Adjoining Roots of Unity to E_∞ Ring Spectra in Good Cases - A Remark.

R. Schwänzl, R.M. Vogt, F. Waldhausen

Dedicated to Michael Boardman on the occasion of his 60th birthday.

Throughout this paper we work in categories of ring-, module-, and algebra spectra as constructed by Elmendorf, Kriz, Mandell, and May [2], who exploit a crucial observation by Hopkins [4].

We start by specifying what we mean by "adjoining roots of unity" to an E_∞ ring spectrum or, more precisely, to a commutative S-algebra E. For a ring R let $H(R)$ denote its associated Eilenberg-MacLane ring spectrum given as appropriate cell spectrum. If E is connective there is a map of S-algebras $E \rightarrow H(\pi_0 E)$ realizing the identity on π_0 [2, IV.3.1]. Hence $H(\pi_0 E)$ is an E-algebra.

Definition 1: Let E be a connective, commutative S-algebra, and $\pi_0(E) \subseteq R$ an extension of the commutative ring $\pi_0(E)$ in the usual algebraic sense. We say a map $E \rightarrow F$ of commutative S-algebras lifts the extension $\pi_0(E) \subseteq R$ if $\pi_0(F) \cong R$ and there is a weak equivalence of $H(\pi_0 E)$-algebras

$$F \wedge_E H(\pi_0 E) \rightarrow H(R)$$

Motivation: Let A be an S-algebra and B be an A-algebra. We can define topological Hochschild homology $THH^A(B)$ of B over A as the realization (in the category of A-module spectra) of the simplicial spectrum

$$[n] \mapsto B \wedge_A B \wedge_A \ldots \wedge_A B \quad (n + 1) \text{ factors}$$
with the well-known Hochschild structure maps. We have the following result from [6].

Theorem 1: Let K be a classical commutative ring and R a flat K-algebra. Assume there is a commutative S-algebra A and an A-algebra E such that
1. HK is a commutative algebra over A.
2. there is a weak equivalence of HK-algebras $E \wedge_A HK \to HR$.
Then (modulo technical cofibrancy conditions)

$$THH_*^A(HR) \cong HH_*^K(R) \otimes_K^L THH_*^A(HK),$$

as graded K-modules, where HH_*^K stands for the classical Hochschild homology over the ground ring K and \otimes^L for the total left derived of \otimes.

We want to investigate lifts of algebraic extensions by roots of unity. An investigation of more general “algebraic extensions” of algebra spectra is work in progress.

Proposition 2: In general there is no lift for extensions.

Proof: Take the sphere spectrum S. Suppose we could adjoin a fourth root of unity to S, then according to Theorem 1

$$THH_*^S(Z[i]) \cong HH_*^Z(Z[i]) \otimes_Z^L THH_*^S(Z)$$

In particular, $THH_*^S(Z)$ would be a direct summand of $THH_*^S(Z[i])$.

Calculations by Bökstedt and Lindenstrauss show that this is not the case: we use the following results from [1] and [5]

$$THH^S_k(Z) = \begin{cases}
Z & \text{if } k = 0 \\
\mathbb{Z}/i & \text{if } k = 2i - 1 \\
0 & \text{if } k \text{ is even}
\end{cases}$$

and the induced map $THH^S_n(Z) \to THH^S_n(Z[i])$ for $n = 2j - 1$ comes from multiplication by 2 on $\mathbb{Z}/j \to \mathbb{Z}/2j$.

Our main result is
Theorem 3: Let E be a connective commutative S-algebra spectrum and p a prime which is invertible in $\pi_0(E)$. Suppose the cyclotomic polynomial

$$X^q(p-1) + X^q(p-2) + \ldots + X^q + 1$$

with $q = p^{n-1}$ is irreducible in $\pi_0(E)[X]$ and ζ is a p^n-th primitive root of unity. Then there is a commutative E-algebra spectrum $E(\zeta)$ lifting the extension $\pi_0(E) \subset \pi_0(E)(\zeta)$.

The proof uses the simple observation, well known in algebra, that factoring idempotents $\varepsilon \in \pi_0E$ can be done by localizing.

Lemma 4: Let E be a connective commutative S-algebra and $\pi_0(E)[X^{-1}]$ the localization of the ring $\pi_0(E)$ where X is a subset of $\pi_0(E)$. Then there is a commutative cell E-algebra $E[X^{-1}]$ and a weak equivalence of $H(\pi_0E)$-algebras

$$E[X^{-1}] \wedge_E H(\pi_0E) \to H((\pi_0E)[X^{-1}]) = H(\pi_0(E[X^{-1}])).$$

Proof: By [2, VIII.4.2] there is a cell E-algebra $E[X^{-1}]$ whose unit $\lambda : E \to E[X^{-1}]$ induces the localization

$$\lambda_* : \pi_*(E) \to \pi_*(E)[X^{-1}].$$

Then $\lambda \wedge_E \text{id} : E \wedge_E H(\pi_0E) \to E[X^{-1}] \wedge_E H(\pi_0E)$ is the localization of $H(\pi_0E)$ by [2, VIII.4.1], and the claim follows.

Proposition 5: Let E be a connective commutative S-algebra and $\varepsilon \in \pi_0E$ an idempotent. Then there is a commutative E-algebra $E/\varepsilon E$ and a weak equivalence of $H(\pi_0E)$-algebras

$$(E/\varepsilon E) \wedge_E H(\pi_0E) \to H(\pi_0E/\varepsilon\pi_0E) = H(\pi_0(E/\varepsilon E))$$

Proof: Let $\eta = 1 - \varepsilon$ in π_0E. Let $E \to E[\frac{1}{\eta}]$ be the localization. Since as rings

$$\left(\pi_0E\right)\left[\begin{array}{c}1 \\ \eta\end{array}\right] \cong \pi_0E/\varepsilon\pi_0E$$

we can take $E[\frac{1}{\eta}]$ for $E/\varepsilon E$.

Proof of Theorem 3: We have a commutative E-algebra group spectrum

$$E[\mathbb{Z}/p^n] = E \wedge (\mathbb{Z}/p^n)_+$$
by taking the small smash product with $(\mathbb{Z}/p^n)_+$. Let $t \in \mathbb{Z}/p^n$ be a generator and $x = t^q$, $q = p^{n-1}$. Then

$$\varepsilon = \frac{1}{p}(1 + x + \ldots + x^{p-1}) \in (\pi_0 E)[\mathbb{Z}/p^n] = \pi_0(E[\mathbb{Z}/p^n])$$

is an idempotent and $E(\zeta) = E[\mathbb{Z}/p^n]/\varepsilon(E[\mathbb{Z}/p^n])$ is the required spectrum.

Remark: The automorphism group G of \mathbb{Z}/p^n acts on $E[\mathbb{Z}/p^n]$ leaving the idempotent ε fixed. Hence, if we work in the category of G-spectra in the naive sense, we have the Galois group of the extension operating on $E(\zeta)$, and the map $E \to E(\zeta)$ is equivariant with the trivial action on E.

Corollary 6: Let $R \subset \mathbb{Q}$ be a subring and ζ a primitive p^n-th root of unity, p a prime which is invertible in R. Then

$$THH^S_*(R(\zeta)) \cong HH^2_*(R(\zeta)) \otimes^L_Z THH^S_*(\mathbb{Z})$$

This determines $THH^S_*(R(\zeta))$ by [1] and the following result from [3]:

$$HH^R_k(R[X]/(f)) = \begin{cases} R[X]/(f) & \text{if } k = 0 \\ R[X]/(f, f') & \text{if } k \text{ odd} \\ \text{Ann}(f') \text{ in } R[X]/(f) & \text{if } k > 0 \text{ even} \end{cases}$$

for a monic polynomial $f \in R[X]$ over a commutative ring R.

Acknowledgement: It is our pleasure to acknowledge the support of the Deutsche Forschungsgemeinschaft during the preparation of this paper.

References

