Replication in Consistent Binomial Models

Christoph Wöster
Bielefeld University

November 2005

BIELEFELD UNIVERSITY
Department of Business Administration and Economics
P.O. Box 10 01 31
D-33501 Bielefeld
Germany

Discussion Paper No. 545
Replication in Consistent Binomial Models

Christoph Wöster

Department of Business
Administration and Economics
Bielefeld University
P.O. Box 10 01 31
33 501 Bielefeld
Germany
cwoester@uni-bielefeld.de

November 2005

Abstract

The binomial model has been used to price a wide variety of equity and interest rate options for more than two decades. Originally developed by Cox, Ross, and Rubinstein to clarify the basic pricing principle of its continuous-time counterpart with reduced mathematical requirements, the approach became a numerical scheme to evaluate all kinds of contingent claims. Some of the algorithms have dissociated more and more from the basic principles. In this paper we turn to the foundations of the binomial model and elaborate the relation between real world processes, replicating strategies and martingales in a strict way.

Keywords: binomial model, martingale method, option pricing, trading strategy

JEL Classification: G13, C60
1 Introduction

Two perspectives on the nature of the binomial model are presented in this paper. First, the binomial model can be understood as a stand-alone pricing model, whose paths imitate the price behavior of a traded asset in a simplified way. If we start modelling the real world behavior and interpret the paths as the result of a particular state of the world, then we can determine a unique trading strategy that replicates an arbitrary contingent claim. If the law of one price holds, the price of this contingent claim must be equal to the market price of the replicating portfolio. According to the methodology introduced by Harrison and Kreps [3], it is possible to formulate the stock process in units of a numeraire (a money market fund) and to create a probability measure under which the process is a martingale. The price of any contingent claim — formulated in units of a numeraire — can be expressed as an expected value of its normed future payoffs under the same measure.

The other interpretation connects the binomial model with a related model, which is assumed to reflect the true processes for theoretical reasons or which simply behaves more like true price paths according to experience. In this context, the binomial model is applied as a numerical scheme to approximate the more adequate model. Since it is only an approximation, some important properties get lost. On the other hand, the reduction of complexity is sometimes the only way to obtain solutions. The binomial model is used to approximate Brownian motions or transformations of the process justified by the central limit theorem. The paths of the binomial model do not play the decisive role any longer; it is the distributional behavior and the convergence property that is of major interest.

In this paper the focus is not on the properties of the binomial model as an algorithmic tool for pricing derivatives; neither the valuation of a new contract nor the analysis of convergence are presented. The question we try to answer is what we can say about the relation between real world processes and martingales if we take the theoretical background and the assumptions of binomial model seriously. Most numerical schemes start modelling the basic processes under the martingale measure and do not bother about real world processes. But it is the real world process that determines the payoff of a derivative and martingales should reflect the replicating strategy.
2 The Valuation Framework

It is assumed that the participants of a financial market have clear and homogenous ideas on the price evolution of some securities (basis securities). In accordance with the modelling of COX, ROSS, AND RUBINSTEIN [2], the future prices are expressed as the outcome of a binomial process. Each path can be associated with an element in the sample space Ω. Together with a σ-Algebra \mathcal{A} and a probability measure P it forms a probability space (Ω, \mathcal{F}, P). The probability space is equipped with a filtration $\{\mathcal{F}_n\}_{n=0}^N$ which has the characteristic property

$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_N = \mathcal{F}$$

representing the evolution of information on the market, where no piece of information gets lost over time.

Trading only takes place at certain equidistant points in time contained in the set

$$\mathcal{T} = \{0 = t_0, t_1, \ldots, t_N = T\} = \{t_0, t_0 + \Delta t, \ldots, t_0 + N \cdot \Delta t\}$$

with the overall time interval from 0 to T being fixed. Suppose that the price of the money market fund is determined by the non-stochastic one-period interest rate $r \geq 0$, such that its price evolution can be described by

$$B_{t_n} = \left\{ \begin{array}{ll}
B_{t_0}, & \text{if } t_n = t_0; \\
B_{t_{n-1}} \exp(r \Delta t), & \text{if } t_0 < t_n \leq t_N.
\end{array} \right.$$ \hspace{1cm} (1)

The stochastic process that governs the evolution of the stock price is given by

$$S_{t_n} = \left\{ \begin{array}{ll}
S_{t_0}, & \text{if } t_n = t_0; \\
S_{t_{n-1}} \exp(\mu \Delta t + \sigma \sqrt{\Delta t} X_{t_n}), & \text{if } t_0 < t_n \leq t_N;
\end{array} \right.$$ \hspace{1cm} (2)

where X_{t_n} is a sequence of independently identically distributed (i.i.d.) Bernoulli random variables

$$X_{t_n} : (\Omega_{t_n}, \mathcal{F}_{t_n}) \rightarrow (\mathcal{X}_{t_n}, \mathcal{B}_{t_n})$$
with outcomes in the state space $X_{t_n} = \{-1, 1\}$. Given the information at t_n, the probability that $X_{t_{n+1}} = 1$ is p, $0 < p < 1$, and that $X_{t_{n+1}} = -1$ is $(1 - p)$. The parameter $\mu \in \mathbb{R}$ is referred to as the drift coefficient and the parameter $\sigma > 0, \sigma \in \mathbb{R}$, as the diffusion coefficient of the process.

The market is complete by construction. Furthermore, it is assumed that the market is arbitrage-free and remains arbitrage-free after introducing new assets or contracts. A necessary condition for the market being arbitrage-free is

$$\mu - \frac{\sigma}{\sqrt{\Delta t}} < r < \mu + \frac{\sigma}{\sqrt{\Delta t}},$$

(i.e. no asset price process dominates the other one.

Our aim is to formulate consistent binomial option pricing models. We give a definition how consistency is understood in this context.

Definition 2.1 (consistent binomial model) Consider an arbitrage-free binomial model where the expected value of the payoff of an arbitrary derivative expressed in units of a numeraire equals the price of a replicating trading strategy based on real world processes. The model is consistent with respect to parameters $(\hat{\mu}, \hat{\sigma})$ if the expected real world logarithmic return over an interval of length T equals $\hat{\mu}T$ and the corresponding variance is $\hat{\sigma}^2T$.

The question we try to answer is how to specify the parameters of the processes under Q such that the real world processes have exactly the distributional properties of the desired kind.

3 Process Parameters and Moments of Logarithmic Returns

Under the specified assumptions the local expected value of the logarithmic return equals

$$E_P \left[\ln \left(\frac{S_{t_n}}{S_{t_{n-1}}} \right) \bigg| \mathcal{F}_{t_{n-1}} \right] = \mu \Delta_t - (1 - 2p)\sigma \sqrt{\Delta t}$$

and the local variance of the logarithmic return equals

$$\text{Var}_P \left[\ln \left(\frac{S_{t_n}}{S_{t_{n-1}}} \right) \bigg| \mathcal{F}_{t_{n-1}} \right] = 4p(1 - p)\sigma^2 \Delta t.$$
Note that the diffusion parameter σ has no influence on the local expected value if and only if p equals $\frac{1}{2}$. In this case the local variance reduces to

$$\text{Var}_P \left[\ln \left(\frac{S_n}{S_{n-1}} \right) \mid \mathcal{F}_{n-1} \right] = \sigma^2 \Delta_t.$$

Equal probabilities play a prominent role when interpreting μ and σ as distribution coefficients in a binomial model. Therefore, we frequently split a probability p into a reference probability of $\frac{1}{2}$ and a resulting deviation according to

$$p = \frac{1}{2} + \frac{1}{2}\eta_p, \quad \eta_p \in (-1, 1),$$

which leads to

$$E_P \left[\ln \left(\frac{S_n}{S_{n-1}} \right) \mid \mathcal{F}_{n-1} \right] = \mu \Delta_t + \eta_p \sigma \sqrt{\Delta_t}$$

and

$$\text{Var}_P \left[\ln \left(\frac{S_n}{S_{n-1}} \right) \mid \mathcal{F}_{n-1} \right] = (1 - \eta_p^2) \sigma^2 \Delta_t.$$

For the fixed period from 0 to T one obtains an expected return of

$$E_P \left[\ln \left(\frac{S_T}{S_0} \right) \mid \mathcal{F}_0 \right] = N \left(\mu \Delta_t + \eta_p \sigma \sqrt{\Delta_t} \right) = \mu T + \eta_p \sigma \sqrt{N \cdot T} \quad (4)$$

and a variance of

$$\text{Var}_P \left[\ln \left(\frac{S_T}{S_0} \right) \mid \mathcal{F}_0 \right] = N \left(1 - \eta_p^2 \right) \sigma^2 \Delta_t = (1 - \eta_p^2) \sigma^2 T. \quad (5)$$

The expected value does not depend on the number of trading days if and only if $\eta_p = 0$, which again underlines the importance of this specification. So far η_p has been interpreted as the spread between the probability of an up move and a down move. Note that the square of η_p has a meaning as well. It can be interpreted as the percentage deviation of the variance of the logarithmic returns from $\sigma^2 T$.

Let us assume that the expected value and the variance of the logarithmic return of the true stock process are known and denoted by $\hat{\mu}$ and $\hat{\sigma}^2$. If the binomial model is interpreted as a
stand-alone model in the sense of the introductory section, then first of all the probability space is specified. The first two moments of the stock’s logarithmic returns are then determined by all possible paths implied by the probability space. There is no degree of freedom to calibrate the moments. It is, of course, possible to specify the probability space such that the moments are met — this is the procedure used in practice. However, the probability measure is not really taken into account except for identifying the paths that occur with positive probability. This approach deals with paths and not with moments or distributions.

If we look at the second interpretation, then we are just interested in fitting some properties of the underlying distribution. If we concentrate on the first two moments, the parameters μ, σ and p offer one degree of freedom. Equations (4) and (5) show that the parameters μ and σ^2 can only be interpreted as the moments of the logarithmic returns, if $p = \frac{1}{2}$. Then we get

$$\mu T = \hat{\mu} T \quad \text{and} \quad \sigma^2 T = \hat{\sigma}^2 T.$$

We can, of course, choose an arbitrary transition probability $p = \frac{1}{2} + \frac{1}{2} \eta_p$ and set

$$\mu = \hat{\mu} - \eta_p \frac{\sigma}{\sqrt{\Delta}}$$

and

$$\sigma = \frac{1}{\sqrt{1 - \eta_p^2}} \hat{\sigma}$$

$$= \sqrt{\hat{\sigma}^2 + (\hat{\mu} - \mu)^2 \Delta_t}$$

to obtain the given moments. Putting (7) into (6) yields

$$\mu = \hat{\mu} - \eta_p \frac{\sigma}{\sqrt{1 - \eta_p^2 \sqrt{\Delta}}}.$$

Solving for η_p^2 one obtains

$$\eta_p^2 = \frac{(\hat{\mu} - \mu)^2}{(\hat{\mu} - \mu)^2 + \hat{\sigma}^2 \Delta}.$$

This expression approves to be extraordinarily useful for determining consistent models. It
allows calculating the transition probabilities for a given drift coefficient, such that the (real) distributional parameters are met.

Using (7) and (8) the real world stock price process can be specified as

\[
S_{t_n} = \begin{cases} S_{t_0}, & \text{if } t_n = t_0; \\ S_{t_{n-1}} \exp \left(\left(\hat{\mu} - \frac{\eta_p}{\sqrt{1-\eta_p}} \hat{\sigma} \right) \Delta t + \frac{1}{\sqrt{1-\eta_p}} \hat{\sigma} \sqrt{\Delta t} X_{t_n} \right), & \text{if } t_0 < t_n \leq t_N; \end{cases}
\]

or equivalently as

\[
S_{t_n} = \begin{cases} S_{t_0}, & \text{if } t_n = t_0; \\ S_{t_{n-1}} \exp \left(\hat{\mu} \Delta t - \hat{\sigma} \sqrt{\Delta t} X_{t_n}^{\eta_p} \right), & \text{if } t_0 < t_n \leq t_N; \end{cases}
\]

with

\[
X_{t_n}^{\eta_p} := \frac{X_{t_n} - \eta_p}{\sqrt{1-\eta_p^2}},
\]

having the property that for any arbitrary transition probability \(p = \frac{1}{2} + \frac{1}{2} \eta_p, \ 0 < p < 1 \), its logarithmic return over the time interval \([0, T]\) has mean \(\hat{\mu}T \) and variance \(\hat{\sigma}^2 T \).

4 Replicating Trading Strategies

A contingent claim is a contract whose payoff structure depends on the state dependent prices of one or more other assets. It is attainable if its future payoff can be generated by a dynamic portfolio strategy. A dynamic portfolio strategy is a previsible process \(\phi_{t_n}, n = 0, \ldots, N \), representing the number of basis securities that are held in each of the periods \([t_{n-1}, t_n)\). Since the market is complete, the payoff structure of any security contract can be generated by a dynamic portfolio strategy.

In the binomial model the dynamic portfolio strategy is determined by

\[
\begin{pmatrix} S_{t_n} (+1) & B_{t_n} \\ S_{t_n} (-1) & B_{t_n} \end{pmatrix} \begin{pmatrix} \phi_{t_n}^S \\ \phi_{t_n}^B \end{pmatrix} = \begin{pmatrix} \Pi_{t_n} (+1) \\ \Pi_{t_n} (-1) \end{pmatrix},
\]

where \(\Pi_{t_n} \) is the price of a portfolio that replicates the (dynamic) payoff structure of the contract.
to be valued. The price of this replicating portfolio in t_{n-1} is then given by

$$\Pi_{t_{n-1}} = \phi^S_{t_n} S_{t_{n-1}} + \phi^B_{t_n} B_{t_{n-1}}.$$

We follow the martingale method by HARRISON AND KREPS [3] and express the prices in units of a numeraire by premultiplying both sides of equation (10) by the matrix

$$D_{t_n} = \begin{pmatrix} B^{-1}_{t_n} & 0 \\ 0 & B^{-1}_{t_n} \end{pmatrix}.$$

Let \hat{X}_{t_n} denote the price of an arbitrary asset or contract X in units of the numeraire, i.e.

$$\hat{X}_{t_n} = B^{-1}_{t_n} X_{t_n}.$$

The number of assets is given by

$$\begin{pmatrix} \phi^S_{t_n} \\ \phi^B_{t_n} \end{pmatrix} = \begin{pmatrix} \frac{\hat{\Pi}_{t_n}(+1) - \hat{\Pi}_{t_n}(-1)}{\hat{S}_{t_n}(+1) - \hat{S}_{t_n}(-1)} \\ \frac{\hat{S}_{t_n}(+1)\hat{\Pi}_{t_n}(-1) - \hat{S}_{t_n}(-1)\hat{\Pi}_{t_n}(+1)}{\hat{S}_{t_n}(+1) - \hat{S}_{t_n}(-1)} \end{pmatrix},$$

which results in a portfolio price in t_{n-1} of

$$\hat{\Pi}_{t_{n-1}} = \frac{\hat{\Pi}_{t_n}(+1) - \hat{\Pi}_{t_n}(-1)}{\hat{S}_{t_n}(+1) - \hat{S}_{t_n}(-1)} \hat{S}_{t_{n-1}} - \frac{\hat{S}_{t_n}(+1)\hat{\Pi}_{t_n}(-1) - \hat{S}_{t_n}(-1)\hat{\Pi}_{t_n}(+1)}{\hat{S}_{t_n}(+1) - \hat{S}_{t_n}(-1)} \hat{\Pi}_{t_{n-1}} + \frac{\hat{S}_{t_{n-1}}(+1) - \hat{S}_{t_{n-1}}(-1)}{\hat{S}_{t_n}(+1) - \hat{S}_{t_n}(-1)} \hat{\Pi}_{t_n}(+1).$$

It is well known that the normed price of the replicating portfolio in t_{n-1} can be formulated as the weighted normed prices of the replicating portfolio in t_n and that these weights have the properties of probabilities. Moreover, there is a one-to-one relation between each of the portfolio weights and these pseudo-probabilities, since

$$\phi^S_{t_n} = q \frac{\hat{\Pi}_{t_n}(+1) - \hat{\Pi}_{t_n}(-1)}{\hat{S}_{t_{n-1}} - \hat{S}_{t_n}(-1)}$$

and

$$\phi^B_{t_n} = q \frac{\hat{S}_{t_n}(+1)\hat{\Pi}_{t_n}(-1) - \hat{S}_{t_n}(-1)\hat{\Pi}_{t_n}(+1)}{\hat{S}_{t_{n-1}} - \hat{S}_{t_n}(-1)}.$$
The structure of
\[q := \frac{\hat{S}_{t_{n-1}} - \hat{S}_{t_{n}}}{\hat{S}_{t_{n}} - 1} \]
if asset price processes are modelled according to (1) and (2) is another point we want to record here. For the specified processes the weight \(q \) must be
\[
q = \frac{\exp(- (\mu - r) \Delta t) - \exp(- \sigma \sqrt{\Delta t})}{\exp(\sigma \sqrt{\Delta t}) - \exp(- \sigma \sqrt{\Delta t})}
\]
(11)
and
\[
q = \frac{1}{2} + \frac{\exp(- (\mu - r) \Delta t) - \cosh(\sigma \sqrt{\Delta t})}{2 \sinh(\sigma \sqrt{\Delta t})}
\]
(12)
to reflect a replicating trading strategy.

5 Martingale processes

5.1 Parameter restrictions

The aim is to find a martingale measure under which the normed prices of all traded assets are martingales. We follow the standard procedure and formulate the prices of the stock in units of the money market fund. We obtain
\[
\hat{S}_{t_{n}} := B_{t_{n}}^{-1} S_{t_{n}}
\]
\[
= \hat{S}_{t_{0}} \exp \left((\alpha - r)(t_{n} - t_{0}) + \beta \sqrt{\Delta t} \sum_{i=1}^{n} X_{t_{i}} \right).
\]

Obviously, the expected value exists and hence, the process is a martingale if the following condition is satisfied:
\[
\mathbb{E}_{Q}[\hat{S}_{t_{n+1}}|F_{t_{n}}] = B_{t_{n+1}}^{-1} \left(q S_{t_{n}} \exp \left(\alpha \Delta t + \beta \sqrt{\Delta t} \right) + (1 - q) S_{t_{n}} \exp \left(\alpha \Delta t - \beta \sqrt{\Delta t} \right) \right)
\]
\[
= B_{t_{n}}^{-1} S_{t_{n}} = \hat{S}_{t_{n}}.
\]
(13)

This is equivalent to
\[
\exp(- (\alpha - r) \Delta t) = \left[q \exp \left(\beta \sqrt{\Delta t} \right) + (1 - q) \exp \left(- \beta \sqrt{\Delta t} \right) \right]
\]
which can be analyzed more conveniently if we split up the transition probability \(q \) induced by the martingale measure according to

\[
q = \frac{1}{2} + \frac{1}{2} \eta q.
\]

The expression simplifies to

\[
\exp(-(\alpha - r)\Delta t) = \left(\cosh \left(\beta \sqrt{\Delta t} \right) + \eta q \sinh \left(\beta \sqrt{\Delta t} \right) \right)
\]

and results in a condition for

\[
\eta q = \frac{\exp(-(\alpha - r)\Delta t) - \cosh(\beta \sqrt{\Delta t})}{\sinh(\beta \sqrt{\Delta t})}.
\]

The quantity \(q \) is a probability if

\[
\alpha - \beta \sqrt{\Delta t} < r < \alpha + \beta \sqrt{\Delta t}
\]

is satisfied. A detailed discussion of the relationship of drift parameters and transition probabilities in arbitrage-free binomial models can be found in WÖSTER [7].

5.2 Replicating a given real world process

This interpretation starts with a given probability space \((\Omega, \mathcal{F}, P)\) describing the states of the real world. Since the probability measure \(P \) is given, the transition probabilities and henceforth the probability spread \(\eta_p \) is determined. If the stock price evolves according to (2), then for a given mean \(\tilde{\mu} \) and a given variance \(\tilde{\sigma}^2 \) the drift coefficient \(\mu \) and the diffusion coefficient \(\sigma \) are determined by (6) and (7).

Given the real world probability space and the given structure of the basic asset price processes, there is a unique trading strategy replicating the payoff of a specified contract. Since the payoff of a derivative is determined by the real world stock process, we have to choose

\[
\beta = \sigma = \frac{1}{\sqrt{1 - \eta_p^2}} \tilde{\sigma}
\]
and
\[
\alpha = \mu = \hat{\mu} - \frac{\eta_p}{\sqrt{(1 - \eta_p^2)} \sqrt{\Delta t}} \sigma.
\]

The martingale measure is then given by
\[
q = \frac{1}{2} + \frac{\exp(-(\mu - r)\Delta t) - \cosh(\sigma \sqrt{\Delta t})}{2 \sinh(\sigma \sqrt{\Delta t})}
\]
provided that condition (3) holds. A comparison with (11) shows that the transition probability \(q\) given by (14) reflects a replicating trading strategy.

5.3 The real world background process of a given martingale process

The standard procedure is to model martingales without thinking about the real world processes that back them, i.e. those real world processes on which replicating strategies are based. In this section we analyze approaches starting with martingales.

There are two main procedures to obtain the martingale property of a binomial process. The first one is to fix a transition probability \(q\) and the diffusion parameter \(\beta\) under the martingale measure. The drift parameter is then uniquely determined by
\[
\alpha(q, \beta) = r - \frac{1}{\Delta t} \ln \left(\cosh \left(\beta \sqrt{\Delta t} + \eta_q \sinh \left(\beta \sqrt{\Delta t} \right) \right) \right).
\]

A very convenient choice is \(q = \frac{1}{2}\), which results in
\[
\alpha \left(\frac{1}{2}, \beta \right) = r - \frac{1}{\Delta t} \left(\cosh \left(\beta \sqrt{\Delta t} \right) \right).
\]

Equal transition probabilities have been applied to stock processes in option pricing models by AMIN [1] and to interest rate processes in term structure by JARROW [6] and HEATH, JARROW, AND MORTON [4, 5].

The second approach fixes the drift parameter \(\alpha\) and the diffusion parameter \(\beta\) under the martingale measure. The corresponding transition probability must be
\[
q(\alpha, \beta) = \frac{1}{2} + \frac{\exp(-(\alpha - r)\Delta t) - \cosh(\beta \sqrt{\Delta t})}{2 \sinh(\beta \sqrt{\Delta t})}.
\]
under the given parameter constellation. This method was proposed by Cox, Ross, and Rubinstein [2] setting $\alpha = 0$.

The question arises how to determine parameter β. It is often argued that β should correspond to the standard deviations of real world logarithmic returns. However, $\beta = \hat{\sigma}$ implies

$$\sigma = \frac{\beta}{\sqrt{1 - \eta^2}}.$$

This in turn means the process under the risk neutral measure does not reflect trading strategies under the real world measure unless the transition probability equals $\frac{1}{2}$. The problem is that the real world distributional behavior (and hence the standard deviation $\hat{\sigma}$) depends on the real world measure which is typically never specified in these binomial model implementations.

There is a consistent way to specify the parameters of a martingale process for fixed transition probabilities that retains the fundamental principle of replicating payoffs in the real world. The solution is to set $\alpha = \mu$ and $\beta = \sigma$. Under these specifications it is consistent to calculate the derivative on the dynamics of the martingale asset price. Given a drift coefficient α, the diffusion coefficient is determined by (8) to be compatible with predefined distribution parameters. Thus, the coefficient reads

$$\beta = \sqrt{(\hat{\mu} - \alpha)^2 \Delta + \hat{\sigma}^2}.$$

On the one hand the difference between β and $\hat{\sigma}$ is very small in practice and there seems to be no need for an adjustment, on the other hand this correction is easily done.

Of course, the measure of the real world probabilities have to be adjusted. The probability spread can be computed according to (9) and results in

$$\eta_p = \frac{\hat{\mu} - \alpha}{\sqrt{(\hat{\mu} - \alpha)^2 + \frac{\hat{\sigma}^2}{\Delta}}}.$$ (15)
6 An Example: An Up-and-Out Binary Option

It is assumed that a money market fund can be purchased promising a fixed interest rate quoted as an instantaneously compounded rate

\[r = 0.06. \]

Moreover, the expected logarithmic returns of the stock and their corresponding variances are independent of time and known with certainty. Suppose that the values are given by

\[\hat{\mu} = 0.12 \]

and

\[\hat{\sigma}^2 = 0.09. \]

As we know from section 3, the stock price process must be of the structure

\[
S_{t_n} = \begin{cases}
S_{t_0}, & \text{if } t_n = t_0; \\
S_{t_{n-1}} \exp \left(\left(0.12 - \frac{\eta_p}{\sqrt{1-\eta_p^2} \sqrt{\Delta t}} \right) \Delta t + \frac{i}{\sqrt{1-\eta_p^2}} \sqrt{\Delta t} X_{t_n} \right) , & \text{if } t_0 < t_n \leq t_N.
\end{cases}
\]

In \(t_0 \) the price of one share of the money market fund is normalized to a price of 1, the stock quotes at a price of 20.

Suppose the arbitrage-free price of an up-and-out stock-or-nothing binary option with a hurdle \(H = 24 \) is to be determined. The contract matures in 0.25 time units. There are three equidistant trading days (excluding the current day, including the maturity day), so \(\Delta t = \frac{1}{12} \). The option’s payoff at maturity \(C_{t_N}(H) \) is given by

\[
C_{t_3}(24) = \begin{cases}
S_{t_3}, & S_{t_n} < 24 \forall t_n \in \mathcal{T}; \\
0, & \text{otherwise.}
\end{cases}
\]

in this example. The contract does not pay any money before maturity.
6.1 Security Processes Under the Real World Measure \(P \)

Let us start with the processes representing the security price behavior in the real world. Suppose that the probability for an up move equals the probability for a down move. These transition probabilities have been assigned to the edges of the tree in figure 1. We have to stress that they are neither necessary to build a replicating trading strategy nor to determine the value of an option using the martingale method.

![Figure 1: Binomial tree under the real world probability measure](image)

However, the transition probabilities are implicitly determined if the distributional parameters \((\hat{\mu}, \hat{\sigma}) \) and the process parameters \((\mu, \sigma) \) are given. Since we wish to have the equality of \(\hat{\mu} \) and \(\mu \) on the one hand and \(\hat{\sigma} \) and \(\sigma \) on the other hand we have to choose a transition probability \(p = \frac{1}{2} \).

The last entries refer to the stock prices in units of the numeraire. In this case the money market fund has been used as the reference quantity.
6.2 The Replicating Portfolio Strategy

If we assume that the processes formed in the previous subsections reflect the possible outcome of the processes given the real world probability space, then the trading strategy formulated in figure 2 is the unique portfolio process generating the payoff of the binary option.

The trading strategy is determined recursively by the formulae introduced in section 4. If the payoff at maturity is not equal to 0, then it must be equal to the corresponding stock price. The standard procedure is to calculate the value of the option at a certain time independently of the stock price up to this time. The continuation value is replaced by 0 if the stock price at the corresponding node hits or exceeds the hurdle H. This is the case at time t_2 in the uppermost node.

Figure 2: Replicating strategy for the binary option
6.3 Security Processes Under the Martingale Measure Q

Now our view will change to the so-called risk neutral world where we consider martingale processes rather than real world processes. The first example keeps the real world processes in mind and models martingales that are consistent with the real world described above. The second example is an application of the CRR model specification.

6.3.1 A Model Based on Real World Processes

Since the payoff of the derivative for which the price is to be determined depends on the stock price in the real world and not in the risk neutral world, it seems to be a natural approach to retain the dynamics of the real world process, to calculate the derivative payoffs and to change the measure such that the prices in the numeraire are martingales.
Figure 3 shows that the arbitrage-free price process of the derivative is compatible with the price process of the replicating trading strategy in the previous section, especially the prices in \(t_0 \) coincide.

6.3.2 The Cox-Ross-Rubinstein Model

Several proposals have been made in the financial literature how to implement binomial option pricing models. The most famous model has been developed by Cox, Ross, and Rubinstein [2]. The standard way to calibrate this model to the real world data of our example is to set \(\alpha = 0 \) and

\[
\beta = \sigma = 0.3.
\]

\[
\begin{array}{cccc}
\begin{array}{c}
S_{t_0} \\
S_{t_0} \\
C_{t_0}
\end{array} & \begin{array}{c}
25.9336 \\
25.5475 \\
0.0000
\end{array} \\
\begin{array}{c}
23.7822 \\
23.5456 \\
10.6926
\end{array} & \begin{array}{c}
0.5073 \\
0.4927
\end{array} & \begin{array}{c}
21.8093 \\
21.7005 \\
15.2024
\end{array} & \begin{array}{c}
21.8093 \\
21.4846 \\
21.8093
\end{array}
\end{array}
\]

\[
\begin{array}{cccc}
\begin{array}{c}
20.0000 \\
20.0000 \\
16.6653
\end{array} & \begin{array}{c}
18.3408 \\
18.2494 \\
18.3408
\end{array} & \begin{array}{c}
0.4927 \\
0.5073 \\
0.4927
\end{array} & \begin{array}{c}
16.8193 \\
16.6519 \\
16.8193
\end{array}
\end{array}
\]

\[
\begin{array}{cccc}
\begin{array}{c}
15.4240 \\
15.1944 \\
15.4240
\end{array} & \begin{array}{c}
18.3408 \\
18.0678 \\
18.3408
\end{array} & \begin{array}{c}
0.4927 \\
0.5073 \\
0.4927
\end{array} & \begin{array}{c}
18.3408 \\
18.0678 \\
18.3408
\end{array}
\end{array}
\]

Figure 4: Binomial tree with a drift \(\alpha = 0 \)
This yields a probability \(q \) under the martingale measure of

\[
q(0, 0.3) = \frac{1}{2} + \frac{\exp\left(\frac{0.06}{12}\right) - \cosh\left(0.3 \sqrt{\frac{1}{12}}\right)}{2 \sinh\left(0.3 \sqrt{\frac{1}{12}}\right)} \approx 0.5073.
\]

Note that this process does not reflect the trading strategy of section 4. The arbitrage-free price of the barrier option differs significantly from the price of the replicating strategy. There is a remarkable difference at the uppermost node at time \(t_2 \). Whereas the option value is strictly positive in the CRR model, it is 0 in this state at the same time in the preceding model. Given our real world process the option value must not have a positive value since the price of the underlying is 24.2626 and hence quoting above the hurdle which makes the option worthless. The CRR model has taken the martingale process multiplied by \(B_{t_2} \) to check if the stock price has hit or exceeded the hurdle. But this process has nothing in common with our real world processes which are responsible for the derivative payoff. Thus, if the CRR model does not represent our real world process, then what does it represent?

7 Interpreting the Approaches

We have to be careful when interpreting the results of the last sections. At a first glance the model seems to be inadequate to reflect the trading strategies based on real world processes. However, such a conclusion would be overhasty. The right formulation is that there exists a real world process associated with a real world probability measure such that trading strategies based on these processes are reflected by the CRR model.

If we use the stock process having a drift parameter \(\alpha \) and a diffusion parameter \(\beta \) to determine the payoff of a derivative contract, then these parameters are not only the coefficients under the martingale measure \(Q \) but also under the real world measure \(P \). Now, we can determine the undistorted diffusion coefficient beta, which is given by

\[
\beta = \sqrt{(\mu - \alpha) \Delta t + \sigma^2} = \sqrt{(0.12 - 0) \cdot \frac{1}{12} + 0.09} = 0.3020.
\]
The deviation from the real world diffusion parameter $\hat{\sigma}$ is very small, even though the time discretization is rather coarse. The more interesting result is that we can identify in straightforward way the real world process for which the replicating trading strategy is reflected by martingales in the CRR model. The probability spread is given by

$$\eta_p = \frac{\hat{\mu} - \alpha}{\sqrt{(\hat{\mu} - \alpha)^2 + \hat{\sigma}^2/\Delta t}}$$

$$= \frac{0.12}{\sqrt{0.12 + 0.09 \cdot 12}} = 0.1147,$$

and henceforth the transition probability by

$$p = 0.5 + 0.5 \cdot \eta_p = 0.5574.$$
To summarize, the CRR binomial process in figure 5 satisfies three properties: First, all prices in units of the numeraire are martingales. Secondly, the logarithmic returns of the price processes have the predetermined distributional parameters. Thirdly, the processes under the martingale measure reflect replicating trading strategies since the process parameters in both worlds coincide. Hence, the model is consistent in the above mentioned sense.

8 Concluding Remarks

This paper tries to clarify the relation between distributional parameters in the real world, namely the expected value and variance of logarithmic returns, the process parameters in the real world and the process parameters in the risk neutral world.

There is a continuum of process parameters \((\mu, \sigma)\) and transition probabilities \(p\) that result in a process with given distributional parameters \((\hat{\mu}, \hat{\sigma})\). The exact relations have been shown in section 3. If we fix the process parameters and the transition probabilities (probably with certain distributional parameters in mind), then the trading strategy of a certain derivative payoff structure is uniquely determined. Furthermore, there is a one-to-one relation between the number of assets held in this strategy and transition probabilities under the martingale measure. Thus, the risk-neutral world is determined as well.

The usual procedure is to model the other way round. The starting point is the stock process in units of a numeraire which is required to be a martingale. However, if the calculation of the derivative payoff is based on this process, then the real world process must have the same structure. In other words, the process parameters of the real world and the risk neutral world have been determined simultaneously, the real world model can then be completed by identifying the probability measure that yields the actual distributional parameters. In general, this means that the martingale diffusion parameter can only be determined after specifying the consistent real world model. However, the distortion that arises if we set the risk neutral diffusion parameter to the standard deviation of the logarithmic returns will be negligibly small in nearly all applications.
References

Diskussionspapiere der Fakultät für Wirtschaftswissenschaften

332. Ralf-M. Marquardt

Die EU auf dem Weg zur EWU: Ein wichtiger Fortschritt für den Außenhandel?
Januar 1997

333. Frohn, Chen, Franke, Gottschalk, Jacob-ebbinghaus, Kräussl, Leuchtmann, Ludden, Oelker, Vollmann

Drei Simulationsexperimente mit dem Bielefelder Modell zur Erfassung der ökonomischen Wirkungen umweltpolitischer Maßnahmen (Einführung des Dualen Systems, Erhöhung des Benzinzpeises, CO₂-Reduktion)
Januar 1997

334. Ralf-M. Marquardt

Gefährden die Arbeitskosten den Investitionsstandort Deutschland?
März 1997

335. Carl Chiarella, Peter Flaschel

Keynesian monetary growth dynamics in open economies
March 1997

336. Carl Chiarella, Peter Flaschel

The dynamics of ‘natural’ rates of growth and employment
March 1997

337. Hermann Jahnke, Anne Chwolka

Strategische Kostenechnung: Eine spieltheoretische Begriffsbildung
Mai 1997

338. Willi Semmler, Alfred Greiner

An Inquiry into the Sustainability of German Fiscal Policy: Some Simple Tests
Mai 1997

339. Willi Semmler, Levent Kockesen

Mai 1997

340. Willi Semmler, Alfred Greiner

Estimating an Endogenous Growth Model with Public Capital and Government Borrowing
Mai 1997

341. Leo Kaas

Multiplicity of Cournot Equilibria and Involuntary Unemployment
Mai 1997

342. Leo Kaas

Imperfectly Competitive Price Setting under Bayesian Learning in a Disequilibrium Model
Mai 1997

343. Volker Böhm, Leo Kaas

Differential Savings, Factor Shares, and Endogenous Growth Cycles
Mai 1997

344. K.R. Schenk-Hoppé

The Evolution of Walrasian Behavior in Oligopolies
April 1997

345. Jürgen Krüll

UNIX-Accounting als Datenbasis des IV-Controlling - Möglichkeiten und Grenzen -
Mai 1997

346. Thorsten Hens, Andreas Löffler

Existence and Uniqueness of Equilibria in the CAPM with a Riskless Asset
Dezember 1995 (Universität Bielefeld, Mai 1997)

347. Jean-Marc Bottazzi, Thorsten Hens, Andreas Löffler

Market Demand Functions in the CAPM
Dezember 1996 (Universität Bielefeld, Mai 1997)

348. Piero Gottardi, Thorsten Hens

Disaggregation of Excess Demand and Comparative Statics withIncomplete Markets and Nominal Assets
Mai 1997

349. Gang Gong

The Multiplier Process in a Temporary General Equilibrium Model
Juni 1997

350. M.O. Betzüge, Thorsten Hens

An Evolutionary Approach to Financial Innovation
Juli 1997

351. Reinhard John, Matthias G. Raith

Optimizing Multi-Stage Negotiations
August 1997

352. Klaus Reiner Schenk-Hoppé

Evolutionary Stability of Walrasian Equilibria
August 1997

353. Klaus Reiner Schenk-Hoppé

Bifurcations of the Randomly Perturbed Logistic Map
August 1997

354. Thorsten Hens

Standardsoftware zur Verwaltung und Führung von Fakultäten
August 1997

355. Volker Böhm, Nicole Köhler, Jan Wenzelburger

Endogenous Random Asset Prices In Overlapping Generations Economies
September 1997

356. Volker Böhm, Jan Wenzelburger

Perfect Predictions in Economic Dynamical Systems with Random Perturbations
September 1997

357. Peter Flaschel

Disequilibrium Growth Theory with Insider/Outsider Effects.
August 1997

358. Peter Flaschel

On the Dominance of the Keynesian Regime in Disequilibrium Growth Theory.
August 1997

359. Peter Flaschel, Gangolf Groh

Textbook Stagflation Theory: Narrow views and full implications.
September 1997

360. Roman Kräussl

Einführung in RATS
September 1997

361. Martin Lettau, Gang Gong, Willi Semmler

Statistical Estimation and Moment Evaluation of a Stochastic Growth Model with Asset Market
Oktober 1997
362. Marc Oliver Betzgä/ Thorsten Hens/ Marta Laitenberger
On Choquet Prices in a GEI-Model with Intermediation Costs
August 1997

363. Peter Flaschel/ Rajiv Sethi
Stability of Models of Money and Perfect Foresight: Implications of Nonlinearity
September 1997

364. Peter Flaschel
Keynes-Marx and Keynes-Wicksell models of monetary growth: A framework for future analysis
September 1997

365. Peter Flaschel
Corridor stability and viability in economic growth
September 1997

366. Gang Gong
Endogenous Technical Change and Irregular Growth Cycles with Excess Capacity
Oktober 1997

367. Gang Gong
Growth, Interest Rate and Financial Instability
Oktober 1997

368. Thorsten Hens/ Eckart Jäger/ Alan Kirman/ Louis Phlips
Exchange Rates and Oligopoly
Oktober 1997

369. Thorsten Hens/ Karl Schmedders/ Beate Voß
On Multiplicity of Competitive Equilibria when Financial Markets are Incomplete
Oktober 1997

370. Ralf Wagner/ Thorsten Temme/ Reinhold Decker
Auftreten von und Möglichkeiten des Umgangs mit fehlenden Werten in der Marktforschung
Oktober 1997

371. Toichiro Asada/ Willi Semmler/ Andreas J. Novak
Endogenous Growth and the Balanced Growth Equilibrium
November 1997

A dynamic evolutionary model of Bertrand oligopoly
November 1997

373. Volker Böhm/ Jan Wenzelburger
Expectational Leads in Economic Dynamical Systems
Dezember 1997

374. A. Sigge/ Th. Spitta
Die Workbench des Systems R/3 als Beispiel einer Software-Entwicklungsmanagement
Dezember 1997

375. Carl Chiarella/ Peter Flaschel
An integrative approach to disequilibrium growth dynamics in open economies
Dezember 1997

376. Joachim Frohn
Ein Marktmodell zur Erfassung von Wanderungen
Dezember 1997

377. Dirk Biskup
Single-Machine Scheduling with Learning Considerations
Januar 1998

378. Hermann Jahnke
Produktionswirtschaftliche Steuergrößen, Unicherheit und die Folgen
Januar 1998

379. Willi Semmler/ Malte Sieveking
The Use of Vector Field Analysis for Studying Debt Dynamics
Januar 1998

380. Dirk Biskup/ Dirk Simons
Game Theoretic Approaches to Cost Allocation in the Dynamic Total Tardiness Problem
Januar 1998

381. Eckart Jäger
Exchange Rates and Bertrand-Oligopoly
Januar 1998

382. Michael J. Fallgatter/ Lambert T. Koch
Zur Rezeption des radikalen Konstruktivismus in der betriebswirtschaftlichen Organisationsforschung
Januar 1998

383. Reinhold Decker/ Ralf Wagner
Log-lineare Modelle in der Marktforschung
Januar 1998

384. Willi Semmler/ Malte Sieveking
External Debt Dynamics and Debt Cycles: The Role of the Discount Rate
Februar 1998

385. Rolf König/ Michael Wosnitza
Zur Problematik der Besteuerung privater Aktienkursgewinne - Eine ökonomische Analyse
März 1998

386. Joachim Frohn
Zum Nutzen struktureller makroökonometrischer Modelle
April 1998

387. K. R. Schenk-Hoppé/ Björn Schmalfüß
Random Fixed Points in a Stochastic Solow Growth Model, April 1998

388. Sandra Güth
Evolution of Trading Strategies
April 1998

389. Hermann Jahnke
Losgrößentheorie und betriebliche Produktionsplanung
April 1998

390. Ralf-M. Marquardt
Geldmengenkonzept für die EZB? - Ein Mythos als Vorbild
April 1998

391. Anne Chwolka
Delegation of Planning Activities and the Assignment of Decision Rights
April 1998

392. Thorsten Spitta
Schnittstellengestaltung in modularen Unternehmen
Mai 1998

393. Notburga Ott
Zur Konzeption eines Familienlastenausgleichs
Mai 1998

394. Röhlke, M./ Wagner, U./ Decker, R.
Zur methodengestützten Validierung stochastischer Kaufverhaltensmodelle
Mai 1998

395. Frank Laß
Der neue § 50 c Abs. 11 EStG induziert keine Besteuerung privater Ver-
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor(en)</th>
<th>Titel</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>396</td>
<td>Dirk Simons</td>
<td>Optimale Ausübungszeitpunkte für Optionen aus Aktienoptionsprogrammen unter Einbeziehung steuerlicher Liquiditätswirkungen</td>
<td>Mai 1998</td>
</tr>
<tr>
<td>397</td>
<td>Dirk Biskup/Martin Feldmann</td>
<td>Benchmarks for scheduling on a single-machine against restrictive and unrestricted common due dates</td>
<td>August 1998</td>
</tr>
<tr>
<td>398</td>
<td>Anton Stiefenhofer</td>
<td>Chaos in Cobweb Models Due to Price Uncertainty</td>
<td>September 1998</td>
</tr>
<tr>
<td>399</td>
<td>Volker Böhm</td>
<td>Macroeconomic Dynamics with Sequential Trading</td>
<td>September 1998</td>
</tr>
<tr>
<td>401</td>
<td>Thorsten Spitta</td>
<td>Data Collection of Development and Maintenance Effort - Data Model and Experiences</td>
<td>August 1998</td>
</tr>
<tr>
<td>402</td>
<td>Hermann Jahnke/Anne Chwolka</td>
<td>Preis- und Kapazitätsplanung mit Hilfe kostenorientierter Entscheidungsregeln</td>
<td>September 1998</td>
</tr>
<tr>
<td>403</td>
<td>Reinhold Decker/Thorsten Temme</td>
<td>Einsatzmöglichkeiten der Diskriminanzanalyse in der Marktforschung</td>
<td>September 1998</td>
</tr>
<tr>
<td>404</td>
<td>Thorsten Spitta</td>
<td>Grundlagen der Betriebsinformatik - Ein Versuch disziplinübergreifender Lehre –</td>
<td>Oktober 1998</td>
</tr>
<tr>
<td>407</td>
<td>Hans Peter Wolf</td>
<td>Ein wiederbelebbares Buch zur Statistik, Dezember 1998</td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>Claudia Bornemeyer/Thorsten Temme/Reinhold Decker</td>
<td>Erfolgsfaktorenforschung im Stadtmerketing unter besonderer Berücksichtigung multivariater Analysemethoden</td>
<td>Dezember 1998</td>
</tr>
<tr>
<td>409</td>
<td>Hans Peter Wolf</td>
<td>Datenanalysen mit algorithmischen Erfordernissen exemplarisch demonstriert anhand einer Untersuchung des Leistungsrangs von Studierenden</td>
<td>Januar 1999</td>
</tr>
<tr>
<td>410</td>
<td>Klaus-Peter Kistner</td>
<td>Lot Sizing and Queueing Models</td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>Dirk Simons</td>
<td>Die Koexistenz von Rechnungslegungstrends betreffend F&E-Projekte innerhalb der EU und ihr Einfluss auf die Investitionstätigkeit von Eigenkapitalgebern</td>
<td>Februar 1999</td>
</tr>
<tr>
<td>412</td>
<td>Anne Chwolka/Mathias G. Raith</td>
<td>Group Preference Aggregation with the AHP - Implications for Multiple-issue Agendas</td>
<td>Februar 1999</td>
</tr>
<tr>
<td>413</td>
<td>Jürgen Krüll</td>
<td>Literate System-Administration (LISA) - Konzept und Erprobung dokumentenbasierten Systemmanagements -</td>
<td>März 1999</td>
</tr>
<tr>
<td>414</td>
<td>Jürgen Krüll/Ha-Binh Ly</td>
<td>Literate System-Administration (LISA) - Konzept und Realisierung einer Arbeitsumgebung für den Systemadministrator -</td>
<td>März 1999</td>
</tr>
<tr>
<td>415</td>
<td>Hans Peter Wolf</td>
<td>RREVIVE - Funktionen zur Arbeit mit wiederbelebbaren Papieren unter R</td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>Volker Böhm</td>
<td>Stochastische Wachstumszyklen aus dynamischer Sicht</td>
<td>März 1999</td>
</tr>
<tr>
<td>418</td>
<td>Peter Naevé, Hans Peter Wolf, Lars Hartke, Ulrich Kirchhoff, Dirk Tigler</td>
<td>Portierung des REVBOOK nach R für die Digitale Bibliothek NRW – ein Projektbericht</td>
<td>April 1999</td>
</tr>
<tr>
<td>419</td>
<td>Thorsten Temme, Reinhold Decker</td>
<td>Analyse a priori definierter Gruppen in der angewandten Marktforschung</td>
<td>März 1999</td>
</tr>
<tr>
<td>421</td>
<td>Gang Gong, Willi Semmler, Peter Flaschel</td>
<td>A Macroeconomic Study on the Labor Market and Monetary Policy: Germany and the EMU</td>
<td>Januar 1999</td>
</tr>
<tr>
<td>424</td>
<td>Martin Feldmann</td>
<td>A Development Framework for Nature Analogic Heuristics</td>
<td></td>
</tr>
<tr>
<td>Diskussionspapiere der Fakultät für Wirtschaftswissenschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mai 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>425. Dirk Biskup, Martin Feldmann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-machine scheduling for minimizing earliness and tardiness penalties by meta-heuristic approaches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juni 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>441. Anne Chwolka, Dirk Simons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts of Revenue Sharing, Profit Sharing, and Transfer Pricing on Quality-Improving Investments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Januar 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426. Anne Chwolka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choice of Information Systems for Decision and Control Problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442. Carsten Köper, Peter Flaschel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-Financial Interaction: A Keynes-Metzler-Goodwin Portfolio Approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Januar 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427. Joachim Frohn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroeconometric Models versus Vectorautoregressive Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443. Th. Spitta, R. Decker, A. Sigge, P. Wolf, V. Tiemann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erste Bilanz des Kreditpunktsystems der Fakultät für Wirtschaftswissenschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Januar 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428. Caren Sureth, Rolf König</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General investment neutral tax systems and real options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>März 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>444. Imre Dobos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A dynamic theory of production: flow or stock-flow production Functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Februar 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429. Imre Dobos, Klaus-Peter Kistner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal Production-Inventory Strategies for a Reverse Logistics System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>445. Carl Chiarella, Peter Flaschel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applying Disequilibrium Growth Theory: I. Investment, Debt and Debt Deflation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Januar 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430. Dirk Biskup, Hermann Jahnke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Due Date Assignment for Scheduling on a Single Machine With Jointly Reducible Processing Times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>446. Imre Dobos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Dynamic Environmental Theory of Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maerz 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>431. Imre Dobos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production-inventory strategies for a linear reverse logistics system, Oktober 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>447. Anne Chwolka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Marktorientierte Zielkostenvorgaben als Instrument der Verhaltenssteuerung im Kostenmanagement", März 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>432. Jan Wenzelburger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergence of Adaptive Learning in Models of Pure Exchange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>448. Volker Böhm, Carl Chiarella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Variance Preferences, Expectations Formation, and the Dynamics of Random Asset Prices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433. Imre Dobos, Klaus-Peter Kistner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production-inventory control in a reverse logistics system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>449. Beate Pilgrim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-equivalence of uniqueness of equilibria in complete and in incomplete market models, March 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434. Joachim Frohn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Foundation of the China-Europe-International-Business-School (CEIBS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450. Beate Pilgrim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Brief Note on Mas-Colell's First Observation on Sunspots, March 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>435. Pu Chen, Joachim Frohn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodness of Fit Measures and Model Selection for Qualitative Response Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>451. Thorsten Temme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An Integrated Approach for the Use of CHAID in Applied Marketing Research, May 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>436. Rolf König, Caren Sureth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some new aspects of neoclassical investment theory with taxes, Dezember 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>452. Reinhold Decker, Claudia Bornemeyer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Ansätze zur Entscheidungsunterstützung im Rahmen der Produktliniengestaltung, Mai 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437. Rolf König, Elke Ohrem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Effects of Taxation on the Dividend Behaviour of Corporations: Empirical Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dezember 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>453. Martin Feldmann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Accepting with a Back Step. Excellent results with a hybrid variant of Threshold Accepting, Mai 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438. Jens-Ulrich Peter, Klaus Reiner Schenk-Hoppé</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Cycle Phenomena in Overlapping Generations Economies with Stochastic Production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>454. Willi Semmler, Malte Sieveking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Risk and Sustainable Debt: A Model and Estimations for Euroland November 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>439. Thorsten Temme, Reinhold Decker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAID als Instrument des Data Mining in der Marketingforschung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dezember 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>455. Alexander Krüger, Ralf-Michael</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Der Euro - eine schwache Währung? Mai 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440. Nicole Deutscher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock Market Equilibrium in OLG Economies with Heterogeneous</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diskussionspapiere der Fakultät für Wirtschaftswissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marquardt</td>
</tr>
<tr>
<td>456. Veith Tiemann</td>
</tr>
<tr>
<td>458. Imre Dobos</td>
</tr>
<tr>
<td>459. Joachim Frohn</td>
</tr>
<tr>
<td>460. Klaus-Peter Kistner</td>
</tr>
<tr>
<td>461. Reinhold Decker</td>
</tr>
<tr>
<td>462. Caren Sureth</td>
</tr>
<tr>
<td>463. Veith Tiemann</td>
</tr>
<tr>
<td>465. Stefan Kardekewitz</td>
</tr>
<tr>
<td>467. Thomas Braun, Ariane Reiss</td>
</tr>
<tr>
<td>468. Martin Feldmann, Stephanie Müller</td>
</tr>
<tr>
<td>469. Wolf-Jürgen Beyn, Thorsten Pampel, Willi Semmler</td>
</tr>
</tbody>
</table>

<p>| | Coordinating demand and capacity by adaptive decision making, September 2001 |
| | Approximation of generalized connecting orbits with asymptotic rate, September 2001 |
| | Assoziationskoeffizienten und Associationregeln als Instrumente der Verbundmessung - Eine vergleichende Betrachtung, September 2001 |
| | Germany’s Reform of the Pension System: Choice between „Scylla and Charybdis“ Oktober 2001 |
| | Wechselkurszielzonen zwischen Euro, Dollar und Yen -- nur eine Illusion? Oktober 2001 |
| | Learning to predict rationally when beliefs are heterogeneous. Oktober 2001 |
| | Learning in linear models with expectation leads Oktober 2001 |
| | Key Success Factors in City Marketing – Some Empirical Evidence - Oktober 2001 |
| | Personalentwicklung für Nachwuchswissenschaftler an der Universität Bielefeld: Eine explorative Studie zur Erhebung des Ist-Zustands und zur Begründung von Gestaltungsvorschlägen Oktober 2001 |
| | On scheduling around large restrictive common due windows December 2001 |
| | A mixed-integer programming formulation for the ELSP with sequence-dependent setup-costs and setup-times December 2001 |
| | Thresholds in a Credit Market Model with Multiple Equilibria August 2001 |
| | Price Flexibility and Instability in a Macrodynmic Model with Debt Effect, February 2002 |</p>
<table>
<thead>
<tr>
<th>Diskussionspapiere der Fakultät für Wirtschaftswissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>497. Jochen Jungeilges</td>
</tr>
<tr>
<td>499. Jochen A. Jungeilges</td>
</tr>
<tr>
<td>486. Volker Böhm, Tomoo Kikuchi</td>
</tr>
<tr>
<td>502. Pu Chen</td>
</tr>
<tr>
<td>488. Reinhold Decker</td>
</tr>
<tr>
<td>503. Pu Chen</td>
</tr>
<tr>
<td>491. Dirk Biskup, Dirk Simons</td>
</tr>
<tr>
<td>493. Volker Böhm, Jan Wenzelburger</td>
</tr>
<tr>
<td>507. Dirk Simons</td>
</tr>
<tr>
<td>495. Volker Böhm</td>
</tr>
<tr>
<td>510. Fred G. Becker, Oliver Krah</td>
</tr>
<tr>
<td>496. Susanne Kalinowsk, Stefan Kardekewitz</td>
</tr>
<tr>
<td>Diskussionspapiere der Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>512. Xuemin Zhao, Reinhold Decker</td>
</tr>
<tr>
<td>514. Ralf Wagner</td>
</tr>
<tr>
<td>515. Ralf Wagner</td>
</tr>
<tr>
<td>516. Reinhold Decker, Ralf Wagner, Sören Scholz</td>
</tr>
<tr>
<td>517. Dirk Biskup, Martin Feldmann</td>
</tr>
<tr>
<td>518. Andreas Scholze</td>
</tr>
<tr>
<td>519. Hans Gersbach, Jan Wenzelburger</td>
</tr>
<tr>
<td>520. Marten Hillebrand, Jan Wenzelburger</td>
</tr>
<tr>
<td>521. Stefan Wielenberg</td>
</tr>
<tr>
<td>522. Sören Scholz, Ralf Wagner</td>
</tr>
<tr>
<td>523. Jan Thomas Martini, Claus-Jochen Haake</td>
</tr>
<tr>
<td>524. Reinhold Decker</td>
</tr>
<tr>
<td>525. Reinhold Decker, Sören Scholz</td>
</tr>
<tr>
<td>526. Fred G. Becker, Roman Bobrichtchev, Natascha Henseler</td>
</tr>
<tr>
<td>528. Joachim Frohn, Chen Pu</td>
</tr>
<tr>
<td>529. Stefan Niermann, Joachim Frohn</td>
</tr>
<tr>
<td>530. Christoph Wöster</td>
</tr>
<tr>
<td>531. Fred G. Becker, Natascha Henseler, u.a.</td>
</tr>
<tr>
<td>532. Andreas Scholze</td>
</tr>
<tr>
<td>533. Marten Hillebrand, Jan Wenzelburger</td>
</tr>
<tr>
<td>534. Jan Thomas Martini</td>
</tr>
<tr>
<td>535. Klaus Wersching</td>
</tr>
<tr>
<td>536. Anne Obwolka, Jan Thomas Martini, Dirk Simons</td>
</tr>
<tr>
<td>538. Thorsten Pampel</td>
</tr>
<tr>
<td>540. Li Xihao, Jan Wenzelburger</td>
</tr>
<tr>
<td>541. Volker Böhm, Luca Colombo</td>
</tr>
<tr>
<td>542. Martin Feldmann, Dirk Biskup</td>
</tr>
</tbody>
</table>
543. Christoph Wöster
Die Ermittlung des Conversion Factors im Futures-Handel
September 2005

544. Thomas Braun
The impact of taxation on upper and lower bounds of enterprise value
October 2005

545. Christoph Wöster
Replication in Consistent Binomial Models
November 2005