.

Um die Optionspreisformel im Modell anwenden zu können müssen jedoch noch einige Anpassungen vorgenommen werden. Zunächst bewertet Gleichung (49) die Option zum Zeitpunkt T ein Produkt zum Preis von K erwerben zu können. Die Investitionsoption der Unternehmen beinhaltet jedoch die Möglichkeit zu einem beliebigen Zeitpunkt

168 Aufgrund der Spezifikation des Derivats als Call-Option wird $o(x,t)$ durch $c(x,t)$ ersetzt. Vgl. auch (3) in Abschnitt 2.1.
während der Laufzeit gegen Zahlung der Investitionsausgaben I den Wert der Differenz $S(x,t) - F_b(x,t)$ zu erhalten. Aus diesem Grund wird x durch $S(x,t) - F_b(x,t)$ und K durch I ersetzt. Wird die Option zum Fälligkeitszeitpunkt T vom Nachfolger ausgeübt, so beginnt zum selben Zeitpunkt die Produktion mit der neuen Technologie. Der Produktionsbeginn t_a und der Fälligkeitszeitpunkt T sind damit identisch. T wird deshalb in der Optionspreisformel durch t_a ersetzt, so dass sich die Laufzeit der Option als $t_a - t$ ergibt. Die Optionspreisformel lautet dann

$$c(x,t,t_a) = [S(\cdot) - F_b(\cdot)]N(d_1) - e^{-r(t_a - t)}N(d_2)I$$

mit

$$d_1 = \frac{\ln([S(\cdot) - F_b(\cdot)]/I) + (r + \sigma^2/2)(t_a - t)}{\sigma \sqrt{t_a - t}}$$

und

$$d_2 = \frac{\ln([S(\cdot) - F_b(\cdot)]/I) + (r - \sigma^2/2)(t_a - t)}{\sigma \sqrt{t_a - t}}.$$

Ein weiterer Unterschied besteht wie bereits angedeutet darin, dass die Formel den Wert einer europäischen Option beschreibt, d.h. einer Option, die nur bei Fälligkeit zum Zeitpunkt t_a ausgeübt werden kann. Im Modell können die Unternehmen jedoch den Investitionszeitpunkt und damit t_a frei wählen. Die Investitionsgelegenheit entspricht also einer amerikanischen Call-Option. Zur Bestimmung des Wertes der amerikanischen Option wird auf eine Approximation von Black zurückgegriffen\(^{169}\), die für das vorliegende Modell hinreichend genau ist. Black schlägt vor, zu allen möglichen Fälligkeiten (t_a) jeweils den Wert der europäischen Optionen zu berechnen. Der Wert der amerikanischen Option ergibt sich dann als das Maximum aller europäischen und soll mit

$$\max_{t_a} [c(x,t,t_a)]$$

beschrieben werden. Nach oben ist der maximale Fälligkeitszeitpunkt durch das Ende der Produktion\(^{170}\) t_e, bedingt durch den Produktlebenszyklus, begrenzt. Es muss also gelten $t_a \leq t_e$.

\(^{169}\) Vgl. [Bla75], auch beschrieben in Hull [Hul00] S. 260ff.

\(^{170}\) Siehe (42).
Zusammengefasst entspricht dann der Wert des Nachfolgers

\[F(x, t) = D(3)xv\left[\Phi\left(\frac{2c_2t - c_1}{\sqrt{2c_2}} \right) - \Phi\left(\frac{2c_2t_e - c_1}{\sqrt{2c_2}} \right) \right] - \frac{k_0}{r} (e^{-rt} - e^{-rt_e}) + \max_{t_a} [c(x, t, t_a)] \quad \text{für } x < x^*. \]

(50)

Für \(x > x^* \) gilt \(F(x, t) = S(x, t) \).

Nachdem der Wert der Investitionsoption berechnet wurde, kann nun auch der optimale Investitionsschwellenwert analog zum alten Modell bestimmt werden. Gesucht ist der Wert der Nachfrage \(x^* \), bei dem der zusätzliche Barwert einer sofortigen Investition gleich dem maximalen Optionswert, zu einem beliebigen späteren Zeitpunkt zu investieren, ist. \(x^* \) wird also durch die Bedingung

\[\max_{t_a} [c(x, t, t_a)] = S(\cdot) - F_b(\cdot) \]

impliziert. Anders als im Ausgangsmodell verändert sich der Schwellenwert jedoch im Zeitablauf und ist deshalb als Funktion \(x^*(t) \) definiert. Die Funktion gibt an, ab welcher Nachfrage der Nachfolger im Zeitablauf jeweils investieren wird.

Als letzter Schritt der Bewertung muss noch der drohende Verlust des Innovators, der durch den Eintritt des Nachfolgers entsteht, quantifiziert werden. Wie auch im Ausgangsmodell investiert der Nachfolger erst bei Erreichen seines Schwellenwertes \(x^* \), wodurch dem Innovator aufgrund des Preisrückgangs die Differenz \(L_b(x, t) - S(x, t) \) verloren geht. Dieser erwartete Verlust wird wie zuvor als Option modelliert. Ein Derivat
mit der Auszahlungscharakteristik

\[o(x) = \begin{cases}
0 & \text{für } x < x^* \\
x & \text{für } x \geq x^*
\end{cases} \]

wird in der Literatur als „Asset-or-nothing Call“ bezeichnet171. Notiert das Underlying zur Fälligkeit unterhalb des Schwellenwertes, ist die Auszahlung gleich null. Notiert es darüber erhält der Optionsinhaber das Underlying. Der einzige Unterschied zu einer „normalen“ Call-Option besteht darin, dass der Optionsinhaber nicht den Strike-Preis bezahlen muss, um das Underlying zu erhalten. In der Black-Scholes-Notation ergibt sich der Wert eines Asset-or-nothing-Calls als

\[aon(x, t) = xN(d_1) \]

mit

\[d_1 = \frac{\ln(S/K) + (r + \sigma^2/2)(T - t)}{\sigma \sqrt{T - t}}. \]

Es handelt sich also um den Erwartungswert aller möglichen Realisationen des Underlyings zum Fälligkeitszeitpunkt, die größer oder gleich dem Strike-Preis sind.

Für den Innovator ist das Asset in diesem Fall die Differenz \(L_b(x, t) - S(x, t) \) und er ist Stillhalter dieser Option. Der Strike-Preis ergibt sich aus den zuvor bestimmten Schwellenwerten als \(L_b(x^*, t) - S(x^*, t) \). Die Fälligkeit der Option entspricht wieder dem Produktionsbeginn des Nachfolgers, so dass \(T \) durch \(t_a \) ersetzt werden kann. Insgesamt lässt sich die Stillhalterposition dann schreiben als

\[aon(x, t, t_a) = [L_b(x, t) - S(x, t)]N(d_1). \]

mit

\[d_1 = \frac{\ln([L_b(\cdot) - S(\cdot)]/[L_b(x^*, \cdot) - S(x^*, \cdot)]) + (r + \sigma^2/2)(t_a - t)}{\sigma \sqrt{t_a - t}}. \]

Analog zur Call-Option auf die Investitionsgelegenheit entspricht dies der europäischen Form einer Asset-or-nothing-Option. Zur Berechnung des amerikanischen Typs

171Vgl. Hull [Hul00] S. 465ff oder Chriss [Chr97] S. 198ff „Stock-or-nothing Option“.
betrachtet man wieder das Maximum über alle Fälligkeitszeitpunkte

\[\max_{t_a} \left[\text{aon}(x, t, t_a) \right]. \]

Der Unternehmenswert des Innovators lautet damit

\[
L(x, t) = 2D(3)xv \left[\Phi \left(\frac{2c_2 t - c_1}{\sqrt{2c_2}} \right) - \Phi \left(\frac{2c_2 t_e - c_1}{\sqrt{2c_2}} \right) \right] - \frac{2k_1}{r} \left(e^{-rt} - e^{-r t_e} \right) - Ie^{-rt} - \max_{t_a} \left[\text{aon}(x, t, t_a) \right].
\]

Dieser Unternehmenswert gilt für den Bereich \(x < x^* \). Für \(x > x^* \) ist \(L(x, t) = S(x, t) \).

Nachdem zusätzlich die beiden Unternehmenswerte für den Innovator und den Nachfolger inklusive der Optionen berechnet wurden, lässt sich die optimale Investitionssstrategie für eine Realoptionsbewertung bestimmen. Da wieder von homogenen Unternehmen ausgegangen wird, gilt diese Strategie entsprechend für beide Wettbewerber. In

Abbildung 21: Optimale Investitionsstrategie, PLZ, RO

Abbildung 21 ist das Ergebnis für die Daten aus dem Beispiel und dem oben beschriebenen Diffusionsprozess dargestellt. Zu Beginn des Betrachtungszeitraums entspricht die Strategie noch der des Ausgangsmodells. Sobald der Wert als Innovator den des Status
Quo übersteigt, investiert ein Unternehmen (A oder B). Das zweite wartet den Schwellenwert x^* ab und investiert sobald dieser erreicht wird172. Ab diesem Punkt beginnt der Bereich der simultanen Investition. Im weiteren Zeitablauf reduziert sich der Wert der Option, während die Barwerte $F_b(x, t)$ und $S(x, t)$ in den ersten Perioden leicht ansteigen. Als Folge sinkt auch der Schwellenwert x^*. Die Funktion $x^*(t)$ lässt sich in Abbildung 21 als die obere Kante des blau-rot schraffierten Bereichs ablesen.

Im weiteren Zeitablauf führt der fallende Optionswert dazu, dass wie bei der NPV-Bewertung ein Bereich der Nachfrage entsteht, in dem beide Unternehmen zunächst abwarten, obwohl der Wert als Leader größer ist als der im Status Quo. Der Grund liegt im Schwellenwert x^*, der kleiner ist als der Schwellenwert der simultanen Investition x_S173. Die Funktion $x_s(t)$ lässt sich wiederum in Abbildung 21 als die untere Kante des grünen Bereichs ablesen. Analog zum NPV-Fall würde der Nachfolger bei Erreichen des Schwellenwertes x^* ebenfalls investieren, was ein Absinken für beide Unternehmen unter den Wert des Status Quo zur Folge hätte. Ein möglicher Innovator antizipiert dieses Verhalten seines Konkurrenten und beide verzichten zunächst auf die Investition. Die Trigger-Strategie, wie sie in Abschnitt 3.2.2 beschrieben wurde, stellt damit wieder ein stabiles Gleichgewicht dar. Je höher der Wert der Investitionsoption ist, desto später beginnt der Bereich der Nachfrage, in dem die Trigger-Strategie ein Gleichgewicht darstellt. Ist die Option schließlich wertlos, sind die Grenzen für eine NPV-Betrachtung und bei einer Realoptionsbewertung identisch.

Abgesehen von den Unterschieden der Investitionsschwellenwerte des Innovators wird deutlich, dass sich die optimale Investitionsstrategie bei einer NPW-Bewertung

172 Alternativ investieren beide Unternehmen mit der Wahrscheinlichkeit q^*.

173 Siehe (21).
kaum noch von der im Realoptionsfall unterscheidet. In Verbindung mit dem erheblich höheren Aufwand für die Optionsbewertung lässt sich schlussfolgern, dass eine Realoptionsbewertung in diesem Fall nicht angebracht ist. Dies gilt speziell für den Fall, dass die Restlaufzeit des Projektes relativ gering ist.
5 Fazit und Ausblick

des Nachfolgers ist bis zum Schwellenwert x^* immer größer als der Wert der simultanen Investition. Aus diesem Grund wird in jedem Fall mindestens ein Unternehmen investieren, sofern der Wert des Leaders den Wert im Status Quo übersteigt.

Beim Übergang vom Duopol zum Oligopol zeigt sich, dass ebenfalls nur der letzte Nachfolger in der Lage ist den Wert des Wartens auszuschöpfen. Alle anderen Unternehmen unterliegen bei ihren Investitionen einer Konkurrenzsituation, die es ihnen nicht erlaubt ihre Entscheidung in irgend einer Weise zu verzögern.

Eine Möglichkeit, dennoch als Innovator vom Wert des Wartens zu profitieren, besteht bei inhomogenen Unternehmen. Besitzt einer der beiden Konkurrenten im Duopol

- eine geringe Anzahl von Wettbewerbern,
- hohe Unsicherheit über die zukünftige Entwicklung,
- eine lange Laufzeit des Projektes,
- ein hoher risikoloser Zinssatz.
Nur unter diesen Bedingungen ergibt sich für die Investitionsoption ein signifikanter Wert, so dass die optimalen Investitionsstrategien des NPV- und des Realoptionsansatzes von einander abweichen. In allen anderen Fällen sind die Unterschiede zwischen den Investitionsstrategien so gering, dass sie den erheblichen Mehraufwand zur Berechnung der Optionswerte nicht rechtfertigen. Dies gilt speziell für Projekte mit begrenzter Laufzeit, von denen in der Praxis auszugehen ist.

Anhang

A Gleichungen und Herleitungen

A.1 Die quadratische Gleichung Θ

Es gilt

\[\Theta = \frac{1}{2} \sigma^2 \beta (\beta - 1) + (r - \delta) \beta - r = 0. \]

Damit ergeben sich zwei Lösungen für diese Gleichung\(^{174}\)

\[\beta_1 = \frac{1}{2} - \frac{(r - \delta)}{\sigma^2} + \sqrt{\left(\frac{(r - \delta)}{\sigma^2} - \frac{1}{2} \right)^2 + \frac{2r}{\sigma^2}} > 1 \quad (52) \]

und

\[\beta_2 = \frac{1}{2} - \frac{(r - \delta)}{\sigma^2} - \sqrt{\left(\frac{(r - \delta)}{\sigma^2} - \frac{1}{2} \right)^2 + \frac{2r}{\sigma^2}} < 0. \quad (53) \]

A.2 Gleichungen der Unternehmens- und Optionswerte bei einer direkten Investitionsgelegenheit

\[W(x) = 0 \]

In Anlehnung an das Ausgangsmodell der Erweiterungsinvestition produzieren die Unternehmen nach dem Markteintritt (der ersten Investition) eine Einheit des Produktes pro Periode. Der Unternehmenswert des Innovators entspricht dann

\[L_b(x) = \frac{xD(1)}{\delta} - I - \frac{k_0}{r}. \quad (54) \]

\(^{174}\) Vgl. Dixit/Pindyck [DP94] S. 142.
Der Nachfolger ist ebenfalls noch inaktiv und sein Unternehmenswert ist wie im Status Quo gleich null.

\[F_b(x) = 0 \]

Hat der Nachfolger auch investiert entspricht der Unternehmenswert dem der simultanen Investition175.

\[S(x) = \frac{x D(2)}{\delta} - I - \frac{k_0}{r} \quad (55) \]

Bei der Berücksichtigung von Realoptionen ist der Wert des Nachfolgers aufgrund seiner Investitionsoption positiv. Der optimale Investitionsschwellenwert \(x^* \) und der Optionswert können wie folgt berechnet werden: Ausgangspunkt ist wie in Abschnitt 2.1 die Value Matching Bedingung, die besagt, dass zum Zeitpunkt der Ausübung der Option der Wert der Investitionsoption dem der simultanen Investition entspricht

\[o(x^*) = S(x^*). \]

Aus dieser Gleichung lässt sich dann die Smooth Pasting Bedingung ableiten mit der zusammengenommen der Options- und der Schwellenwert bestimmt werden können. In diesem Fall ergeben sich der Wert der Investitionsoption

\[o(x) = A x^\beta \]

mit

\[A = \frac{D(2) x^{1-\beta}}{\delta \beta} \]

und der Investitionsschwellenwert

\[x^* = \frac{(I + \frac{k_0}{r}) \delta}{D(2)} \frac{\beta}{\beta - 1} \]

Ist der optimale Schwellenwert des Nachfolgers bekannt, kann auch die Stillhalterposition für den Innovator berechnet werden, die den Verlust, der durch den späteren Eintritt des Nachfolgers entsteht, quantifiziert. An der Stelle \(x^* \) entspricht der Wert des Leaders

175 Dieses Szenario entspricht dann dem Status Quo im Ausgangsmodell mit Erweiterungsinvestitionen.
plus der Stillhalterposition gerade dem Wert bei einer simultanen Investition.

\[L_b(x^*) + Bx^{s\beta} = S(x^*) \]

Der Unternehmenswert des Leaders ist dann

\[L(x) = \frac{xD(1)}{\delta} - I \left(- \frac{k_0}{r} + Bx^{\beta} \right) \]

mit

\[B = \frac{x^{s\beta}}{\delta} \left[D(2) - D(1) \right]. \]

Der Wert der simultanen Investition bleibt bei der Berücksichtigung von Realoptionen unverändert.

A.3 Berechnung der Erwartungswerte aus (31) und (32)

Der erste Erwartungswert ist \(\mathcal{E}[e^{-rt^*}] \), wobei \(t^* \) den Zeitpunkt beschreibt, an dem \(x \) zum ersten Mal den Schwellenwert \(x^* \) erreicht. Der Diffusionsprozess dem \(x \) folgt ist eine geometrisch Brownsche Bewegung der Form \(dx = \alpha x dt + \sigma x dz. \)

Zunächst wird der Erwartungswert als \(f(x) \) definiert.

\[f(x) = \mathcal{E}[e^{-rt^*}] \]

Ist \(x < x^* \), kann eine Zeitspanne \((dt) \) so klein gewählt werden, dass das Erreichen der Schwelle innerhalb dieser Zeitspanne für \(x \) zum unmöglichen Ereignis wird. Das Problem verschiebt sich damit auf die Ebene \((x + dx) \) und es entsteht ein rekursiver Ausdruck wie bei der dynamischen Programmierung.

\[f(x) = e^{-r dt} \mathcal{E}[f(x + dx)] = e^{-r dt} \{ f(x) + \mathcal{E}[df(x)] \} \]

Der Term \(df(x) \) lässt sich unter Verwendung von Itos Lemma auch schreiben als

\[df = \left(\frac{\partial f}{\partial x} \alpha x + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \sigma^2 x^2 \right) dt + \frac{\partial f}{\partial x} \sigma x dz. \]

\(^{176}\) Vgl. Dixit/Pindyck [DP94] S. 315 mit einigen Anpassungen an das vorliegende Modell und zusätzlichen Schritten.
Einsetzen der Erweiterung von $df(x)$ in die ursprüngliche Gleichung liefert

\[f(x) = e^{-rdt} \left(f + \frac{\partial f}{\partial x} \alpha x dt + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \sigma^2 x^2 dt \right), \]

wobei $\mathcal{E}[dz] = 0$ ist. Für $dt \to 0$ und nach einigen Vereinfachungen\(^{177}\) ergibt sich die Differentialgleichung

\[\frac{1}{2} \sigma^2 x^2 \frac{\partial^2 f}{\partial x^2} + \alpha x \frac{\partial f}{\partial x} - rf = 0. \]

Die Lösung dieser Gleichung ist bereits aus dem Kapitel 2.1. bekannt (4). Sie besitzt die Form

\[f(x) = A_1 x^{\beta_1} + A_2 x^{\beta_2}. \]

Mit Hilfe der Randbedingungen lässt sich die Lösung dann eindeutig bestimmen. Ist x sehr klein, wird auch der Schwellenwert des Nachfolgers erst sehr spät erreicht. D.h. t^* ist sehr groß und der Diskontfaktor e^{-rt^*} sehr klein. $f(x)$ konvergiert also für $x \to 0$ ebenfalls gegen null. Aus diesem Grund muss $A_2 = 0$ sein\(^{178}\). Es bleibt die Lösung

\[f(x) = A_1 x^{\beta_1}. \]

Nähert sich x dagegen dem Schwellenwert x^* an, muss $f(x)$ gegen 1 konvergieren. Dies lässt sich besonders gut in Gleichung (30) erkennen. Ist in der Ausgangsperiode bereits $x \geq x^*$, so erhält der Innovator lediglich den Wert der simultanen Investition. Dieser ist im zweiten Term von (30) zusammengefasst, so dass $\mathcal{E}[e^{-rt}] = 1$ sein muss und damit $f(x^*) = 1$.

Die Verbindung der verbleibenden Gleichung mit der Randbedingung liefert

\[A_1 x^{\beta_1} = 1 \]

und damit die Lösung

\[f(x) = \mathcal{E}[e^{-rt^*}] = \left(\frac{x}{x^*} \right)^{\beta}. \]

\(^{177}\) Für ein sehr kleines dt nehmen wir an $e^{-rdt} = 1 - rdt$.

\(^{178}\) Da $\beta_2 < 0$ wird der Ausdruck $A_2 x^{\beta_2}$ für $x \to 0$ immer größer.
Der zweite Erwartungswert, der berechnet werden soll, lautet

\[\mathcal{E} \left[\int_{0}^{t^*} e^{-rt} x \, dt \right], \]

mit identischen Eigenschaften von \(t^* \) und \(x \) wie im ersten Fall.

Zunächst wird der Erwartungswert wieder als \(g(x) \) definiert:

\[g(x) = \mathcal{E} \left[\int_{0}^{t^*} e^{-rt} x \, dt \right]. \]

Im Unterschied zum ersten Erwartungswert fällt hier während der Zeitspanne \(dt \) eine Art Auszahlung oder Dividende an, die mit \(\pi \) bezeichnet werden soll. Es gilt

\[\pi(x) = \int_{0}^{dt} e^{-rs} x \, ds. \]

Die Berechnung des Integrals liefert, unter der Annahme, dass für ein sehr kleines Intervall \(dt \) gilt \(e^{-rdt} = (1 - rdt) \)

\[\pi(x) = xdt. \]

Ist \(x \) auch hier kleiner als \(x^* \) und wird \(dt \) so klein gewählt, dass das Erreichen des Schwel-

Ilenwertes innerhalb der Zeitspanne ein unmögliches Ereignis darstellt, dann verschiebt sich das Problem wieder auf die nächste Ebene \((x + dx) \). Der resultierende rekursive Ausdruck lautet dann

\[g(x) = e^{-rdt} \mathcal{E}[g(x + dx)] + \pi(x). \]

Das Einsetzen der Erweiterung von \(dg(x) \) mittels Itos Lemma liefert eine identische Differentialgleichung wie (4) mit dem zusätzlichen Term für \(\pi(x) \)

\[\frac{1}{2} \sigma^2 x^2 \frac{\partial^2 g}{\partial x^2} + \alpha x \frac{\partial g}{\partial x} - r g + x = 0. \]

Die Lösung der Differentialgleichung besitzt wieder die bekannte Form\(^{179}\)

\[g(x) = A_1 x^\beta_1 + A_2 x^\beta_2 + \frac{x}{\delta}, \]

\(^{179}\)Siehe die Gleichungen (5), (52) und (53).
erweitert um einen nicht homogenen Term \((\xi)\). Mit Hilfe der Randbedingungen \((x = 0\) und \(x = x^*\)) lassen sich die Konstanten \(A_1\) und \(A_2\) bestimmen. Für \(x \to 0\) wird \(t^*\) sehr groß und \(g(x)\) konvergiert gegen \(\xi\). Um diesen Wert nicht zu überschreiten muss \(A_2 = 0\) sein.

Es bleibt die Lösung
\[
g(x) = A_1 x^{\beta_1} + \frac{x}{\delta}.
\]

Für \(x \to x^*\) konvergiert \(t^*\) und damit auch \(g(x)\) gegen null. Daraus lässt sich die Bedingung
\[
g(x^*) = A_1 x^{*^{\beta_1}} + \frac{x^*}{\delta} = 0
\]
formulieren. Umgeformt nach \(A_1\) und eingesetzt erhält man schließlich die Lösung
\[
g(x) = \mathcal{E} \left[\int_0^{t^*} e^{-rt} x \, dt \right] = \frac{x}{\delta} \left[1 - \left(\frac{x}{x^*} \right)^{\beta_1-1} \right].
\]

A.4 Unternehmenswerte/Schwellenwerte für 3 Unternehmen

NPV

Status Quo

\[
W(x) = \frac{x D(3)}{\delta} - \frac{k_0}{r}
\]

Unternehmenswerte des ersten Leaders und der zwei Nachfolger

\[
L_{b}(x) = \frac{2x D(4)}{\delta} - I - \frac{2k_1}{r}
\]

\[
F_{2b}(x) = \frac{x D(4)}{\delta} - \frac{k_0}{r}
\]

Nach einer weiteren Investition (zwei Leader, ein Nachfolger)

\[
L_{2b}(x) = \frac{2x D(5)}{\delta} - I - \frac{2k_1}{r}
\]

\[
F_{b}(x) = \frac{x D(5)}{\delta} - \frac{k_0}{r}
\]

Simultane Investition

\[
S(x) = \frac{2x D(6)}{\delta} - I - \frac{2k_1}{r}
\]
Schwellenwert der ersten Investition \(L_1(x) = W(x) \)

\[
x_{L1} = \left(I + \frac{2k_1 - k_0}{r} \right) \delta \frac{2D(4) - D(3)}{2D(5) - D(4)}
\]

Beginn des ersten Bereichs der Trigger-Strategie \(F_{2b}(x) = L_{2b}(x) \)

\[
x_{F2} = \left(I + \frac{2k_1 - k_0}{r} \right) \delta \frac{2D(4) - D(3)}{2D(5) - D(4)}
\]

Schwellenwert für die zweite Investition \(L_{2b}(x) = W(x) \)

\[
x_{L2} = \left(I + \frac{2k_1 - k_0}{r} \right) \delta \frac{2D(4) - D(3)}{2D(5) - D(4)}
\]

Beginn des zweiten Bereichs der Trigger-Strategie

\[
x_{F1} = \left(I + \frac{2k_1 - k_0}{r} \right) \delta \frac{2D(4) - D(3)}{2D(5) - D(4)}
\]

Schwellenwert der simultanen Investition

\[
x_{S} = \left(I + \frac{2k_1 - k_0}{r} \right) \delta \frac{2D(4) - D(3)}{2D(5) - D(4)}
\]

RO

Für den Innovator ist der Unternehmenswert

\[
L(x) = \begin{cases}
\frac{2xD(4)}{\delta} - I - \frac{2k_1}{r} + B_1 x^\beta & \text{für } x \leq x_2^* \\
\frac{2xD(5)}{\delta} - I - \frac{2k_1}{r} + B_2 x^\beta & \text{für } x_2^* \leq x \leq x_1^*
\end{cases}
\]

\[
\frac{2xD(6)}{\delta} - I - \frac{2k_1}{r} & \text{für } x \geq x_1^*.
\]
Für den Nachfolger gilt

\[
F(x) = \begin{cases}
\frac{x D(4)}{\delta} - \frac{k_0}{r} & \text{für } x \leq x_2^* \\
\frac{x D(5)}{\delta} - \frac{k_0}{r} + A x^\beta & \text{für } x_2^* \leq x \leq x_1^* \\
\frac{2x D(6)}{\delta} - I - \frac{2k_1}{r} & \text{für } x \geq x_1^*
\end{cases}
\]

Der Schwellenwert \(x_1^*\) kennzeichnet die Höhe der Nachfrage, bei der der letzte Nachfolger seine Investitionsoption ausübt, und es gilt

\[
x_1^* = \frac{(I + \frac{2k_1 - k_0}{r}) \delta}{2D(6) - D(5)} \frac{\beta}{\beta - 1}
\]

und

\[
A = \frac{2D(6) - D(5)}{\beta \delta} x_1^{*1-\beta}
\]

Mit \(x_1^*\) kann dann auch \(B_2\), der Parameter der Stillhalterposition für zwei Leader, berechnet werden.

\[
B_2 = \frac{2x_1^{*1-\beta}}{\delta} [D(6) - D(5)]
\]

Der Schwellenwert \(x_2^*\) beschreibt die Höhe der Nachfrage, bei der sich das zweite von drei Unternehmen zur Investition entschließt. Da zwei Unternehmen für diese Investition in Frage kommen, konkurrieren diese um die Rolle des zweiten Innovators. Beide werden versuchen zu investieren, sobald der Wert für zwei Leader größer ist als der für zwei Nachfolger\(^{180}\). Gesucht ist damit der Punkt der Nachfrage an dem gilt

\[
L_2(x) = F_{2b}(x).
\]

Einsetzen der Unternehmenswerte liefert

\[
\frac{2x D(5)}{\delta} - I - \frac{2k_1}{r} + B x^\beta = \frac{x D(4)}{\delta} - \frac{k_0}{r}
\]

oder

\[
B x^\beta + \frac{2D(5) - D(4)}{\delta} x - I - \frac{2k_1 - k_0}{r} = 0.
\]

Da über \(\beta\) nur bekannt ist, dass es größer eins ist, lässt sich diese Gleichung analytisch

\(^{180}\)Unter der Bedingung, dass der erste Innovator bereits investiert hat.
nicht lösen. Zur Bestimmung von \(x^*_2 \) muss deshalb auf ein numerisches oder grafisches Verfahren zurückgegriffen werden.

A.5 Inhomogene Unternehmen in Bezug auf die variablen Kosten

Ob ein Unternehmen mit niedrigeren variablen Kosten einen Vorteil aus dieser Tatsache ziehen kann, hängt zusätzlich vom relativen Einsparpotential der neuen Technologie ab. Es wird sich zeigen, dass ein Unternehmen mit höheren variablen Kosten trotzdem eher investieren kann, sofern sein Einsparpotential entsprechend höher ist. Dazu werden die Kosten von Unternehmen \(A \) und \(B \) miteinander verglichen. \(A \) produziert mit niedrigen variablen Kosten \(k_0^A \) und \(k_1^A \), während für Unternehmen \(B \) die variablen Kosten \(k_0^B \) und \(k_1^B \) höher sind. Es gilt \(k_0^A < k_0^B \) und \(k_1^A < k_1^B \). Damit \(A \) einen Vorteil aus dieser Konstellation ziehen kann, muss der Schwellenwert \(x_L \), bei dem sich eine Investition für den Innovator lohnt, geringer sein als für Unternehmen \(B \). Aus Gleichung (18) lässt sich diesbezüglich die Bedingung

\[
2k_1^A - k_0^A < 2k_1^B - k_0^B
\]

ableiten. Das relative Einsparpotential, das sich aufgrund der neuen Technologie ergibt, wird mit \(z_A \) bzw. \(z_B \) (\(0 < z_A, z_B < 1 \)) bezeichnet. Es gilt

\[
k_1^A = (1 - z_A)k_0^A \text{ sowie } k_1^B = (1 - z_B)k_0^B.
\]

Eingesetzt ergibt sich

\[
2(1 - z_A)k_0^A - k_0^A < 2(1 - z_B)k_0^B - k_0^B
\]

oder

\[
k_0^A - 2z_Ak_0^A < k_0^B - 2z_Bk_0^B.
\]

Als Letztes wird die relative Differenz zwischen den variablen Kosten der beiden Unternehmen im Status Quo definiert. Es sei \(k_0^B = (1 + w)k_0^A \) mit \(w > 0 \). Erneutes Einsetzen
Nach einigen einfachen Umformungen erhält man die Ungleichung

\[
\frac{z_B - z_A}{0.5 - z_B} < w.
\]

(56)

Die Gleichung bestätigt, was schon in Abschnitt 4.2 beschrieben wurde: Verfügen beide Unternehmen über ein identisches Einsparpotential in den variablen Kosten \((z_A = z_B)\), so profitiert Unternehmen \(A\) mit den geringeren variablen Kosten, da es früher investieren kann. Dies gilt insbesondere wenn \(A\) zusätzlich über ein höheres Einsparpotential verfügt \((z_A > z_B)\). Umgekehrt kann aber auch \(B\) von einem höheren Sparpotential profitieren, selbst wenn \(A\) noch über den Kostenvorteil verfügt. Dazu ein Beispiel:

Seien die variablen Kosten von \(A\) \(k_A^0 = 6\) und \(k_A^1 = 4\). Damit ergibt sich ein Einsparpotential von 33,3\% \((z_A = \frac{1}{3})\). Unternehmen \(B\) trägt die höheren Kosten mit \(k_B^0 = 9\) und \(k_B^1 = 5\). Trotz der höheren Kosten kann \(B\) aufgrund des größeren Einsparpotentials \((z_B = \frac{4}{9})\) früher investieren. Dies wird auch deutlich, wenn man die Werte in Gleichung (56) einsetzt. Mit 2 < 0,25\(^{181}\) ist die Ungleichung nicht erfüllt. Das heißt \(A\) kann von seinem Kostenvorteil in diesem Fall nicht profitieren.

Zur Vereinfachung wurde in Abschnitt 4.2.1 angenommen, dass das Einsparpotential für beide Unternehmen identisch sein soll.

A.6 Gleichungen der Unternehmenswerte für Firmen mit unterschiedlichem Marktanteil

Unternehmen \(A\) verfügt im Status Quo über einen Marktanteil von 62,5\%. Die Unternehmenswerte ergeben sich dann wie folgt:

\[
W_A(x) = \frac{1,25xD(2)}{\delta} - \frac{1,25k_0}{r}
\]

\[
F_{Ab}(x) = \frac{1,25xD(2,75)}{\delta} - \frac{1,25k_0}{r}
\]

\(^{181}\) Für \(w\) gilt \(w = \frac{k_B}{k_A} - 1\). Laut Definition gilt \(k_A^0 \leq k_B^0\).
\[L_{Ab}(x) = \frac{2.5x D(3, 25)}{\delta} - I - \frac{2.5k_1}{r}. \]

Entsprechend gilt für Unternehmen B mit dem kleinen Marktanteil von 37,5%:

\[W_B(x) = \frac{0.75x D(2)}{\delta} - \frac{0.75k_0}{r} \]

\[F_{Bb}(x) = \frac{0.75x D(3, 25)}{\delta} - \frac{0.75k_0}{r} \]

\[L_{Bb}(x) = \frac{1.5x D(2, 75)}{\delta} - \frac{3}{5} I - \frac{1.5k_0}{r}. \]

Die Gleichungen für die Faktoren der Stillhaltervereinbarungen lauten:

\[B_A = \frac{2.5x^{1-\beta}}{\delta} [D(4) - D(3, 25)] \]

und

\[B_B = \frac{1.5x^{1-\beta}}{\delta} [D(4) - D(2, 75)]. \]

A.7 Investition des Leaders im NPV-Fall für inhomogene Unternehmen (Marktanteil)

Die Schwellenwerte \((x^A_L; x^B_L)\), bei denen es für Unternehmen A und B profitabel ist zu investieren, sind in den Gleichungen (39) und (40) aufgeführt. Es soll gezeigt werden, dass

\[x^B_L < x^A_L \]

gilt. Einsetzen liefert

\[\frac{\left(\frac{3}{5} I + \frac{1.5k_1 - 0.75k_0}{r} \right) \delta}{1.5D(2, 75) - 0.75D(2)} < \frac{\left(I + \frac{2.5k_1 - 1.25k_0}{r} \right) \delta}{2.5D(3, 25) - 1.25D(2)}. \]

Nach einigen Umformungen erhält man

\[0 < 0,6I[D(2, 75) - D(3, 75)] + 3,75k_1[D(2, 75) - D(3, 25)] - 1,875k_0[D(2, 75) - D(3, 75)] \]
oder

\[0 < (0,6 I + 3,75k_1 - 1,875k_0)(D(2,75) - D(3,75)). \]

Die Differenz der letzten beiden Terme in der ersten Klammer ist positiv. Dies folgt aus Annahme \((26)\). Auch die Investitionsausgaben müssen positiv sein, so dass der Ausdruck in der ersten Klammer zusammengefasst positiv ist. Auf der Grundlage einer linear fallenden inversen Nachfragefunktion ist auch der Ausdruck in der zweiten Klammer positiv. Daraus folgt, dass die Ungleichung insgesamt erfüllt ist. D.h. der Eintrittsschwellenwert \(x^A_L\) des Marktführers ist höher als der des kleinen Unternehmens \(B\).

A.8 Beschreibung der Error-Function \(\text{erf}(x)\)

Für die Error-Function\(^{182}\) gilt

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt. \]

oder

\[= \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{2x}}^{\sqrt{2x}} e^{-\frac{y^2}{2}} \, dy. \]

Dann gilt auch

\[= \frac{2}{\sqrt{2\pi}} \int_0^{\sqrt{2x}} e^{-\frac{y^2}{2}} \, dy. \]

Ausgedrückt über die Verteilungsfunktion der Normalverteilung erhält man dann

\[\text{erf}(x) = 2 \left[\Phi \left(\sqrt{2}x \right) - 0,5 \right] \]

oder

\[\text{erf}(x) = 2\Phi(\sqrt{2}x) - 1. \]

B Grafiken

Abbildung 22: Optimale Investitionsstrategie, Investitionsausgaben

Anders verhält es sich beim risikolosen Zinssatz (Abbildung 24). Im NPV-Fall bewirkt eine Erhöhung des Zinssatzes nur eine sehr kleine Veränderung. Einzig die variablen Kosten, die mit dem risikolosen Zinssatz abdiskontiert werden, sind von der
Abbildung 23: Optimale Investitionsstrategie, relatives Einsparpotential

Abbildung 24: Optimale Investitionsstrategie, risikoloser Zins
Die Erhöhung des Zinssatzes von 0,05 auf 0,1 führt dazu, dass sowohl der Innovator als auch der Nachfolger minimal früher investieren können. Dagegen hat die Erhöhung von \(r \) auf den Optionswert erhebliche Auswirkungen. Wie man in der Abbildung 24 deutlich erkennt, steigt der optimale Schwellenwert des Nachfolgers von 6,46 auf 8,99.

Auch eine Veränderung der Opportunitätskosten \(\delta \) hat erhebliche Auswirkungen in Bezug auf die Investitionsoption. Wie man jedoch in Abbildung 25 erkennt, sind die Auswirkungen auf die Barwerte noch größer. Bei einer Reduzierung der Opportunitätskosten von 0,05 auf 0,025 sinkt die Nachfrage, bei der eine simultane Investition erfolgt, im NPV-Fall von 5,2 auf 2,6. Bei einer Entscheidung basierend auf dem Realoptionsmodell sinkt die Nachfrage dagegen nur von 6,5 auf 5,5.

Ähnlich verhält es sich auch bei der Steigung der inversen Nachfragekurve. Eine inelastische Nachfrage, d.h. eine flache Steigung, verstärkt den Anreiz zu investieren. Wie sich in Abbildung 26 erkennen lässt, tritt dieser Effekt im NPV-Fall deutlicher auf als bei der Realoptionsbetrachtung.

\(^{183}\)Es sei daran erinnert, dass bei einer Erhöhung von \(r \) die Opportunitätskosten der Investition \(\delta \) konstant bleiben.
Inhomogene Unternehmen

Analog dazu führt ein SMD bei einer Realoptionsbewertung dazu, dass der Nachfolger später investiert. Der gestiegene Schwellenwert wirkt sich in diesem Fall positiv auf die Stillhalterposition des Nachfolgers aus, so dass dieser früher investieren kann. Dargestellt ist diese Situation in Abbildung 28 für Investitionsausgaben des Nachfolgers $I_F = 130$.

Abbildung 26: Optimale Investitionsstrategie, Steigung $D(Q)$
Abbildung 27: Optimale Investitionsstrategie, SMA

Abbildung 28: Optimale Investitionsstrategie, SMD
Literatur

[Chr97] Chriss, N.A. "Black-Scholes and Beyond - Option Pricing Models", 1997.

Literatur

