Synthesizing Fast Speech by Implementing Multi-Phone Units in Unit Selection Speech Synthesis

Donata Moers¹,², Igor Jauk¹, Bernd Möbius¹,³, Petra Wagner²

¹ Division of Language and Speech Communication, University of Bonn, Germany
² Fakultät für Linguistik und Literaturwissenschaft, University of Bielefeld, Germany
³ IMSt, University of Stuttgart, Germany

dmo,ija,bmo@ifk.uni-bonn.de, petra.wagner@uni-bielefeld.de

Abstract

This paper presents a new approach to synthesizing fast speech in unit selection synthesis. After recording two inventories - one at normal and one at fast speech rate articulated as accurately as possible - speech was synthesized from both corpora independently. Since fast speech differs from normal rate speech in terms of acoustic characteristics, the concept of multi-phone (phoxsy) units proposed by Breuer and Abresch [1] was explored for synthetic speech generated from both speaking rate inventories. A perceptual evaluation showed that phokey units enhanced the intelligibility especially for fast synthetic speech significantly.

Index Terms: fast speech, unit selection, phokey units

1. Introduction

Using speech synthesis as part of their daily life, many people with severe visual disabilities often prefer fast speech output [2, 3]. Architectures like formant or diphone synthesis are able to produce synthetic speech at fast speech rates, but the generated speech does not sound very natural. Unit selection synthesis systems are capable of delivering more natural output, but fast speech has not been adequately implemented into such systems to date.

In order to model fast speech in speech synthesis, there are several options. The first is to accelerate the normal rate speech by means of duration manipulation. The generated speech often shows artifacts known to appear when using such algorithms [4] and does not sound natural. The second option is to mimic certain prosodic features typical for fast speech such as fewer and shorter pauses or decreased strength and number of prosodic boundaries. Previous studies indicate that this approach leads to a decreasing intelligibility of fast speech. A clear pronunciation was preferred over a synthesis which showed typical phonetic characteristics of natural fast speech [5]. Therefore, our approach includes the creation of an independent unit selection inventory for fast speech inherently showing segmental and suprasegmental characteristics of natural fast speech to enhance naturalness. At the same time, too heavy reduction and coarticulation typical for natural fast speech have to be avoided for the benefit of intelligibility.

The fast and smooth acoustic transitions occurring in natural speech are important for the intelligibility of synthetic speech [5]. Such transitions are not treated adequately by traditional diphone concatenation synthesis but can be modeled by formant synthesis. Corresponding to this, blind listeners prefer the less natural sounding formant synthesis over diphone synthesis with regards to intelligibility in very fast speech [2]. Since the acoustic transitions of subsequent segments play a vital role in the intelligibility of speech, the discontinuities added to the speech chain during concatenation must be minimized. As a consequence, Breuer and Abresch [1] suggested to treat phone sequences which are prone to heavy coarticulation as atomic in the sense that they are regarded as two or more phones, but one indivisible synthesis unit. This approach is taken up in the present study. It might lead to a possible solution for modeling fast synthetic speech both naturally – by using prerecorded concatenation units – and intelligibly – by including typical smooth transitions in heavily coarticulated contexts in order to achieve synthetic speech that is both maximally natural and maximally fast.

2. Phokey units

In the field of unit selection synthesis, it is well known that linguistically motivated units like phones do not provide optimal properties for concatenation. The main disadvantage of this type of units is the disregard of acoustic and auditive continuity. Phokey units (phone extensions for synthesis) are defined to systematically avoid concatenation points in the signal at positions where they are highly undesirable [1, 6]. Basically, they are sequences of phones prone to heavy coarticulation with fluent transitions and phonetically non-existing boundaries. Table 1 lists possible phone combinations defined as phokey units by [1, 6]. The “IPA” column shows the unit definitions transcribed in the International Phonetic Alphabet. The “BOSS-IP” column shows the way how the units have been processed before phokey definition, whereas the “phokey” column shows the new unit definitions in BOSS-IP notation, which is a modified X-IP notation.

<table>
<thead>
<tr>
<th>IPA</th>
<th>BOSS-IP</th>
<th>phokey</th>
</tr>
</thead>
<tbody>
<tr>
<td>? + vowel</td>
<td>? + vowel</td>
<td>? + vowel</td>
</tr>
<tr>
<td>h/ɦ + vowel</td>
<td>single phones</td>
<td>h + vowel</td>
</tr>
<tr>
<td>j+ vowel</td>
<td>single phones</td>
<td>j + vowel</td>
</tr>
<tr>
<td>v/ʋ + vowel</td>
<td>single phones</td>
<td>v + vowel</td>
</tr>
<tr>
<td>k/k/c/r/ʀ + vowel</td>
<td>single phones</td>
<td>r + vowel</td>
</tr>
<tr>
<td>l + vowel</td>
<td>single phones</td>
<td>l + vowel</td>
</tr>
<tr>
<td>am/m</td>
<td>single phones</td>
<td>@m</td>
</tr>
<tr>
<td>al/l</td>
<td>single phones</td>
<td>@l</td>
</tr>
<tr>
<td>j/o/v/k/s/f/r/l + an</td>
<td>single phones</td>
<td>j/v/r/l + @n</td>
</tr>
<tr>
<td>j/o/v/k/s/f/r/l + am</td>
<td>single phones</td>
<td>j/v/r/l + @m</td>
</tr>
<tr>
<td>j/o/v/k/s/f/r/l + al</td>
<td>single phones</td>
<td>j/v/r/l + @l</td>
</tr>
<tr>
<td>ts</td>
<td>ts</td>
<td></td>
</tr>
<tr>
<td>pf</td>
<td>pf</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Unit definitions in IPA, in BOSS-IP and as phokey units.
Breuer and Abresch [1] have shown that the usage of phoxsy units in unit selection speech synthesis improves the quality of the synthesized speech.

2.1. Implementation

Taking the findings of [1] into account, phoxsy units were implemented as an independent multi-phone unit level in the Bonn Open Speech Synthesis System (BOSS) [7] in order to provide a robust and accessible usage. As a side effect, considerable runtime improvements compared to the use of lower-level units like phones were expected.

The modular architecture of BOSS [7] allowed an problematic integration of the new multi-phone level into the existing system. The BOSS tool blf2xml, which extracts information from the BOSS Label Format (BLF) files [8] and creates an XML database, has been extended in order to recognize phoxsy units using the BOSS FSA class (a finite state automaton). The tool also inserts the units into a XML database. Other BOSS tools have also been adapted to calculate additional information like context classes, phrasing information, and MFCCs for phoxsy units and to add them to the XML database. The tool blfsml2db inserts the new multi-phone level into the MySQL database, calculating the unit index. The unit index is a unique number which identifies every unit in the corpus. Mapping tables provide links between the units of two adjacent levels. These levels are arranged hierarchically from words over syllables to phones and halfphones. The phoxsy multi-phone level is implemented as an independent multi-phone unit level in the MySQL database. The tool blfsml2db inserts the new multi-phone level into the MySQL database, calculating the unit index. The unit index is a unique number which identifies every unit in the corpus. Mapping tables provide links between the units of two adjacent levels. These levels are arranged hierarchically from words over syllables to phones and halfphones. The phoxsy multi-phone level is implemented as an intermediate level between syllables and phones. In order to maintain the hierarchy of the unit levels, this implicates that a complete coverage of the corpus by phoxsy units is necessary. The syllable map has been adapted in order to provide links between syllables and phoxsy units instead of syllables and phones. A phoxsy unit map has been created in order to provide links between phoxsy units and phones. A new preselection file for multi-phone unit preselection has been created. The BOSS Unitselection class has been adapted and a new level PHOXXY has been added to the BOSS Node class. BOSS Transcription has also been adapted to identify and insert phoxsy units into the internal system communication structure. It uses the same mechanism as the blf2xml tool.

3. Corpus Recordings

The phonetic characteristics of natural fast speech differ from those of speech produced at normal speech rates. Due to the increasing overlap of articulatory gestures when speaking rate increases, the utterances of a speaker become less intelligible. The articulatory targets important for a clear pronunciation are no longer reached [9]. Strong coarticulation, reduction and other deviations from the clear canonical form affect the intelligibility of natural speech adversely [5, 10, 11]. Hence, these phenomena are undesirable in speech synthesis and need to be avoided during corpus recordings.

Research in unit selection speech synthesis has shown that the quality of the synthetic speech for the most part is determined by the inventory speaker. Skilled speakers who learned to speak with consistent voice quality and high articulatory precision over a long period generally produce an inventory at higher quality than untrained speakers [12]. If the inventory is based on fast speech the emerging problems of articulatory precision and consistent voice quality will presumably increase. Assuming that untrained speakers will reduce the articulatory precision for the benefit of economic reasons to a greater extent than skilled speakers, a skilled speaker who was able to produce the required speaking style - both fast and clear - in an optimal way [13] was selected for inventory recordings.

To investigate the modeling of fast speech in unit selection synthesis, two independent but, in terms of linguistic content, identical unit selection inventories were created: one at normal and one at fast speech rate. Text materials consisted of 400 sentences which were selected randomly from the BITS Corpus [14] for German. Phonological balance was not taken into account. The 400 sentences were recorded in the following conditions:

- normal speech rate (ca. 4 syllables per second)
- maximum clear speech rate (ca. 8 syllables per second)

All recordings were made in a sound treated studio. Because the recordings could not be performed in a single session, a strict monitoring of speaking rate and speaking style including accentuation, phrasing and intensity was required. As a consequence, several reference sentences were presented to the speaker repeatedly in order to (re)adjust her performance, before each session as well as within the sessions. The reference sentences were recordings from the first session. The speaker generally followed the strategy of approaching the fastest speaking rate by repeated, accelerated renditions of a sentence. Thus, fast versions of one sentence were recorded repeatedly in succession, accelerating tempo and enhancing articulatory effort each time, until the optimal combination of tempo and precision was reached. Two phonetically trained persons supervised the recordings. The version articulated both most clearly and fast was selected by the phonetically trained persons and included in the fast speech corpus. Recordings at normal speech rate took approximately 10 hours, recordings at fast speech rate took nearly twice as long. This way, two unit selection corpora were created: one at normal speech rate and one at fast speech rate articulated as accurately as possible.

4. Synthesizing Normal Rate Speech

After corpus preparation and implementation [15], 15 sentences each containing at least three phoxsy units were synthesized on the basis of the normal speech rate corpus by using different strategies:

- using only phones for synthesis
- using only phoxsy units for synthesis
- using all unit levels excluding phoxsy units for synthesis
- using all unit levels including phoxsy units for synthesis

As a pairwise comparison between all four versions of a sentence would have exceeded a reasonable amount of judgments, it was decided to split the test sentences into two subtests, one comparing stimuli generated from a single unit level (phones only versus phoxsy units only) and another subtest comparing stimuli generated from all unit levels excluding and including phoxsy units, respectively.

The first experiment was a pairwise comparison between stimuli synthesized by using only phones and stimuli synthesized by using only phoxsy units. 23 subjects took part in the experiment. All of them were naive listeners and not experienced in using speech synthesis. Subjects were asked to indicate which version of the sentence was more intelligible and which version sounded more natural. Each of the 15 sentences was presented twice to the listeners to assess the reliability of judgments. Figure 1 shows the “more intelligible” and “more natural” judgments for stimuli consisting of phones only (dark grey) and for stimuli consisting of phoxsy units only (light grey). Results showed a significant difference (χ^2, $p < 0.05$) for intelligibility judgments with phoxsy units being rated as more intelligible. For naturalness judgments, no significant difference between the two versions was found.
heavy coarticulation, their use may have a considerable impact on the intelligibility and naturalness of synthesized fast speech. On the one hand, a possible effect of using phoxy units may be a degrading intelligibility of speech synthesized from natural fast speech including natural coarticulation and reduction phenomena. Alternatively, multi-phone units may enhance the intelligibility and/or naturalness of fast speech synthesized from a fast speech inventory because they provide more contextual information than single phones and therefore cover for coarticulation and/or reduction phenomena.

Again, 15 sentences containing at least three phoxy units were synthesized by applying different strategies:

- using only phones for synthesis
- using only phoxy units for synthesis
- using all unit levels excluding phoxy units for synthesis
- using all levels including phoxy units for synthesis

For fast speech, the first experiment was a pairwise comparison between stimuli synthesized from the fast speech inventory by using only phones for synthesis and stimuli synthesized by using only phoxy units. 22 subjects took part in the experiment. As before, all of them were naive listeners and not experienced in using speech synthesis. Subjects were asked to indicate which version was more intelligible and which sounded more natural. Each of the 15 sentences was presented twice to the listeners. Figure 3 shows the “more intelligible” and “more natural” judgments for stimuli consisting

5. Synthesizing Fast Rate Speech

Strong coarticulation and reduction are not totally avoidable during the production of fast speech, even if it is produced with high precision and enhanced articulatory effort. Since phoxy units are defined as sequences of phones prone to
of phones only (dark grey) and for stimuli consisting of phoxsy units only (light grey). Results showed a significant difference (χ², p < 0.001) for intelligibility judgments as well as for naturalness judgments (χ², p < 0.001).

The second experiment was a pairwise comparison between stimuli synthesized by using all unit levels excluding phoxsy units and stimuli synthesized by using all unit levels including phoxsy units. 15 subjects took part in the experiment. All of them were naive listeners and not experienced in using speech synthesis. Subjects were asked to indicate which version of the sentence was more intelligible and which version sounded more natural. Figure 4 shows the “more intelligible” and “more natural” judgments for stimuli consisting of all unit levels excluding phoxsy units (dark grey) and stimuli synthesized by using all unit levels including phoxsy units (light grey). Results showed a significant difference (χ², p < 0.001) for intelligibility judgments. For naturalness judgments, no significant difference between the two versions was found.

The evaluation of fast speech synthesized from the fast speech inventory showed a significant advantage in both intelligibility and naturalness for stimuli generated from phoxsy units only. For stimuli generated from all unit levels excluding or including phoxsy units respectively, a significant difference was found for intelligibility judgments. Hence, multi-phone units are not only applicable to enhance the intelligibility of synthesized speech at normal speaking rate, but also improve the intelligibility and to some extent the naturalness of fast speech synthesized from an independent fast speech inventory.

6. Discussion

Phoxsy units [1] were implemented as an independent multi-phone unit level in the Bonn Open Speech Synthesis System (BOSS) [8] in order to provide a robust and accessible usage. An evaluation of the synthesis of normal rate speech showed a significant advantage in intelligibility and naturalness for stimuli generated from phoxsy units only. For stimuli generated from all unit levels excluding or including phoxsy units respectively, a significant difference was found for intelligibility judgments. Hence, multi-phone units are not only applicable to enhance the intelligibility of speech synthesized from a normal rate inventory, but also improve the intelligibility and to some extent the naturalness of fast speech synthesized from an independent fast speech inventory.

7. Conclusions

The aim of the investigations presented here was the evaluation of a new approach to the synthesis of fast speech in unit selection speech synthesis. In line with results reported in the literature for normal rate speech [1], we showed that the implementation of multi-phone (phoxsy) units enhanced the intelligibility of synthesized speech significantly, especially when used for the synthesis of fast speech from an independent fast speech inventory. Further investigations will include the perceptual evaluation of synthesized utterances accelerated to varying speech rates based on the different speech rate corpora.

8. References